Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nn0ge0 | Structured version Visualization version GIF version |
Description: A nonnegative integer is greater than or equal to zero. (Contributed by NM, 9-May-2004.) (Revised by Mario Carneiro, 16-May-2014.) |
Ref | Expression |
---|---|
nn0ge0 | ⊢ (𝑁 ∈ ℕ0 → 0 ≤ 𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elnn0 12165 | . . 3 ⊢ (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0)) | |
2 | nngt0 11934 | . . . 4 ⊢ (𝑁 ∈ ℕ → 0 < 𝑁) | |
3 | id 22 | . . . . 5 ⊢ (𝑁 = 0 → 𝑁 = 0) | |
4 | 3 | eqcomd 2744 | . . . 4 ⊢ (𝑁 = 0 → 0 = 𝑁) |
5 | 2, 4 | orim12i 905 | . . 3 ⊢ ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → (0 < 𝑁 ∨ 0 = 𝑁)) |
6 | 1, 5 | sylbi 216 | . 2 ⊢ (𝑁 ∈ ℕ0 → (0 < 𝑁 ∨ 0 = 𝑁)) |
7 | 0re 10908 | . . 3 ⊢ 0 ∈ ℝ | |
8 | nn0re 12172 | . . 3 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ) | |
9 | leloe 10992 | . . 3 ⊢ ((0 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (0 ≤ 𝑁 ↔ (0 < 𝑁 ∨ 0 = 𝑁))) | |
10 | 7, 8, 9 | sylancr 586 | . 2 ⊢ (𝑁 ∈ ℕ0 → (0 ≤ 𝑁 ↔ (0 < 𝑁 ∨ 0 = 𝑁))) |
11 | 6, 10 | mpbird 256 | 1 ⊢ (𝑁 ∈ ℕ0 → 0 ≤ 𝑁) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∨ wo 843 = wceq 1539 ∈ wcel 2108 class class class wbr 5070 ℝcr 10801 0cc0 10802 < clt 10940 ≤ cle 10941 ℕcn 11903 ℕ0cn0 12163 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-n0 12164 |
This theorem is referenced by: nn0nlt0 12189 nn0ge0i 12190 nn0le0eq0 12191 nn0p1gt0 12192 0mnnnnn0 12195 nn0addge1 12209 nn0addge2 12210 nn0negleid 12215 nn0ge0d 12226 nn0ge0div 12319 xnn0ge0 12798 xnn0xadd0 12910 nn0rp0 13116 xnn0xrge0 13167 0elfz 13282 fz0fzelfz0 13291 fz0fzdiffz0 13294 fzctr 13297 difelfzle 13298 fzoun 13352 nn0p1elfzo 13358 elfzodifsumelfzo 13381 fvinim0ffz 13434 subfzo0 13437 adddivflid 13466 modmuladdnn0 13563 addmodid 13567 modifeq2int 13581 modfzo0difsn 13591 nn0sq11 13779 bernneq 13872 bernneq3 13874 faclbnd 13932 faclbnd6 13941 facubnd 13942 bcval5 13960 hashneq0 14007 fi1uzind 14139 ccat0 14208 ccat2s1fvw 14277 ccat2s1fvwOLD 14278 repswswrd 14425 nn0sqeq1 14916 rprisefaccl 15661 dvdseq 15951 evennn02n 15987 nn0ehalf 16015 nn0oddm1d2 16022 bitsinv1 16077 smuval2 16117 gcdn0gt0 16153 nn0gcdid0 16156 absmulgcd 16185 algcvgblem 16210 algcvga 16212 lcmgcdnn 16244 lcmfun 16278 lcmfass 16279 2mulprm 16326 nonsq 16391 hashgcdlem 16417 odzdvds 16424 pcfaclem 16527 prmirredlem 20606 prmirred 20608 coe1sclmul 21363 coe1sclmul2 21365 fvmptnn04ifb 21908 mdegle0 25147 plypf1 25278 dgrlt 25332 fta1 25373 taylfval 25423 logbgcd1irr 25849 eldmgm 26076 basellem3 26137 bcmono 26330 lgsdinn0 26398 2sq2 26486 2sqnn0 26491 2sqreulem1 26499 dchrisumlem1 26542 dchrisumlem2 26543 wwlksnextwrd 28163 wwlksnextfun 28164 wwlksnextinj 28165 wwlksnextproplem2 28176 wwlksnextproplem3 28177 wrdt2ind 31127 xrsmulgzz 31189 hashf2 31952 hasheuni 31953 reprinfz1 32502 0nn0m1nnn0 32971 faclimlem1 33615 rrntotbnd 35921 factwoffsmonot 40091 gcdnn0id 40250 pell14qrgt0 40597 pell1qrgaplem 40611 monotoddzzfi 40680 jm2.17a 40698 jm2.22 40733 rmxdiophlem 40753 wallispilem3 43498 stirlinglem7 43511 elfz2z 44695 fz0addge0 44699 elfzlble 44700 2ffzoeq 44708 iccpartigtl 44763 sqrtpwpw2p 44878 flsqrt 44933 nn0e 45037 nn0sumltlt 45574 nn0eo 45762 fllog2 45802 dignn0fr 45835 dignnld 45837 dig1 45842 itcovalt2lem2lem1 45907 |
Copyright terms: Public domain | W3C validator |