![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nn0ge0 | Structured version Visualization version GIF version |
Description: A nonnegative integer is greater than or equal to zero. (Contributed by NM, 9-May-2004.) (Revised by Mario Carneiro, 16-May-2014.) |
Ref | Expression |
---|---|
nn0ge0 | ⊢ (𝑁 ∈ ℕ0 → 0 ≤ 𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elnn0 12526 | . . 3 ⊢ (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0)) | |
2 | nngt0 12295 | . . . 4 ⊢ (𝑁 ∈ ℕ → 0 < 𝑁) | |
3 | id 22 | . . . . 5 ⊢ (𝑁 = 0 → 𝑁 = 0) | |
4 | 3 | eqcomd 2741 | . . . 4 ⊢ (𝑁 = 0 → 0 = 𝑁) |
5 | 2, 4 | orim12i 908 | . . 3 ⊢ ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → (0 < 𝑁 ∨ 0 = 𝑁)) |
6 | 1, 5 | sylbi 217 | . 2 ⊢ (𝑁 ∈ ℕ0 → (0 < 𝑁 ∨ 0 = 𝑁)) |
7 | 0re 11261 | . . 3 ⊢ 0 ∈ ℝ | |
8 | nn0re 12533 | . . 3 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ) | |
9 | leloe 11345 | . . 3 ⊢ ((0 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (0 ≤ 𝑁 ↔ (0 < 𝑁 ∨ 0 = 𝑁))) | |
10 | 7, 8, 9 | sylancr 587 | . 2 ⊢ (𝑁 ∈ ℕ0 → (0 ≤ 𝑁 ↔ (0 < 𝑁 ∨ 0 = 𝑁))) |
11 | 6, 10 | mpbird 257 | 1 ⊢ (𝑁 ∈ ℕ0 → 0 ≤ 𝑁) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∨ wo 847 = wceq 1537 ∈ wcel 2106 class class class wbr 5148 ℝcr 11152 0cc0 11153 < clt 11293 ≤ cle 11294 ℕcn 12264 ℕ0cn0 12524 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-n0 12525 |
This theorem is referenced by: nn0nlt0 12550 nn0ge0i 12551 nn0le0eq0 12552 nn0p1gt0 12553 0mnnnnn0 12556 nn0addge1 12570 nn0addge2 12571 nn0negleid 12576 nn0ge0d 12588 nn0ge0div 12685 xnn0ge0 13173 xnn0xadd0 13286 nn0rp0 13492 xnn0xrge0 13543 0elfz 13661 fz0fzelfz0 13671 fz0fzdiffz0 13674 fzctr 13677 difelfzle 13678 fzoun 13733 nn0p1elfzo 13739 elfzodifsumelfzo 13767 fvinim0ffz 13822 subfzo0 13825 adddivflid 13855 modmuladdnn0 13953 addmodid 13957 modifeq2int 13971 modfzo0difsn 13981 nn0sq11 14169 zzlesq 14242 bernneq 14265 bernneq3 14267 faclbnd 14326 faclbnd6 14335 facubnd 14336 bcval5 14354 hashneq0 14400 fi1uzind 14543 ccat0 14611 ccat2s1fvw 14673 repswswrd 14819 nn0sqeq1 15312 rprisefaccl 16056 dvdseq 16348 evennn02n 16384 nn0ehalf 16412 nn0oddm1d2 16419 bitsinv1 16476 smuval2 16516 gcdn0gt0 16552 nn0gcdid0 16555 absmulgcd 16583 algcvgblem 16611 algcvga 16613 lcmgcdnn 16645 lcmfun 16679 lcmfass 16680 2mulprm 16727 nonsq 16793 hashgcdlem 16822 odzdvds 16829 pcfaclem 16932 prmirredlem 21501 prmirred 21503 coe1sclmul 22301 coe1sclmul2 22303 fvmptnn04ifb 22873 mdegle0 26131 plypf1 26266 dgrlt 26321 fta1 26365 taylfval 26415 logbgcd1irr 26852 eldmgm 27080 basellem3 27141 bcmono 27336 lgsdinn0 27404 2sq2 27492 2sqnn0 27497 2sqreulem1 27505 dchrisumlem1 27548 dchrisumlem2 27549 wwlksnextwrd 29927 wwlksnextfun 29928 wwlksnextinj 29929 wwlksnextproplem2 29940 wwlksnextproplem3 29941 wrdt2ind 32923 xrsmulgzz 32994 hashf2 34065 hasheuni 34066 reprinfz1 34616 0nn0m1nnn0 35097 faclimlem1 35723 rrntotbnd 37823 factwoffsmonot 42224 gcdnn0id 42343 pell14qrgt0 42847 pell1qrgaplem 42861 monotoddzzfi 42931 jm2.17a 42949 jm2.22 42984 rmxdiophlem 43004 rexanuz2nf 45443 wallispilem3 46023 stirlinglem7 46036 elfz2z 47265 fz0addge0 47269 elfzlble 47270 2ffzoeq 47277 addmodne 47284 iccpartigtl 47348 sqrtpwpw2p 47463 flsqrt 47518 nn0e 47622 nn0sumltlt 48195 nn0eo 48378 fllog2 48418 dignn0fr 48451 dignnld 48453 dig1 48458 itcovalt2lem2lem1 48523 |
Copyright terms: Public domain | W3C validator |