| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nn0ge0 | Structured version Visualization version GIF version | ||
| Description: A nonnegative integer is greater than or equal to zero. (Contributed by NM, 9-May-2004.) (Revised by Mario Carneiro, 16-May-2014.) |
| Ref | Expression |
|---|---|
| nn0ge0 | ⊢ (𝑁 ∈ ℕ0 → 0 ≤ 𝑁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnn0 12508 | . . 3 ⊢ (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0)) | |
| 2 | nngt0 12276 | . . . 4 ⊢ (𝑁 ∈ ℕ → 0 < 𝑁) | |
| 3 | id 22 | . . . . 5 ⊢ (𝑁 = 0 → 𝑁 = 0) | |
| 4 | 3 | eqcomd 2742 | . . . 4 ⊢ (𝑁 = 0 → 0 = 𝑁) |
| 5 | 2, 4 | orim12i 908 | . . 3 ⊢ ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → (0 < 𝑁 ∨ 0 = 𝑁)) |
| 6 | 1, 5 | sylbi 217 | . 2 ⊢ (𝑁 ∈ ℕ0 → (0 < 𝑁 ∨ 0 = 𝑁)) |
| 7 | 0re 11242 | . . 3 ⊢ 0 ∈ ℝ | |
| 8 | nn0re 12515 | . . 3 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ) | |
| 9 | leloe 11326 | . . 3 ⊢ ((0 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (0 ≤ 𝑁 ↔ (0 < 𝑁 ∨ 0 = 𝑁))) | |
| 10 | 7, 8, 9 | sylancr 587 | . 2 ⊢ (𝑁 ∈ ℕ0 → (0 ≤ 𝑁 ↔ (0 < 𝑁 ∨ 0 = 𝑁))) |
| 11 | 6, 10 | mpbird 257 | 1 ⊢ (𝑁 ∈ ℕ0 → 0 ≤ 𝑁) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∨ wo 847 = wceq 1540 ∈ wcel 2109 class class class wbr 5124 ℝcr 11133 0cc0 11134 < clt 11274 ≤ cle 11275 ℕcn 12245 ℕ0cn0 12506 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-n0 12507 |
| This theorem is referenced by: nn0nlt0 12532 nn0ge0i 12533 nn0le0eq0 12534 nn0p1gt0 12535 0mnnnnn0 12538 nn0addge1 12552 nn0addge2 12553 nn0negleid 12558 nn0ge0d 12570 nn0ge0div 12667 xnn0ge0 13155 xnn0xadd0 13268 nn0rp0 13477 xnn0xrge0 13528 0elfz 13646 fz0fzelfz0 13656 fz0fzdiffz0 13659 fzctr 13662 difelfzle 13663 fzoun 13718 nn0p1elfzo 13724 elfzodifsumelfzo 13752 fvinim0ffz 13807 subfzo0 13810 adddivflid 13840 modmuladdnn0 13938 addmodid 13942 modifeq2int 13956 modfzo0difsn 13966 nn0sq11 14155 zzlesq 14229 bernneq 14252 bernneq3 14254 faclbnd 14313 faclbnd6 14322 facubnd 14323 bcval5 14341 hashneq0 14387 fi1uzind 14530 ccat0 14599 ccat2s1fvw 14661 repswswrd 14807 nn0sqeq1 15300 rprisefaccl 16044 dvdseq 16338 evennn02n 16374 nn0ehalf 16402 nn0oddm1d2 16409 bitsinv1 16466 smuval2 16506 gcdn0gt0 16542 nn0gcdid0 16545 absmulgcd 16573 algcvgblem 16601 algcvga 16603 lcmgcdnn 16635 lcmfun 16669 lcmfass 16670 2mulprm 16717 nonsq 16783 hashgcdlem 16812 odzdvds 16820 pcfaclem 16923 prmirredlem 21438 prmirred 21440 coe1sclmul 22224 coe1sclmul2 22226 fvmptnn04ifb 22794 mdegle0 26039 plypf1 26174 dgrlt 26229 fta1 26273 taylfval 26323 logbgcd1irr 26761 eldmgm 26989 basellem3 27050 bcmono 27245 lgsdinn0 27313 2sq2 27401 2sqnn0 27406 2sqreulem1 27414 dchrisumlem1 27457 dchrisumlem2 27458 wwlksnextwrd 29884 wwlksnextfun 29885 wwlksnextinj 29886 wwlksnextproplem2 29897 wwlksnextproplem3 29898 wrdt2ind 32934 xrsmulgzz 33006 hashf2 34120 hasheuni 34121 reprinfz1 34659 0nn0m1nnn0 35140 faclimlem1 35765 rrntotbnd 37865 gcdnn0id 42347 pell14qrgt0 42857 pell1qrgaplem 42871 monotoddzzfi 42941 jm2.17a 42959 jm2.22 42994 rmxdiophlem 43014 rexanuz2nf 45499 wallispilem3 46076 stirlinglem7 46089 elfz2z 47324 fz0addge0 47328 elfzlble 47329 2ffzoeq 47336 addmodne 47353 iccpartigtl 47417 sqrtpwpw2p 47532 flsqrt 47587 nn0e 47691 nn0sumltlt 48305 nn0eo 48488 fllog2 48528 dignn0fr 48561 dignnld 48563 dig1 48568 itcovalt2lem2lem1 48633 |
| Copyright terms: Public domain | W3C validator |