| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nn0ge0 | Structured version Visualization version GIF version | ||
| Description: A nonnegative integer is greater than or equal to zero. (Contributed by NM, 9-May-2004.) (Revised by Mario Carneiro, 16-May-2014.) |
| Ref | Expression |
|---|---|
| nn0ge0 | ⊢ (𝑁 ∈ ℕ0 → 0 ≤ 𝑁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnn0 12394 | . . 3 ⊢ (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0)) | |
| 2 | nngt0 12167 | . . . 4 ⊢ (𝑁 ∈ ℕ → 0 < 𝑁) | |
| 3 | id 22 | . . . . 5 ⊢ (𝑁 = 0 → 𝑁 = 0) | |
| 4 | 3 | eqcomd 2739 | . . . 4 ⊢ (𝑁 = 0 → 0 = 𝑁) |
| 5 | 2, 4 | orim12i 908 | . . 3 ⊢ ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → (0 < 𝑁 ∨ 0 = 𝑁)) |
| 6 | 1, 5 | sylbi 217 | . 2 ⊢ (𝑁 ∈ ℕ0 → (0 < 𝑁 ∨ 0 = 𝑁)) |
| 7 | 0re 11125 | . . 3 ⊢ 0 ∈ ℝ | |
| 8 | nn0re 12401 | . . 3 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ) | |
| 9 | leloe 11210 | . . 3 ⊢ ((0 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (0 ≤ 𝑁 ↔ (0 < 𝑁 ∨ 0 = 𝑁))) | |
| 10 | 7, 8, 9 | sylancr 587 | . 2 ⊢ (𝑁 ∈ ℕ0 → (0 ≤ 𝑁 ↔ (0 < 𝑁 ∨ 0 = 𝑁))) |
| 11 | 6, 10 | mpbird 257 | 1 ⊢ (𝑁 ∈ ℕ0 → 0 ≤ 𝑁) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∨ wo 847 = wceq 1541 ∈ wcel 2113 class class class wbr 5095 ℝcr 11016 0cc0 11017 < clt 11157 ≤ cle 11158 ℕcn 12136 ℕ0cn0 12392 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-er 8631 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-nn 12137 df-n0 12393 |
| This theorem is referenced by: nn0nlt0 12418 nn0ge0i 12419 nn0le0eq0 12420 nn0p1gt0 12421 0mnnnnn0 12424 nn0addge1 12438 nn0addge2 12439 nn0negleid 12444 nn0ge0d 12456 nn0ge0div 12552 xnn0ge0 13039 xnn0xadd0 13153 nn0rp0 13362 xnn0xrge0 13413 0elfz 13531 fz0fzelfz0 13541 fz0fzdiffz0 13544 fzctr 13547 difelfzle 13548 fzoun 13603 nn0p1elfzo 13609 elfzodifsumelfzo 13638 fvinim0ffz 13696 subfzo0 13699 adddivflid 13729 modmuladdnn0 13829 addmodid 13833 modifeq2int 13847 modfzo0difsn 13857 nn0sq11 14046 zzlesq 14120 bernneq 14143 bernneq3 14145 faclbnd 14204 faclbnd6 14213 facubnd 14214 bcval5 14232 hashneq0 14278 fi1uzind 14421 ccat0 14490 ccat2s1fvw 14553 repswswrd 14698 nn0sqeq1 15190 nn0absid 15344 rprisefaccl 15937 dvdseq 16232 evennn02n 16268 nn0ehalf 16296 nn0oddm1d2 16303 bitsinv1 16360 smuval2 16400 gcdn0gt0 16436 nn0gcdid0 16439 absmulgcd 16467 algcvgblem 16495 algcvga 16497 lcmgcdnn 16529 lcmfun 16563 lcmfass 16564 2mulprm 16611 nonsq 16677 hashgcdlem 16706 odzdvds 16714 pcfaclem 16817 prmirredlem 21418 prmirred 21420 coe1sclmul 22215 coe1sclmul2 22217 fvmptnn04ifb 22786 mdegle0 26029 plypf1 26164 dgrlt 26219 fta1 26263 taylfval 26313 logbgcd1irr 26751 eldmgm 26979 basellem3 27040 bcmono 27235 lgsdinn0 27303 2sq2 27391 2sqnn0 27396 2sqreulem1 27404 dchrisumlem1 27447 dchrisumlem2 27448 wwlksnextwrd 29896 wwlksnextfun 29897 wwlksnextinj 29898 wwlksnextproplem2 29909 wwlksnextproplem3 29910 wrdt2ind 32963 xrsmulgzz 33019 hashf2 34169 hasheuni 34170 reprinfz1 34707 0nn0m1nnn0 35229 faclimlem1 35859 rrntotbnd 37949 gcdnn0id 42499 pell14qrgt0 43016 pell1qrgaplem 43030 monotoddzzfi 43099 jm2.17a 43117 jm2.22 43152 rmxdiophlem 43172 rexanuz2nf 45652 wallispilem3 46227 stirlinglem7 46240 elfz2z 47477 fz0addge0 47481 elfzlble 47482 2ffzoeq 47489 addmodne 47506 iccpartigtl 47585 sqrtpwpw2p 47700 flsqrt 47755 nn0e 47859 nn0sumltlt 48512 nn0eo 48690 fllog2 48730 dignn0fr 48763 dignnld 48765 dig1 48770 itcovalt2lem2lem1 48835 |
| Copyright terms: Public domain | W3C validator |