![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nn0ge0 | Structured version Visualization version GIF version |
Description: A nonnegative integer is greater than or equal to zero. (Contributed by NM, 9-May-2004.) (Revised by Mario Carneiro, 16-May-2014.) |
Ref | Expression |
---|---|
nn0ge0 | ⊢ (𝑁 ∈ ℕ0 → 0 ≤ 𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elnn0 12555 | . . 3 ⊢ (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0)) | |
2 | nngt0 12324 | . . . 4 ⊢ (𝑁 ∈ ℕ → 0 < 𝑁) | |
3 | id 22 | . . . . 5 ⊢ (𝑁 = 0 → 𝑁 = 0) | |
4 | 3 | eqcomd 2746 | . . . 4 ⊢ (𝑁 = 0 → 0 = 𝑁) |
5 | 2, 4 | orim12i 907 | . . 3 ⊢ ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → (0 < 𝑁 ∨ 0 = 𝑁)) |
6 | 1, 5 | sylbi 217 | . 2 ⊢ (𝑁 ∈ ℕ0 → (0 < 𝑁 ∨ 0 = 𝑁)) |
7 | 0re 11292 | . . 3 ⊢ 0 ∈ ℝ | |
8 | nn0re 12562 | . . 3 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ) | |
9 | leloe 11376 | . . 3 ⊢ ((0 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (0 ≤ 𝑁 ↔ (0 < 𝑁 ∨ 0 = 𝑁))) | |
10 | 7, 8, 9 | sylancr 586 | . 2 ⊢ (𝑁 ∈ ℕ0 → (0 ≤ 𝑁 ↔ (0 < 𝑁 ∨ 0 = 𝑁))) |
11 | 6, 10 | mpbird 257 | 1 ⊢ (𝑁 ∈ ℕ0 → 0 ≤ 𝑁) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∨ wo 846 = wceq 1537 ∈ wcel 2108 class class class wbr 5166 ℝcr 11183 0cc0 11184 < clt 11324 ≤ cle 11325 ℕcn 12293 ℕ0cn0 12553 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-n0 12554 |
This theorem is referenced by: nn0nlt0 12579 nn0ge0i 12580 nn0le0eq0 12581 nn0p1gt0 12582 0mnnnnn0 12585 nn0addge1 12599 nn0addge2 12600 nn0negleid 12605 nn0ge0d 12616 nn0ge0div 12712 xnn0ge0 13196 xnn0xadd0 13309 nn0rp0 13515 xnn0xrge0 13566 0elfz 13681 fz0fzelfz0 13691 fz0fzdiffz0 13694 fzctr 13697 difelfzle 13698 fzoun 13753 nn0p1elfzo 13759 elfzodifsumelfzo 13782 fvinim0ffz 13836 subfzo0 13839 adddivflid 13869 modmuladdnn0 13966 addmodid 13970 modifeq2int 13984 modfzo0difsn 13994 nn0sq11 14182 zzlesq 14255 bernneq 14278 bernneq3 14280 faclbnd 14339 faclbnd6 14348 facubnd 14349 bcval5 14367 hashneq0 14413 fi1uzind 14556 ccat0 14624 ccat2s1fvw 14686 repswswrd 14832 nn0sqeq1 15325 rprisefaccl 16071 dvdseq 16362 evennn02n 16398 nn0ehalf 16426 nn0oddm1d2 16433 bitsinv1 16488 smuval2 16528 gcdn0gt0 16564 nn0gcdid0 16567 absmulgcd 16596 algcvgblem 16624 algcvga 16626 lcmgcdnn 16658 lcmfun 16692 lcmfass 16693 2mulprm 16740 nonsq 16806 hashgcdlem 16835 odzdvds 16842 pcfaclem 16945 prmirredlem 21506 prmirred 21508 coe1sclmul 22306 coe1sclmul2 22308 fvmptnn04ifb 22878 mdegle0 26136 plypf1 26271 dgrlt 26326 fta1 26368 taylfval 26418 logbgcd1irr 26855 eldmgm 27083 basellem3 27144 bcmono 27339 lgsdinn0 27407 2sq2 27495 2sqnn0 27500 2sqreulem1 27508 dchrisumlem1 27551 dchrisumlem2 27552 wwlksnextwrd 29930 wwlksnextfun 29931 wwlksnextinj 29932 wwlksnextproplem2 29943 wwlksnextproplem3 29944 wrdt2ind 32920 xrsmulgzz 32992 hashf2 34048 hasheuni 34049 reprinfz1 34599 0nn0m1nnn0 35080 faclimlem1 35705 rrntotbnd 37796 factwoffsmonot 42199 gcdnn0id 42316 pell14qrgt0 42815 pell1qrgaplem 42829 monotoddzzfi 42899 jm2.17a 42917 jm2.22 42952 rmxdiophlem 42972 rexanuz2nf 45408 wallispilem3 45988 stirlinglem7 46001 elfz2z 47230 fz0addge0 47234 elfzlble 47235 2ffzoeq 47242 iccpartigtl 47297 sqrtpwpw2p 47412 flsqrt 47467 nn0e 47571 nn0sumltlt 48075 nn0eo 48262 fllog2 48302 dignn0fr 48335 dignnld 48337 dig1 48342 itcovalt2lem2lem1 48407 |
Copyright terms: Public domain | W3C validator |