![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nn0ge0 | Structured version Visualization version GIF version |
Description: A nonnegative integer is greater than or equal to zero. (Contributed by NM, 9-May-2004.) (Revised by Mario Carneiro, 16-May-2014.) |
Ref | Expression |
---|---|
nn0ge0 | ⊢ (𝑁 ∈ ℕ0 → 0 ≤ 𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elnn0 12471 | . . 3 ⊢ (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0)) | |
2 | nngt0 12240 | . . . 4 ⊢ (𝑁 ∈ ℕ → 0 < 𝑁) | |
3 | id 22 | . . . . 5 ⊢ (𝑁 = 0 → 𝑁 = 0) | |
4 | 3 | eqcomd 2739 | . . . 4 ⊢ (𝑁 = 0 → 0 = 𝑁) |
5 | 2, 4 | orim12i 908 | . . 3 ⊢ ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → (0 < 𝑁 ∨ 0 = 𝑁)) |
6 | 1, 5 | sylbi 216 | . 2 ⊢ (𝑁 ∈ ℕ0 → (0 < 𝑁 ∨ 0 = 𝑁)) |
7 | 0re 11213 | . . 3 ⊢ 0 ∈ ℝ | |
8 | nn0re 12478 | . . 3 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ) | |
9 | leloe 11297 | . . 3 ⊢ ((0 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (0 ≤ 𝑁 ↔ (0 < 𝑁 ∨ 0 = 𝑁))) | |
10 | 7, 8, 9 | sylancr 588 | . 2 ⊢ (𝑁 ∈ ℕ0 → (0 ≤ 𝑁 ↔ (0 < 𝑁 ∨ 0 = 𝑁))) |
11 | 6, 10 | mpbird 257 | 1 ⊢ (𝑁 ∈ ℕ0 → 0 ≤ 𝑁) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∨ wo 846 = wceq 1542 ∈ wcel 2107 class class class wbr 5148 ℝcr 11106 0cc0 11107 < clt 11245 ≤ cle 11246 ℕcn 12209 ℕ0cn0 12469 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7722 ax-resscn 11164 ax-1cn 11165 ax-icn 11166 ax-addcl 11167 ax-addrcl 11168 ax-mulcl 11169 ax-mulrcl 11170 ax-mulcom 11171 ax-addass 11172 ax-mulass 11173 ax-distr 11174 ax-i2m1 11175 ax-1ne0 11176 ax-1rid 11177 ax-rnegex 11178 ax-rrecex 11179 ax-cnre 11180 ax-pre-lttri 11181 ax-pre-lttrn 11182 ax-pre-ltadd 11183 ax-pre-mulgt0 11184 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6298 df-ord 6365 df-on 6366 df-lim 6367 df-suc 6368 df-iota 6493 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7362 df-ov 7409 df-oprab 7410 df-mpo 7411 df-om 7853 df-2nd 7973 df-frecs 8263 df-wrecs 8294 df-recs 8368 df-rdg 8407 df-er 8700 df-en 8937 df-dom 8938 df-sdom 8939 df-pnf 11247 df-mnf 11248 df-xr 11249 df-ltxr 11250 df-le 11251 df-sub 11443 df-neg 11444 df-nn 12210 df-n0 12470 |
This theorem is referenced by: nn0nlt0 12495 nn0ge0i 12496 nn0le0eq0 12497 nn0p1gt0 12498 0mnnnnn0 12501 nn0addge1 12515 nn0addge2 12516 nn0negleid 12521 nn0ge0d 12532 nn0ge0div 12628 xnn0ge0 13110 xnn0xadd0 13223 nn0rp0 13429 xnn0xrge0 13480 0elfz 13595 fz0fzelfz0 13604 fz0fzdiffz0 13607 fzctr 13610 difelfzle 13611 fzoun 13666 nn0p1elfzo 13672 elfzodifsumelfzo 13695 fvinim0ffz 13748 subfzo0 13751 adddivflid 13780 modmuladdnn0 13877 addmodid 13881 modifeq2int 13895 modfzo0difsn 13905 nn0sq11 14094 zzlesq 14167 bernneq 14189 bernneq3 14191 faclbnd 14247 faclbnd6 14256 facubnd 14257 bcval5 14275 hashneq0 14321 fi1uzind 14455 ccat0 14523 ccat2s1fvw 14585 repswswrd 14731 nn0sqeq1 15220 rprisefaccl 15964 dvdseq 16254 evennn02n 16290 nn0ehalf 16318 nn0oddm1d2 16325 bitsinv1 16380 smuval2 16420 gcdn0gt0 16456 nn0gcdid0 16459 absmulgcd 16488 algcvgblem 16511 algcvga 16513 lcmgcdnn 16545 lcmfun 16579 lcmfass 16580 2mulprm 16627 nonsq 16692 hashgcdlem 16718 odzdvds 16725 pcfaclem 16828 prmirredlem 21034 prmirred 21036 coe1sclmul 21796 coe1sclmul2 21798 fvmptnn04ifb 22345 mdegle0 25587 plypf1 25718 dgrlt 25772 fta1 25813 taylfval 25863 logbgcd1irr 26289 eldmgm 26516 basellem3 26577 bcmono 26770 lgsdinn0 26838 2sq2 26926 2sqnn0 26931 2sqreulem1 26939 dchrisumlem1 26982 dchrisumlem2 26983 wwlksnextwrd 29141 wwlksnextfun 29142 wwlksnextinj 29143 wwlksnextproplem2 29154 wwlksnextproplem3 29155 wrdt2ind 32105 xrsmulgzz 32167 hashf2 33071 hasheuni 33072 reprinfz1 33623 0nn0m1nnn0 34091 faclimlem1 34702 rrntotbnd 36693 factwoffsmonot 41012 gcdnn0id 41216 pell14qrgt0 41583 pell1qrgaplem 41597 monotoddzzfi 41667 jm2.17a 41685 jm2.22 41720 rmxdiophlem 41740 rexanuz2nf 44190 wallispilem3 44770 stirlinglem7 44783 elfz2z 46010 fz0addge0 46014 elfzlble 46015 2ffzoeq 46023 iccpartigtl 46078 sqrtpwpw2p 46193 flsqrt 46248 nn0e 46352 nn0sumltlt 46980 nn0eo 47168 fllog2 47208 dignn0fr 47241 dignnld 47243 dig1 47248 itcovalt2lem2lem1 47313 |
Copyright terms: Public domain | W3C validator |