Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nn0ge0 | Structured version Visualization version GIF version |
Description: A nonnegative integer is greater than or equal to zero. (Contributed by NM, 9-May-2004.) (Revised by Mario Carneiro, 16-May-2014.) |
Ref | Expression |
---|---|
nn0ge0 | ⊢ (𝑁 ∈ ℕ0 → 0 ≤ 𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elnn0 11936 | . . 3 ⊢ (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0)) | |
2 | nngt0 11705 | . . . 4 ⊢ (𝑁 ∈ ℕ → 0 < 𝑁) | |
3 | id 22 | . . . . 5 ⊢ (𝑁 = 0 → 𝑁 = 0) | |
4 | 3 | eqcomd 2764 | . . . 4 ⊢ (𝑁 = 0 → 0 = 𝑁) |
5 | 2, 4 | orim12i 906 | . . 3 ⊢ ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → (0 < 𝑁 ∨ 0 = 𝑁)) |
6 | 1, 5 | sylbi 220 | . 2 ⊢ (𝑁 ∈ ℕ0 → (0 < 𝑁 ∨ 0 = 𝑁)) |
7 | 0re 10681 | . . 3 ⊢ 0 ∈ ℝ | |
8 | nn0re 11943 | . . 3 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ) | |
9 | leloe 10765 | . . 3 ⊢ ((0 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (0 ≤ 𝑁 ↔ (0 < 𝑁 ∨ 0 = 𝑁))) | |
10 | 7, 8, 9 | sylancr 590 | . 2 ⊢ (𝑁 ∈ ℕ0 → (0 ≤ 𝑁 ↔ (0 < 𝑁 ∨ 0 = 𝑁))) |
11 | 6, 10 | mpbird 260 | 1 ⊢ (𝑁 ∈ ℕ0 → 0 ≤ 𝑁) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∨ wo 844 = wceq 1538 ∈ wcel 2111 class class class wbr 5032 ℝcr 10574 0cc0 10575 < clt 10713 ≤ cle 10714 ℕcn 11674 ℕ0cn0 11934 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 ax-resscn 10632 ax-1cn 10633 ax-icn 10634 ax-addcl 10635 ax-addrcl 10636 ax-mulcl 10637 ax-mulrcl 10638 ax-mulcom 10639 ax-addass 10640 ax-mulass 10641 ax-distr 10642 ax-i2m1 10643 ax-1ne0 10644 ax-1rid 10645 ax-rnegex 10646 ax-rrecex 10647 ax-cnre 10648 ax-pre-lttri 10649 ax-pre-lttrn 10650 ax-pre-ltadd 10651 ax-pre-mulgt0 10652 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-pss 3877 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-tp 4527 df-op 4529 df-uni 4799 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-tr 5139 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5483 df-we 5485 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-pred 6126 df-ord 6172 df-on 6173 df-lim 6174 df-suc 6175 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-riota 7108 df-ov 7153 df-oprab 7154 df-mpo 7155 df-om 7580 df-wrecs 7957 df-recs 8018 df-rdg 8056 df-er 8299 df-en 8528 df-dom 8529 df-sdom 8530 df-pnf 10715 df-mnf 10716 df-xr 10717 df-ltxr 10718 df-le 10719 df-sub 10910 df-neg 10911 df-nn 11675 df-n0 11935 |
This theorem is referenced by: nn0nlt0 11960 nn0ge0i 11961 nn0le0eq0 11962 nn0p1gt0 11963 0mnnnnn0 11966 nn0addge1 11980 nn0addge2 11981 nn0negleid 11986 nn0ge0d 11997 nn0ge0div 12090 xnn0ge0 12569 xnn0xadd0 12681 nn0rp0 12887 xnn0xrge0 12938 0elfz 13053 fz0fzelfz0 13062 fz0fzdiffz0 13065 fzctr 13068 difelfzle 13069 fzoun 13123 nn0p1elfzo 13129 elfzodifsumelfzo 13152 fvinim0ffz 13205 subfzo0 13208 adddivflid 13237 modmuladdnn0 13332 addmodid 13336 modifeq2int 13350 modfzo0difsn 13360 nn0sq11 13547 bernneq 13640 bernneq3 13642 faclbnd 13700 faclbnd6 13709 facubnd 13710 bcval5 13728 hashneq0 13775 fi1uzind 13907 ccat0 13976 ccat2s1fvw 14045 ccat2s1fvwOLD 14046 repswswrd 14193 nn0sqeq1 14684 rprisefaccl 15425 dvdseq 15715 evennn02n 15751 nn0ehalf 15779 nn0oddm1d2 15786 bitsinv1 15841 smuval2 15881 gcdn0gt0 15917 nn0gcdid0 15920 absmulgcd 15948 algcvgblem 15973 algcvga 15975 lcmgcdnn 16007 lcmfun 16041 lcmfass 16042 2mulprm 16089 nonsq 16154 hashgcdlem 16180 odzdvds 16187 pcfaclem 16289 prmirredlem 20262 prmirred 20264 coe1sclmul 21006 coe1sclmul2 21008 fvmptnn04ifb 21551 mdegle0 24777 plypf1 24908 dgrlt 24962 fta1 25003 taylfval 25053 logbgcd1irr 25479 eldmgm 25706 basellem3 25767 bcmono 25960 lgsdinn0 26028 2sq2 26116 2sqnn0 26121 2sqreulem1 26129 dchrisumlem1 26172 dchrisumlem2 26173 wwlksnextwrd 27782 wwlksnextfun 27783 wwlksnextinj 27784 wwlksnextproplem2 27795 wwlksnextproplem3 27796 wrdt2ind 30749 xrsmulgzz 30813 hashf2 31571 hasheuni 31572 reprinfz1 32121 0nn0m1nnn0 32579 faclimlem1 33224 rrntotbnd 35554 factwoffsmonot 39685 gcdnn0id 39826 pell14qrgt0 40173 pell1qrgaplem 40187 monotoddzzfi 40256 jm2.17a 40274 jm2.22 40309 rmxdiophlem 40329 wallispilem3 43075 stirlinglem7 43088 elfz2z 44240 fz0addge0 44244 elfzlble 44245 2ffzoeq 44253 iccpartigtl 44308 sqrtpwpw2p 44423 flsqrt 44478 nn0e 44582 nn0sumltlt 45119 nn0eo 45307 fllog2 45347 dignn0fr 45380 dignnld 45382 dig1 45387 itcovalt2lem2lem1 45452 |
Copyright terms: Public domain | W3C validator |