![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nn0ge0 | Structured version Visualization version GIF version |
Description: A nonnegative integer is greater than or equal to zero. (Contributed by NM, 9-May-2004.) (Revised by Mario Carneiro, 16-May-2014.) |
Ref | Expression |
---|---|
nn0ge0 | ⊢ (𝑁 ∈ ℕ0 → 0 ≤ 𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elnn0 11753 | . . 3 ⊢ (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0)) | |
2 | nngt0 11522 | . . . 4 ⊢ (𝑁 ∈ ℕ → 0 < 𝑁) | |
3 | id 22 | . . . . 5 ⊢ (𝑁 = 0 → 𝑁 = 0) | |
4 | 3 | eqcomd 2803 | . . . 4 ⊢ (𝑁 = 0 → 0 = 𝑁) |
5 | 2, 4 | orim12i 903 | . . 3 ⊢ ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → (0 < 𝑁 ∨ 0 = 𝑁)) |
6 | 1, 5 | sylbi 218 | . 2 ⊢ (𝑁 ∈ ℕ0 → (0 < 𝑁 ∨ 0 = 𝑁)) |
7 | 0re 10496 | . . 3 ⊢ 0 ∈ ℝ | |
8 | nn0re 11760 | . . 3 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ) | |
9 | leloe 10580 | . . 3 ⊢ ((0 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (0 ≤ 𝑁 ↔ (0 < 𝑁 ∨ 0 = 𝑁))) | |
10 | 7, 8, 9 | sylancr 587 | . 2 ⊢ (𝑁 ∈ ℕ0 → (0 ≤ 𝑁 ↔ (0 < 𝑁 ∨ 0 = 𝑁))) |
11 | 6, 10 | mpbird 258 | 1 ⊢ (𝑁 ∈ ℕ0 → 0 ≤ 𝑁) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 207 ∨ wo 842 = wceq 1525 ∈ wcel 2083 class class class wbr 4968 ℝcr 10389 0cc0 10390 < clt 10528 ≤ cle 10529 ℕcn 11492 ℕ0cn0 11751 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1781 ax-4 1795 ax-5 1892 ax-6 1951 ax-7 1996 ax-8 2085 ax-9 2093 ax-10 2114 ax-11 2128 ax-12 2143 ax-13 2346 ax-ext 2771 ax-sep 5101 ax-nul 5108 ax-pow 5164 ax-pr 5228 ax-un 7326 ax-resscn 10447 ax-1cn 10448 ax-icn 10449 ax-addcl 10450 ax-addrcl 10451 ax-mulcl 10452 ax-mulrcl 10453 ax-mulcom 10454 ax-addass 10455 ax-mulass 10456 ax-distr 10457 ax-i2m1 10458 ax-1ne0 10459 ax-1rid 10460 ax-rnegex 10461 ax-rrecex 10462 ax-cnre 10463 ax-pre-lttri 10464 ax-pre-lttrn 10465 ax-pre-ltadd 10466 ax-pre-mulgt0 10467 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1528 df-ex 1766 df-nf 1770 df-sb 2045 df-mo 2578 df-eu 2614 df-clab 2778 df-cleq 2790 df-clel 2865 df-nfc 2937 df-ne 2987 df-nel 3093 df-ral 3112 df-rex 3113 df-reu 3114 df-rab 3116 df-v 3442 df-sbc 3712 df-csb 3818 df-dif 3868 df-un 3870 df-in 3872 df-ss 3880 df-pss 3882 df-nul 4218 df-if 4388 df-pw 4461 df-sn 4479 df-pr 4481 df-tp 4483 df-op 4485 df-uni 4752 df-iun 4833 df-br 4969 df-opab 5031 df-mpt 5048 df-tr 5071 df-id 5355 df-eprel 5360 df-po 5369 df-so 5370 df-fr 5409 df-we 5411 df-xp 5456 df-rel 5457 df-cnv 5458 df-co 5459 df-dm 5460 df-rn 5461 df-res 5462 df-ima 5463 df-pred 6030 df-ord 6076 df-on 6077 df-lim 6078 df-suc 6079 df-iota 6196 df-fun 6234 df-fn 6235 df-f 6236 df-f1 6237 df-fo 6238 df-f1o 6239 df-fv 6240 df-riota 6984 df-ov 7026 df-oprab 7027 df-mpo 7028 df-om 7444 df-wrecs 7805 df-recs 7867 df-rdg 7905 df-er 8146 df-en 8365 df-dom 8366 df-sdom 8367 df-pnf 10530 df-mnf 10531 df-xr 10532 df-ltxr 10533 df-le 10534 df-sub 10725 df-neg 10726 df-nn 11493 df-n0 11752 |
This theorem is referenced by: nn0nlt0 11777 nn0ge0i 11778 nn0le0eq0 11779 nn0p1gt0 11780 0mnnnnn0 11783 nn0addge1 11797 nn0addge2 11798 nn0negleid 11803 nn0ge0d 11812 nn0ge0div 11905 xnn0ge0 12382 xnn0xadd0 12494 nn0rp0 12697 xnn0xrge0 12745 0elfz 12858 fz0fzelfz0 12867 fz0fzdiffz0 12870 fzctr 12873 difelfzle 12874 fzoun 12928 nn0p1elfzo 12934 elfzodifsumelfzo 12957 fvinim0ffz 13010 subfzo0 13013 adddivflid 13042 modmuladdnn0 13137 addmodid 13141 modifeq2int 13155 modfzo0difsn 13165 nn0sq11 13351 bernneq 13444 bernneq3 13446 faclbnd 13504 faclbnd6 13513 facubnd 13514 bcval5 13532 hashneq0 13579 fi1uzind 13705 brfi1indALT 13708 ccat0 13778 ccat2s1fvw 13840 repswswrd 13986 nn0sqeq1 14474 rprisefaccl 15214 dvdseq 15501 evennn02n 15536 nn0ehalf 15566 nn0oddm1d2 15573 bitsinv1 15628 smuval2 15668 gcdn0gt0 15703 nn0gcdid0 15706 absmulgcd 15730 algcvgblem 15754 algcvga 15756 lcmgcdnn 15788 lcmfun 15822 lcmfass 15823 2mulprm 15870 nonsq 15932 hashgcdlem 15958 odzdvds 15965 pcfaclem 16067 coe1sclmul 20137 coe1sclmul2 20139 prmirredlem 20326 prmirred 20328 fvmptnn04ifb 21147 mdegle0 24358 plypf1 24489 dgrlt 24543 fta1 24584 taylfval 24634 logbgcd1irr 25057 eldmgm 25285 basellem3 25346 bcmono 25539 lgsdinn0 25607 2sq2 25695 2sqnn0 25700 2sqreulem1 25708 dchrisumlem1 25751 dchrisumlem2 25752 wwlksnextwrd 27361 wwlksnextfun 27362 wwlksnextinj 27363 wwlksnextproplem2 27375 wwlksnextproplem3 27376 wrdt2ind 30302 xrsmulgzz 30335 hashf2 30956 hasheuni 30957 reprinfz1 31506 0nn0m1nnn0 31961 faclimlem1 32585 rrntotbnd 34667 pell14qrgt0 38962 pell1qrgaplem 38976 monotoddzzfi 39045 jm2.17a 39063 jm2.22 39098 rmxdiophlem 39118 wallispilem3 41916 stirlinglem7 41929 elfz2z 43053 fz0addge0 43057 elfzlble 43058 2ffzoeq 43066 iccpartigtl 43087 sqrtpwpw2p 43204 flsqrt 43260 nn0e 43366 nn0sumltlt 43898 nn0eo 44091 fllog2 44131 dignn0fr 44164 dignnld 44166 dig1 44171 |
Copyright terms: Public domain | W3C validator |