| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nn0ge0 | Structured version Visualization version GIF version | ||
| Description: A nonnegative integer is greater than or equal to zero. (Contributed by NM, 9-May-2004.) (Revised by Mario Carneiro, 16-May-2014.) |
| Ref | Expression |
|---|---|
| nn0ge0 | ⊢ (𝑁 ∈ ℕ0 → 0 ≤ 𝑁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnn0 12404 | . . 3 ⊢ (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0)) | |
| 2 | nngt0 12177 | . . . 4 ⊢ (𝑁 ∈ ℕ → 0 < 𝑁) | |
| 3 | id 22 | . . . . 5 ⊢ (𝑁 = 0 → 𝑁 = 0) | |
| 4 | 3 | eqcomd 2735 | . . . 4 ⊢ (𝑁 = 0 → 0 = 𝑁) |
| 5 | 2, 4 | orim12i 908 | . . 3 ⊢ ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → (0 < 𝑁 ∨ 0 = 𝑁)) |
| 6 | 1, 5 | sylbi 217 | . 2 ⊢ (𝑁 ∈ ℕ0 → (0 < 𝑁 ∨ 0 = 𝑁)) |
| 7 | 0re 11136 | . . 3 ⊢ 0 ∈ ℝ | |
| 8 | nn0re 12411 | . . 3 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ) | |
| 9 | leloe 11220 | . . 3 ⊢ ((0 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (0 ≤ 𝑁 ↔ (0 < 𝑁 ∨ 0 = 𝑁))) | |
| 10 | 7, 8, 9 | sylancr 587 | . 2 ⊢ (𝑁 ∈ ℕ0 → (0 ≤ 𝑁 ↔ (0 < 𝑁 ∨ 0 = 𝑁))) |
| 11 | 6, 10 | mpbird 257 | 1 ⊢ (𝑁 ∈ ℕ0 → 0 ≤ 𝑁) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∨ wo 847 = wceq 1540 ∈ wcel 2109 class class class wbr 5095 ℝcr 11027 0cc0 11028 < clt 11168 ≤ cle 11169 ℕcn 12146 ℕ0cn0 12402 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-n0 12403 |
| This theorem is referenced by: nn0nlt0 12428 nn0ge0i 12429 nn0le0eq0 12430 nn0p1gt0 12431 0mnnnnn0 12434 nn0addge1 12448 nn0addge2 12449 nn0negleid 12454 nn0ge0d 12466 nn0ge0div 12563 xnn0ge0 13054 xnn0xadd0 13167 nn0rp0 13376 xnn0xrge0 13427 0elfz 13545 fz0fzelfz0 13555 fz0fzdiffz0 13558 fzctr 13561 difelfzle 13562 fzoun 13617 nn0p1elfzo 13623 elfzodifsumelfzo 13652 fvinim0ffz 13707 subfzo0 13710 adddivflid 13740 modmuladdnn0 13840 addmodid 13844 modifeq2int 13858 modfzo0difsn 13868 nn0sq11 14057 zzlesq 14131 bernneq 14154 bernneq3 14156 faclbnd 14215 faclbnd6 14224 facubnd 14225 bcval5 14243 hashneq0 14289 fi1uzind 14432 ccat0 14501 ccat2s1fvw 14563 repswswrd 14708 nn0sqeq1 15201 nn0absid 15355 rprisefaccl 15948 dvdseq 16243 evennn02n 16279 nn0ehalf 16307 nn0oddm1d2 16314 bitsinv1 16371 smuval2 16411 gcdn0gt0 16447 nn0gcdid0 16450 absmulgcd 16478 algcvgblem 16506 algcvga 16508 lcmgcdnn 16540 lcmfun 16574 lcmfass 16575 2mulprm 16622 nonsq 16688 hashgcdlem 16717 odzdvds 16725 pcfaclem 16828 prmirredlem 21397 prmirred 21399 coe1sclmul 22184 coe1sclmul2 22186 fvmptnn04ifb 22754 mdegle0 25998 plypf1 26133 dgrlt 26188 fta1 26232 taylfval 26282 logbgcd1irr 26720 eldmgm 26948 basellem3 27009 bcmono 27204 lgsdinn0 27272 2sq2 27360 2sqnn0 27365 2sqreulem1 27373 dchrisumlem1 27416 dchrisumlem2 27417 wwlksnextwrd 29860 wwlksnextfun 29861 wwlksnextinj 29862 wwlksnextproplem2 29873 wwlksnextproplem3 29874 wrdt2ind 32908 xrsmulgzz 32976 hashf2 34053 hasheuni 34054 reprinfz1 34592 0nn0m1nnn0 35088 faclimlem1 35718 rrntotbnd 37818 gcdnn0id 42305 pell14qrgt0 42835 pell1qrgaplem 42849 monotoddzzfi 42918 jm2.17a 42936 jm2.22 42971 rmxdiophlem 42991 rexanuz2nf 45475 wallispilem3 46052 stirlinglem7 46065 elfz2z 47303 fz0addge0 47307 elfzlble 47308 2ffzoeq 47315 addmodne 47332 iccpartigtl 47411 sqrtpwpw2p 47526 flsqrt 47581 nn0e 47685 nn0sumltlt 48338 nn0eo 48517 fllog2 48557 dignn0fr 48590 dignnld 48592 dig1 48597 itcovalt2lem2lem1 48662 |
| Copyright terms: Public domain | W3C validator |