Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nn0ge0 | Structured version Visualization version GIF version |
Description: A nonnegative integer is greater than or equal to zero. (Contributed by NM, 9-May-2004.) (Revised by Mario Carneiro, 16-May-2014.) |
Ref | Expression |
---|---|
nn0ge0 | ⊢ (𝑁 ∈ ℕ0 → 0 ≤ 𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elnn0 12235 | . . 3 ⊢ (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0)) | |
2 | nngt0 12004 | . . . 4 ⊢ (𝑁 ∈ ℕ → 0 < 𝑁) | |
3 | id 22 | . . . . 5 ⊢ (𝑁 = 0 → 𝑁 = 0) | |
4 | 3 | eqcomd 2744 | . . . 4 ⊢ (𝑁 = 0 → 0 = 𝑁) |
5 | 2, 4 | orim12i 906 | . . 3 ⊢ ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → (0 < 𝑁 ∨ 0 = 𝑁)) |
6 | 1, 5 | sylbi 216 | . 2 ⊢ (𝑁 ∈ ℕ0 → (0 < 𝑁 ∨ 0 = 𝑁)) |
7 | 0re 10977 | . . 3 ⊢ 0 ∈ ℝ | |
8 | nn0re 12242 | . . 3 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ) | |
9 | leloe 11061 | . . 3 ⊢ ((0 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (0 ≤ 𝑁 ↔ (0 < 𝑁 ∨ 0 = 𝑁))) | |
10 | 7, 8, 9 | sylancr 587 | . 2 ⊢ (𝑁 ∈ ℕ0 → (0 ≤ 𝑁 ↔ (0 < 𝑁 ∨ 0 = 𝑁))) |
11 | 6, 10 | mpbird 256 | 1 ⊢ (𝑁 ∈ ℕ0 → 0 ≤ 𝑁) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∨ wo 844 = wceq 1539 ∈ wcel 2106 class class class wbr 5074 ℝcr 10870 0cc0 10871 < clt 11009 ≤ cle 11010 ℕcn 11973 ℕ0cn0 12233 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-n0 12234 |
This theorem is referenced by: nn0nlt0 12259 nn0ge0i 12260 nn0le0eq0 12261 nn0p1gt0 12262 0mnnnnn0 12265 nn0addge1 12279 nn0addge2 12280 nn0negleid 12285 nn0ge0d 12296 nn0ge0div 12389 xnn0ge0 12869 xnn0xadd0 12981 nn0rp0 13187 xnn0xrge0 13238 0elfz 13353 fz0fzelfz0 13362 fz0fzdiffz0 13365 fzctr 13368 difelfzle 13369 fzoun 13424 nn0p1elfzo 13430 elfzodifsumelfzo 13453 fvinim0ffz 13506 subfzo0 13509 adddivflid 13538 modmuladdnn0 13635 addmodid 13639 modifeq2int 13653 modfzo0difsn 13663 nn0sq11 13851 bernneq 13944 bernneq3 13946 faclbnd 14004 faclbnd6 14013 facubnd 14014 bcval5 14032 hashneq0 14079 fi1uzind 14211 ccat0 14280 ccat2s1fvw 14349 ccat2s1fvwOLD 14350 repswswrd 14497 nn0sqeq1 14988 rprisefaccl 15733 dvdseq 16023 evennn02n 16059 nn0ehalf 16087 nn0oddm1d2 16094 bitsinv1 16149 smuval2 16189 gcdn0gt0 16225 nn0gcdid0 16228 absmulgcd 16257 algcvgblem 16282 algcvga 16284 lcmgcdnn 16316 lcmfun 16350 lcmfass 16351 2mulprm 16398 nonsq 16463 hashgcdlem 16489 odzdvds 16496 pcfaclem 16599 prmirredlem 20694 prmirred 20696 coe1sclmul 21453 coe1sclmul2 21455 fvmptnn04ifb 22000 mdegle0 25242 plypf1 25373 dgrlt 25427 fta1 25468 taylfval 25518 logbgcd1irr 25944 eldmgm 26171 basellem3 26232 bcmono 26425 lgsdinn0 26493 2sq2 26581 2sqnn0 26586 2sqreulem1 26594 dchrisumlem1 26637 dchrisumlem2 26638 wwlksnextwrd 28262 wwlksnextfun 28263 wwlksnextinj 28264 wwlksnextproplem2 28275 wwlksnextproplem3 28276 wrdt2ind 31225 xrsmulgzz 31287 hashf2 32052 hasheuni 32053 reprinfz1 32602 0nn0m1nnn0 33071 faclimlem1 33709 rrntotbnd 35994 factwoffsmonot 40163 gcdnn0id 40329 pell14qrgt0 40681 pell1qrgaplem 40695 monotoddzzfi 40764 jm2.17a 40782 jm2.22 40817 rmxdiophlem 40837 wallispilem3 43608 stirlinglem7 43621 elfz2z 44807 fz0addge0 44811 elfzlble 44812 2ffzoeq 44820 iccpartigtl 44875 sqrtpwpw2p 44990 flsqrt 45045 nn0e 45149 nn0sumltlt 45686 nn0eo 45874 fllog2 45914 dignn0fr 45947 dignnld 45949 dig1 45954 itcovalt2lem2lem1 46019 |
Copyright terms: Public domain | W3C validator |