| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nn0ge0 | Structured version Visualization version GIF version | ||
| Description: A nonnegative integer is greater than or equal to zero. (Contributed by NM, 9-May-2004.) (Revised by Mario Carneiro, 16-May-2014.) |
| Ref | Expression |
|---|---|
| nn0ge0 | ⊢ (𝑁 ∈ ℕ0 → 0 ≤ 𝑁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnn0 12511 | . . 3 ⊢ (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0)) | |
| 2 | nngt0 12279 | . . . 4 ⊢ (𝑁 ∈ ℕ → 0 < 𝑁) | |
| 3 | id 22 | . . . . 5 ⊢ (𝑁 = 0 → 𝑁 = 0) | |
| 4 | 3 | eqcomd 2740 | . . . 4 ⊢ (𝑁 = 0 → 0 = 𝑁) |
| 5 | 2, 4 | orim12i 908 | . . 3 ⊢ ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → (0 < 𝑁 ∨ 0 = 𝑁)) |
| 6 | 1, 5 | sylbi 217 | . 2 ⊢ (𝑁 ∈ ℕ0 → (0 < 𝑁 ∨ 0 = 𝑁)) |
| 7 | 0re 11245 | . . 3 ⊢ 0 ∈ ℝ | |
| 8 | nn0re 12518 | . . 3 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ) | |
| 9 | leloe 11329 | . . 3 ⊢ ((0 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (0 ≤ 𝑁 ↔ (0 < 𝑁 ∨ 0 = 𝑁))) | |
| 10 | 7, 8, 9 | sylancr 587 | . 2 ⊢ (𝑁 ∈ ℕ0 → (0 ≤ 𝑁 ↔ (0 < 𝑁 ∨ 0 = 𝑁))) |
| 11 | 6, 10 | mpbird 257 | 1 ⊢ (𝑁 ∈ ℕ0 → 0 ≤ 𝑁) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∨ wo 847 = wceq 1539 ∈ wcel 2107 class class class wbr 5123 ℝcr 11136 0cc0 11137 < clt 11277 ≤ cle 11278 ℕcn 12248 ℕ0cn0 12509 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-er 8727 df-en 8968 df-dom 8969 df-sdom 8970 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-nn 12249 df-n0 12510 |
| This theorem is referenced by: nn0nlt0 12535 nn0ge0i 12536 nn0le0eq0 12537 nn0p1gt0 12538 0mnnnnn0 12541 nn0addge1 12555 nn0addge2 12556 nn0negleid 12561 nn0ge0d 12573 nn0ge0div 12670 xnn0ge0 13158 xnn0xadd0 13271 nn0rp0 13477 xnn0xrge0 13528 0elfz 13646 fz0fzelfz0 13656 fz0fzdiffz0 13659 fzctr 13662 difelfzle 13663 fzoun 13718 nn0p1elfzo 13724 elfzodifsumelfzo 13752 fvinim0ffz 13807 subfzo0 13810 adddivflid 13840 modmuladdnn0 13938 addmodid 13942 modifeq2int 13956 modfzo0difsn 13966 nn0sq11 14155 zzlesq 14228 bernneq 14251 bernneq3 14253 faclbnd 14312 faclbnd6 14321 facubnd 14322 bcval5 14340 hashneq0 14386 fi1uzind 14529 ccat0 14597 ccat2s1fvw 14659 repswswrd 14805 nn0sqeq1 15298 rprisefaccl 16042 dvdseq 16334 evennn02n 16370 nn0ehalf 16398 nn0oddm1d2 16405 bitsinv1 16462 smuval2 16502 gcdn0gt0 16538 nn0gcdid0 16541 absmulgcd 16569 algcvgblem 16597 algcvga 16599 lcmgcdnn 16631 lcmfun 16665 lcmfass 16666 2mulprm 16713 nonsq 16779 hashgcdlem 16808 odzdvds 16816 pcfaclem 16919 prmirredlem 21446 prmirred 21448 coe1sclmul 22234 coe1sclmul2 22236 fvmptnn04ifb 22806 mdegle0 26053 plypf1 26188 dgrlt 26243 fta1 26287 taylfval 26337 logbgcd1irr 26774 eldmgm 27002 basellem3 27063 bcmono 27258 lgsdinn0 27326 2sq2 27414 2sqnn0 27419 2sqreulem1 27427 dchrisumlem1 27470 dchrisumlem2 27471 wwlksnextwrd 29846 wwlksnextfun 29847 wwlksnextinj 29848 wwlksnextproplem2 29859 wwlksnextproplem3 29860 wrdt2ind 32883 xrsmulgzz 32955 hashf2 34060 hasheuni 34061 reprinfz1 34612 0nn0m1nnn0 35093 faclimlem1 35718 rrntotbnd 37818 factwoffsmonot 42218 gcdnn0id 42343 pell14qrgt0 42848 pell1qrgaplem 42862 monotoddzzfi 42932 jm2.17a 42950 jm2.22 42985 rmxdiophlem 43005 rexanuz2nf 45475 wallispilem3 46054 stirlinglem7 46067 elfz2z 47300 fz0addge0 47304 elfzlble 47305 2ffzoeq 47312 addmodne 47319 iccpartigtl 47383 sqrtpwpw2p 47498 flsqrt 47553 nn0e 47657 nn0sumltlt 48239 nn0eo 48422 fllog2 48462 dignn0fr 48495 dignnld 48497 dig1 48502 itcovalt2lem2lem1 48567 |
| Copyright terms: Public domain | W3C validator |