MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gexcl Structured version   Visualization version   GIF version

Theorem gexcl 18478
Description: The exponent of a group is a nonnegative integer. (Contributed by Mario Carneiro, 23-Apr-2016.)
Hypotheses
Ref Expression
gexcl.1 𝑋 = (Base‘𝐺)
gexcl.2 𝐸 = (gEx‘𝐺)
Assertion
Ref Expression
gexcl (𝐺𝑉𝐸 ∈ ℕ0)

Proof of Theorem gexcl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gexcl.1 . . . . 5 𝑋 = (Base‘𝐺)
2 eqid 2772 . . . . 5 (.g𝐺) = (.g𝐺)
3 eqid 2772 . . . . 5 (0g𝐺) = (0g𝐺)
4 gexcl.2 . . . . 5 𝐸 = (gEx‘𝐺)
5 eqid 2772 . . . . 5 {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦(.g𝐺)𝑥) = (0g𝐺)} = {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦(.g𝐺)𝑥) = (0g𝐺)}
61, 2, 3, 4, 5gexlem1 18477 . . . 4 (𝐺𝑉 → ((𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦(.g𝐺)𝑥) = (0g𝐺)} = ∅) ∨ 𝐸 ∈ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦(.g𝐺)𝑥) = (0g𝐺)}))
7 simpl 475 . . . . 5 ((𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦(.g𝐺)𝑥) = (0g𝐺)} = ∅) → 𝐸 = 0)
8 elrabi 3584 . . . . 5 (𝐸 ∈ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦(.g𝐺)𝑥) = (0g𝐺)} → 𝐸 ∈ ℕ)
97, 8orim12i 892 . . . 4 (((𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦(.g𝐺)𝑥) = (0g𝐺)} = ∅) ∨ 𝐸 ∈ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦(.g𝐺)𝑥) = (0g𝐺)}) → (𝐸 = 0 ∨ 𝐸 ∈ ℕ))
106, 9syl 17 . . 3 (𝐺𝑉 → (𝐸 = 0 ∨ 𝐸 ∈ ℕ))
1110orcomd 857 . 2 (𝐺𝑉 → (𝐸 ∈ ℕ ∨ 𝐸 = 0))
12 elnn0 11707 . 2 (𝐸 ∈ ℕ0 ↔ (𝐸 ∈ ℕ ∨ 𝐸 = 0))
1311, 12sylibr 226 1 (𝐺𝑉𝐸 ∈ ℕ0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 387  wo 833   = wceq 1507  wcel 2050  wral 3082  {crab 3086  c0 4172  cfv 6185  (class class class)co 6974  0cc0 10333  cn 11437  0cn0 11705  Basecbs 16337  0gc0g 16567  .gcmg 18023  gExcgex 18427
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2744  ax-sep 5056  ax-nul 5063  ax-pow 5115  ax-pr 5182  ax-un 7277  ax-cnex 10389  ax-resscn 10390  ax-1cn 10391  ax-icn 10392  ax-addcl 10393  ax-addrcl 10394  ax-mulcl 10395  ax-mulrcl 10396  ax-mulcom 10397  ax-addass 10398  ax-mulass 10399  ax-distr 10400  ax-i2m1 10401  ax-1ne0 10402  ax-1rid 10403  ax-rnegex 10404  ax-rrecex 10405  ax-cnre 10406  ax-pre-lttri 10407  ax-pre-lttrn 10408  ax-pre-ltadd 10409  ax-pre-mulgt0 10410
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2753  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-nel 3068  df-ral 3087  df-rex 3088  df-reu 3089  df-rmo 3090  df-rab 3091  df-v 3411  df-sbc 3676  df-csb 3781  df-dif 3826  df-un 3828  df-in 3830  df-ss 3837  df-pss 3839  df-nul 4173  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-uni 4709  df-iun 4790  df-br 4926  df-opab 4988  df-mpt 5005  df-tr 5027  df-id 5308  df-eprel 5313  df-po 5322  df-so 5323  df-fr 5362  df-we 5364  df-xp 5409  df-rel 5410  df-cnv 5411  df-co 5412  df-dm 5413  df-rn 5414  df-res 5415  df-ima 5416  df-pred 5983  df-ord 6029  df-on 6030  df-lim 6031  df-suc 6032  df-iota 6149  df-fun 6187  df-fn 6188  df-f 6189  df-f1 6190  df-fo 6191  df-f1o 6192  df-fv 6193  df-riota 6935  df-ov 6977  df-oprab 6978  df-mpo 6979  df-om 7395  df-wrecs 7748  df-recs 7810  df-rdg 7848  df-er 8087  df-en 8305  df-dom 8306  df-sdom 8307  df-sup 8699  df-inf 8700  df-pnf 10474  df-mnf 10475  df-xr 10476  df-ltxr 10477  df-le 10478  df-sub 10670  df-neg 10671  df-nn 11438  df-n0 11706  df-z 11792  df-uz 12057  df-gex 18431
This theorem is referenced by:  gexod  18484  cyggex2  18783
  Copyright terms: Public domain W3C validator