| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nn0ge0 | Structured version Visualization version GIF version | ||
| Description: A nonnegative integer is greater than or equal to zero. (Contributed by NM, 9-May-2004.) (Revised by Mario Carneiro, 16-May-2014.) |
| Ref | Expression |
|---|---|
| nn0ge0 | ⊢ (𝑁 ∈ ℕ0 → 0 ≤ 𝑁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnn0 12512 | . . 3 ⊢ (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0)) | |
| 2 | nngt0 12280 | . . . 4 ⊢ (𝑁 ∈ ℕ → 0 < 𝑁) | |
| 3 | id 22 | . . . . 5 ⊢ (𝑁 = 0 → 𝑁 = 0) | |
| 4 | 3 | eqcomd 2740 | . . . 4 ⊢ (𝑁 = 0 → 0 = 𝑁) |
| 5 | 2, 4 | orim12i 908 | . . 3 ⊢ ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → (0 < 𝑁 ∨ 0 = 𝑁)) |
| 6 | 1, 5 | sylbi 217 | . 2 ⊢ (𝑁 ∈ ℕ0 → (0 < 𝑁 ∨ 0 = 𝑁)) |
| 7 | 0re 11246 | . . 3 ⊢ 0 ∈ ℝ | |
| 8 | nn0re 12519 | . . 3 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ) | |
| 9 | leloe 11330 | . . 3 ⊢ ((0 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (0 ≤ 𝑁 ↔ (0 < 𝑁 ∨ 0 = 𝑁))) | |
| 10 | 7, 8, 9 | sylancr 587 | . 2 ⊢ (𝑁 ∈ ℕ0 → (0 ≤ 𝑁 ↔ (0 < 𝑁 ∨ 0 = 𝑁))) |
| 11 | 6, 10 | mpbird 257 | 1 ⊢ (𝑁 ∈ ℕ0 → 0 ≤ 𝑁) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∨ wo 847 = wceq 1539 ∈ wcel 2107 class class class wbr 5125 ℝcr 11137 0cc0 11138 < clt 11278 ≤ cle 11279 ℕcn 12249 ℕ0cn0 12510 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-pss 3953 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-iun 4975 df-br 5126 df-opab 5188 df-mpt 5208 df-tr 5242 df-id 5560 df-eprel 5566 df-po 5574 df-so 5575 df-fr 5619 df-we 5621 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6303 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7371 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7871 df-2nd 7998 df-frecs 8289 df-wrecs 8320 df-recs 8394 df-rdg 8433 df-er 8728 df-en 8969 df-dom 8970 df-sdom 8971 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11477 df-neg 11478 df-nn 12250 df-n0 12511 |
| This theorem is referenced by: nn0nlt0 12536 nn0ge0i 12537 nn0le0eq0 12538 nn0p1gt0 12539 0mnnnnn0 12542 nn0addge1 12556 nn0addge2 12557 nn0negleid 12562 nn0ge0d 12574 nn0ge0div 12671 xnn0ge0 13159 xnn0xadd0 13272 nn0rp0 13478 xnn0xrge0 13529 0elfz 13647 fz0fzelfz0 13657 fz0fzdiffz0 13660 fzctr 13663 difelfzle 13664 fzoun 13719 nn0p1elfzo 13725 elfzodifsumelfzo 13753 fvinim0ffz 13808 subfzo0 13811 adddivflid 13841 modmuladdnn0 13939 addmodid 13943 modifeq2int 13957 modfzo0difsn 13967 nn0sq11 14155 zzlesq 14228 bernneq 14251 bernneq3 14253 faclbnd 14312 faclbnd6 14321 facubnd 14322 bcval5 14340 hashneq0 14386 fi1uzind 14529 ccat0 14597 ccat2s1fvw 14659 repswswrd 14805 nn0sqeq1 15298 rprisefaccl 16042 dvdseq 16334 evennn02n 16370 nn0ehalf 16398 nn0oddm1d2 16405 bitsinv1 16462 smuval2 16502 gcdn0gt0 16538 nn0gcdid0 16541 absmulgcd 16569 algcvgblem 16597 algcvga 16599 lcmgcdnn 16631 lcmfun 16665 lcmfass 16666 2mulprm 16713 nonsq 16779 hashgcdlem 16808 odzdvds 16816 pcfaclem 16919 prmirredlem 21450 prmirred 21452 coe1sclmul 22252 coe1sclmul2 22254 fvmptnn04ifb 22824 mdegle0 26071 plypf1 26206 dgrlt 26261 fta1 26305 taylfval 26355 logbgcd1irr 26792 eldmgm 27020 basellem3 27081 bcmono 27276 lgsdinn0 27344 2sq2 27432 2sqnn0 27437 2sqreulem1 27445 dchrisumlem1 27488 dchrisumlem2 27489 wwlksnextwrd 29864 wwlksnextfun 29865 wwlksnextinj 29866 wwlksnextproplem2 29877 wwlksnextproplem3 29878 wrdt2ind 32885 xrsmulgzz 32957 hashf2 34026 hasheuni 34027 reprinfz1 34578 0nn0m1nnn0 35059 faclimlem1 35684 rrntotbnd 37784 factwoffsmonot 42184 gcdnn0id 42309 pell14qrgt0 42815 pell1qrgaplem 42829 monotoddzzfi 42899 jm2.17a 42917 jm2.22 42952 rmxdiophlem 42972 rexanuz2nf 45448 wallispilem3 46027 stirlinglem7 46040 elfz2z 47273 fz0addge0 47277 elfzlble 47278 2ffzoeq 47285 addmodne 47292 iccpartigtl 47356 sqrtpwpw2p 47471 flsqrt 47526 nn0e 47630 nn0sumltlt 48212 nn0eo 48395 fllog2 48435 dignn0fr 48468 dignnld 48470 dig1 48475 itcovalt2lem2lem1 48540 |
| Copyright terms: Public domain | W3C validator |