| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nn0ge0 | Structured version Visualization version GIF version | ||
| Description: A nonnegative integer is greater than or equal to zero. (Contributed by NM, 9-May-2004.) (Revised by Mario Carneiro, 16-May-2014.) |
| Ref | Expression |
|---|---|
| nn0ge0 | ⊢ (𝑁 ∈ ℕ0 → 0 ≤ 𝑁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnn0 12420 | . . 3 ⊢ (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0)) | |
| 2 | nngt0 12193 | . . . 4 ⊢ (𝑁 ∈ ℕ → 0 < 𝑁) | |
| 3 | id 22 | . . . . 5 ⊢ (𝑁 = 0 → 𝑁 = 0) | |
| 4 | 3 | eqcomd 2735 | . . . 4 ⊢ (𝑁 = 0 → 0 = 𝑁) |
| 5 | 2, 4 | orim12i 908 | . . 3 ⊢ ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → (0 < 𝑁 ∨ 0 = 𝑁)) |
| 6 | 1, 5 | sylbi 217 | . 2 ⊢ (𝑁 ∈ ℕ0 → (0 < 𝑁 ∨ 0 = 𝑁)) |
| 7 | 0re 11152 | . . 3 ⊢ 0 ∈ ℝ | |
| 8 | nn0re 12427 | . . 3 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ) | |
| 9 | leloe 11236 | . . 3 ⊢ ((0 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (0 ≤ 𝑁 ↔ (0 < 𝑁 ∨ 0 = 𝑁))) | |
| 10 | 7, 8, 9 | sylancr 587 | . 2 ⊢ (𝑁 ∈ ℕ0 → (0 ≤ 𝑁 ↔ (0 < 𝑁 ∨ 0 = 𝑁))) |
| 11 | 6, 10 | mpbird 257 | 1 ⊢ (𝑁 ∈ ℕ0 → 0 ≤ 𝑁) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∨ wo 847 = wceq 1540 ∈ wcel 2109 class class class wbr 5102 ℝcr 11043 0cc0 11044 < clt 11184 ≤ cle 11185 ℕcn 12162 ℕ0cn0 12418 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-n0 12419 |
| This theorem is referenced by: nn0nlt0 12444 nn0ge0i 12445 nn0le0eq0 12446 nn0p1gt0 12447 0mnnnnn0 12450 nn0addge1 12464 nn0addge2 12465 nn0negleid 12470 nn0ge0d 12482 nn0ge0div 12579 xnn0ge0 13070 xnn0xadd0 13183 nn0rp0 13392 xnn0xrge0 13443 0elfz 13561 fz0fzelfz0 13571 fz0fzdiffz0 13574 fzctr 13577 difelfzle 13578 fzoun 13633 nn0p1elfzo 13639 elfzodifsumelfzo 13668 fvinim0ffz 13723 subfzo0 13726 adddivflid 13756 modmuladdnn0 13856 addmodid 13860 modifeq2int 13874 modfzo0difsn 13884 nn0sq11 14073 zzlesq 14147 bernneq 14170 bernneq3 14172 faclbnd 14231 faclbnd6 14240 facubnd 14241 bcval5 14259 hashneq0 14305 fi1uzind 14448 ccat0 14517 ccat2s1fvw 14579 repswswrd 14725 nn0sqeq1 15218 nn0absid 15372 rprisefaccl 15965 dvdseq 16260 evennn02n 16296 nn0ehalf 16324 nn0oddm1d2 16331 bitsinv1 16388 smuval2 16428 gcdn0gt0 16464 nn0gcdid0 16467 absmulgcd 16495 algcvgblem 16523 algcvga 16525 lcmgcdnn 16557 lcmfun 16591 lcmfass 16592 2mulprm 16639 nonsq 16705 hashgcdlem 16734 odzdvds 16742 pcfaclem 16845 prmirredlem 21358 prmirred 21360 coe1sclmul 22144 coe1sclmul2 22146 fvmptnn04ifb 22714 mdegle0 25958 plypf1 26093 dgrlt 26148 fta1 26192 taylfval 26242 logbgcd1irr 26680 eldmgm 26908 basellem3 26969 bcmono 27164 lgsdinn0 27232 2sq2 27320 2sqnn0 27325 2sqreulem1 27333 dchrisumlem1 27376 dchrisumlem2 27377 wwlksnextwrd 29800 wwlksnextfun 29801 wwlksnextinj 29802 wwlksnextproplem2 29813 wwlksnextproplem3 29814 wrdt2ind 32848 xrsmulgzz 32920 hashf2 34047 hasheuni 34048 reprinfz1 34586 0nn0m1nnn0 35073 faclimlem1 35703 rrntotbnd 37803 gcdnn0id 42290 pell14qrgt0 42820 pell1qrgaplem 42834 monotoddzzfi 42904 jm2.17a 42922 jm2.22 42957 rmxdiophlem 42977 rexanuz2nf 45461 wallispilem3 46038 stirlinglem7 46051 elfz2z 47289 fz0addge0 47293 elfzlble 47294 2ffzoeq 47301 addmodne 47318 iccpartigtl 47397 sqrtpwpw2p 47512 flsqrt 47567 nn0e 47671 nn0sumltlt 48311 nn0eo 48490 fllog2 48530 dignn0fr 48563 dignnld 48565 dig1 48570 itcovalt2lem2lem1 48635 |
| Copyright terms: Public domain | W3C validator |