| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nn0ge0 | Structured version Visualization version GIF version | ||
| Description: A nonnegative integer is greater than or equal to zero. (Contributed by NM, 9-May-2004.) (Revised by Mario Carneiro, 16-May-2014.) |
| Ref | Expression |
|---|---|
| nn0ge0 | ⊢ (𝑁 ∈ ℕ0 → 0 ≤ 𝑁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnn0 12444 | . . 3 ⊢ (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0)) | |
| 2 | nngt0 12217 | . . . 4 ⊢ (𝑁 ∈ ℕ → 0 < 𝑁) | |
| 3 | id 22 | . . . . 5 ⊢ (𝑁 = 0 → 𝑁 = 0) | |
| 4 | 3 | eqcomd 2735 | . . . 4 ⊢ (𝑁 = 0 → 0 = 𝑁) |
| 5 | 2, 4 | orim12i 908 | . . 3 ⊢ ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → (0 < 𝑁 ∨ 0 = 𝑁)) |
| 6 | 1, 5 | sylbi 217 | . 2 ⊢ (𝑁 ∈ ℕ0 → (0 < 𝑁 ∨ 0 = 𝑁)) |
| 7 | 0re 11176 | . . 3 ⊢ 0 ∈ ℝ | |
| 8 | nn0re 12451 | . . 3 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ) | |
| 9 | leloe 11260 | . . 3 ⊢ ((0 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (0 ≤ 𝑁 ↔ (0 < 𝑁 ∨ 0 = 𝑁))) | |
| 10 | 7, 8, 9 | sylancr 587 | . 2 ⊢ (𝑁 ∈ ℕ0 → (0 ≤ 𝑁 ↔ (0 < 𝑁 ∨ 0 = 𝑁))) |
| 11 | 6, 10 | mpbird 257 | 1 ⊢ (𝑁 ∈ ℕ0 → 0 ≤ 𝑁) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∨ wo 847 = wceq 1540 ∈ wcel 2109 class class class wbr 5107 ℝcr 11067 0cc0 11068 < clt 11208 ≤ cle 11209 ℕcn 12186 ℕ0cn0 12442 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-n0 12443 |
| This theorem is referenced by: nn0nlt0 12468 nn0ge0i 12469 nn0le0eq0 12470 nn0p1gt0 12471 0mnnnnn0 12474 nn0addge1 12488 nn0addge2 12489 nn0negleid 12494 nn0ge0d 12506 nn0ge0div 12603 xnn0ge0 13094 xnn0xadd0 13207 nn0rp0 13416 xnn0xrge0 13467 0elfz 13585 fz0fzelfz0 13595 fz0fzdiffz0 13598 fzctr 13601 difelfzle 13602 fzoun 13657 nn0p1elfzo 13663 elfzodifsumelfzo 13692 fvinim0ffz 13747 subfzo0 13750 adddivflid 13780 modmuladdnn0 13880 addmodid 13884 modifeq2int 13898 modfzo0difsn 13908 nn0sq11 14097 zzlesq 14171 bernneq 14194 bernneq3 14196 faclbnd 14255 faclbnd6 14264 facubnd 14265 bcval5 14283 hashneq0 14329 fi1uzind 14472 ccat0 14541 ccat2s1fvw 14603 repswswrd 14749 nn0sqeq1 15242 nn0absid 15396 rprisefaccl 15989 dvdseq 16284 evennn02n 16320 nn0ehalf 16348 nn0oddm1d2 16355 bitsinv1 16412 smuval2 16452 gcdn0gt0 16488 nn0gcdid0 16491 absmulgcd 16519 algcvgblem 16547 algcvga 16549 lcmgcdnn 16581 lcmfun 16615 lcmfass 16616 2mulprm 16663 nonsq 16729 hashgcdlem 16758 odzdvds 16766 pcfaclem 16869 prmirredlem 21382 prmirred 21384 coe1sclmul 22168 coe1sclmul2 22170 fvmptnn04ifb 22738 mdegle0 25982 plypf1 26117 dgrlt 26172 fta1 26216 taylfval 26266 logbgcd1irr 26704 eldmgm 26932 basellem3 26993 bcmono 27188 lgsdinn0 27256 2sq2 27344 2sqnn0 27349 2sqreulem1 27357 dchrisumlem1 27400 dchrisumlem2 27401 wwlksnextwrd 29827 wwlksnextfun 29828 wwlksnextinj 29829 wwlksnextproplem2 29840 wwlksnextproplem3 29841 wrdt2ind 32875 xrsmulgzz 32947 hashf2 34074 hasheuni 34075 reprinfz1 34613 0nn0m1nnn0 35100 faclimlem1 35730 rrntotbnd 37830 gcdnn0id 42317 pell14qrgt0 42847 pell1qrgaplem 42861 monotoddzzfi 42931 jm2.17a 42949 jm2.22 42984 rmxdiophlem 43004 rexanuz2nf 45488 wallispilem3 46065 stirlinglem7 46078 elfz2z 47316 fz0addge0 47320 elfzlble 47321 2ffzoeq 47328 addmodne 47345 iccpartigtl 47424 sqrtpwpw2p 47539 flsqrt 47594 nn0e 47698 nn0sumltlt 48338 nn0eo 48517 fllog2 48557 dignn0fr 48590 dignnld 48592 dig1 48597 itcovalt2lem2lem1 48662 |
| Copyright terms: Public domain | W3C validator |