![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gexcl | Structured version Visualization version GIF version |
Description: The exponent of a group is a nonnegative integer. (Contributed by Mario Carneiro, 23-Apr-2016.) |
Ref | Expression |
---|---|
gexcl.1 | ⊢ 𝑋 = (Base‘𝐺) |
gexcl.2 | ⊢ 𝐸 = (gEx‘𝐺) |
Ref | Expression |
---|---|
gexcl | ⊢ (𝐺 ∈ 𝑉 → 𝐸 ∈ ℕ0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gexcl.1 | . . . . 5 ⊢ 𝑋 = (Base‘𝐺) | |
2 | eqid 2726 | . . . . 5 ⊢ (.g‘𝐺) = (.g‘𝐺) | |
3 | eqid 2726 | . . . . 5 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
4 | gexcl.2 | . . . . 5 ⊢ 𝐸 = (gEx‘𝐺) | |
5 | eqid 2726 | . . . . 5 ⊢ {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ 𝑋 (𝑦(.g‘𝐺)𝑥) = (0g‘𝐺)} = {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ 𝑋 (𝑦(.g‘𝐺)𝑥) = (0g‘𝐺)} | |
6 | 1, 2, 3, 4, 5 | gexlem1 19571 | . . . 4 ⊢ (𝐺 ∈ 𝑉 → ((𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ 𝑋 (𝑦(.g‘𝐺)𝑥) = (0g‘𝐺)} = ∅) ∨ 𝐸 ∈ {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ 𝑋 (𝑦(.g‘𝐺)𝑥) = (0g‘𝐺)})) |
7 | simpl 481 | . . . . 5 ⊢ ((𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ 𝑋 (𝑦(.g‘𝐺)𝑥) = (0g‘𝐺)} = ∅) → 𝐸 = 0) | |
8 | elrabi 3675 | . . . . 5 ⊢ (𝐸 ∈ {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ 𝑋 (𝑦(.g‘𝐺)𝑥) = (0g‘𝐺)} → 𝐸 ∈ ℕ) | |
9 | 7, 8 | orim12i 906 | . . . 4 ⊢ (((𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ 𝑋 (𝑦(.g‘𝐺)𝑥) = (0g‘𝐺)} = ∅) ∨ 𝐸 ∈ {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ 𝑋 (𝑦(.g‘𝐺)𝑥) = (0g‘𝐺)}) → (𝐸 = 0 ∨ 𝐸 ∈ ℕ)) |
10 | 6, 9 | syl 17 | . . 3 ⊢ (𝐺 ∈ 𝑉 → (𝐸 = 0 ∨ 𝐸 ∈ ℕ)) |
11 | 10 | orcomd 869 | . 2 ⊢ (𝐺 ∈ 𝑉 → (𝐸 ∈ ℕ ∨ 𝐸 = 0)) |
12 | elnn0 12518 | . 2 ⊢ (𝐸 ∈ ℕ0 ↔ (𝐸 ∈ ℕ ∨ 𝐸 = 0)) | |
13 | 11, 12 | sylibr 233 | 1 ⊢ (𝐺 ∈ 𝑉 → 𝐸 ∈ ℕ0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∨ wo 845 = wceq 1534 ∈ wcel 2099 ∀wral 3051 {crab 3420 ∅c0 4323 ‘cfv 6544 (class class class)co 7414 0cc0 11147 ℕcn 12256 ℕ0cn0 12516 Basecbs 17206 0gc0g 17447 .gcmg 19055 gExcgex 19517 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5295 ax-nul 5302 ax-pow 5360 ax-pr 5424 ax-un 7736 ax-cnex 11203 ax-resscn 11204 ax-1cn 11205 ax-icn 11206 ax-addcl 11207 ax-addrcl 11208 ax-mulcl 11209 ax-mulrcl 11210 ax-mulcom 11211 ax-addass 11212 ax-mulass 11213 ax-distr 11214 ax-i2m1 11215 ax-1ne0 11216 ax-1rid 11217 ax-rnegex 11218 ax-rrecex 11219 ax-cnre 11220 ax-pre-lttri 11221 ax-pre-lttrn 11222 ax-pre-ltadd 11223 ax-pre-mulgt0 11224 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3365 df-reu 3366 df-rab 3421 df-v 3465 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4324 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4907 df-iun 4996 df-br 5145 df-opab 5207 df-mpt 5228 df-tr 5262 df-id 5571 df-eprel 5577 df-po 5585 df-so 5586 df-fr 5628 df-we 5630 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-pred 6303 df-ord 6369 df-on 6370 df-lim 6371 df-suc 6372 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7867 df-2nd 7994 df-frecs 8286 df-wrecs 8317 df-recs 8391 df-rdg 8430 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-sup 9476 df-inf 9477 df-pnf 11289 df-mnf 11290 df-xr 11291 df-ltxr 11292 df-le 11293 df-sub 11485 df-neg 11486 df-nn 12257 df-n0 12517 df-z 12603 df-uz 12867 df-gex 19521 |
This theorem is referenced by: gexod 19578 cyggex2 19889 |
Copyright terms: Public domain | W3C validator |