Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  odcl Structured version   Visualization version   GIF version

Theorem odcl 18664
 Description: The order of a group element is always a nonnegative integer. (Contributed by Mario Carneiro, 14-Jan-2015.) (Revised by Stefan O'Rear, 5-Sep-2015.)
Hypotheses
Ref Expression
odcl.1 𝑋 = (Base‘𝐺)
odcl.2 𝑂 = (od‘𝐺)
Assertion
Ref Expression
odcl (𝐴𝑋 → (𝑂𝐴) ∈ ℕ0)

Proof of Theorem odcl
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 odcl.1 . . . . 5 𝑋 = (Base‘𝐺)
2 eqid 2798 . . . . 5 (.g𝐺) = (.g𝐺)
3 eqid 2798 . . . . 5 (0g𝐺) = (0g𝐺)
4 odcl.2 . . . . 5 𝑂 = (od‘𝐺)
5 eqid 2798 . . . . 5 {𝑦 ∈ ℕ ∣ (𝑦(.g𝐺)𝐴) = (0g𝐺)} = {𝑦 ∈ ℕ ∣ (𝑦(.g𝐺)𝐴) = (0g𝐺)}
61, 2, 3, 4, 5odlem1 18663 . . . 4 (𝐴𝑋 → (((𝑂𝐴) = 0 ∧ {𝑦 ∈ ℕ ∣ (𝑦(.g𝐺)𝐴) = (0g𝐺)} = ∅) ∨ (𝑂𝐴) ∈ {𝑦 ∈ ℕ ∣ (𝑦(.g𝐺)𝐴) = (0g𝐺)}))
7 simpl 486 . . . . 5 (((𝑂𝐴) = 0 ∧ {𝑦 ∈ ℕ ∣ (𝑦(.g𝐺)𝐴) = (0g𝐺)} = ∅) → (𝑂𝐴) = 0)
8 elrabi 3623 . . . . 5 ((𝑂𝐴) ∈ {𝑦 ∈ ℕ ∣ (𝑦(.g𝐺)𝐴) = (0g𝐺)} → (𝑂𝐴) ∈ ℕ)
97, 8orim12i 906 . . . 4 ((((𝑂𝐴) = 0 ∧ {𝑦 ∈ ℕ ∣ (𝑦(.g𝐺)𝐴) = (0g𝐺)} = ∅) ∨ (𝑂𝐴) ∈ {𝑦 ∈ ℕ ∣ (𝑦(.g𝐺)𝐴) = (0g𝐺)}) → ((𝑂𝐴) = 0 ∨ (𝑂𝐴) ∈ ℕ))
106, 9syl 17 . . 3 (𝐴𝑋 → ((𝑂𝐴) = 0 ∨ (𝑂𝐴) ∈ ℕ))
1110orcomd 868 . 2 (𝐴𝑋 → ((𝑂𝐴) ∈ ℕ ∨ (𝑂𝐴) = 0))
12 elnn0 11894 . 2 ((𝑂𝐴) ∈ ℕ0 ↔ ((𝑂𝐴) ∈ ℕ ∨ (𝑂𝐴) = 0))
1311, 12sylibr 237 1 (𝐴𝑋 → (𝑂𝐴) ∈ ℕ0)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   ∨ wo 844   = wceq 1538   ∈ wcel 2111  {crab 3110  ∅c0 4243  ‘cfv 6327  (class class class)co 7140  0cc0 10533  ℕcn 11632  ℕ0cn0 11892  Basecbs 16482  0gc0g 16712  .gcmg 18224  odcod 18652 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5168  ax-nul 5175  ax-pow 5232  ax-pr 5296  ax-un 7448  ax-cnex 10589  ax-resscn 10590  ax-1cn 10591  ax-icn 10592  ax-addcl 10593  ax-addrcl 10594  ax-mulcl 10595  ax-mulrcl 10596  ax-mulcom 10597  ax-addass 10598  ax-mulass 10599  ax-distr 10600  ax-i2m1 10601  ax-1ne0 10602  ax-1rid 10603  ax-rnegex 10604  ax-rrecex 10605  ax-cnre 10606  ax-pre-lttri 10607  ax-pre-lttrn 10608  ax-pre-ltadd 10609  ax-pre-mulgt0 10610 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-iun 4884  df-br 5032  df-opab 5094  df-mpt 5112  df-tr 5138  df-id 5426  df-eprel 5431  df-po 5439  df-so 5440  df-fr 5479  df-we 5481  df-xp 5526  df-rel 5527  df-cnv 5528  df-co 5529  df-dm 5530  df-rn 5531  df-res 5532  df-ima 5533  df-pred 6119  df-ord 6165  df-on 6166  df-lim 6167  df-suc 6168  df-iota 6286  df-fun 6329  df-fn 6330  df-f 6331  df-f1 6332  df-fo 6333  df-f1o 6334  df-fv 6335  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-om 7568  df-wrecs 7937  df-recs 7998  df-rdg 8036  df-er 8279  df-en 8500  df-dom 8501  df-sdom 8502  df-sup 8897  df-inf 8898  df-pnf 10673  df-mnf 10674  df-xr 10675  df-ltxr 10676  df-le 10677  df-sub 10868  df-neg 10869  df-nn 11633  df-n0 11893  df-z 11977  df-uz 12239  df-od 18656 This theorem is referenced by:  odf  18665  mndodcongi  18671  oddvdsnn0  18672  oddvds  18675  odeq  18678  odval2  18679  odcld  18680  odmulg2  18682  odmulg  18683  odmulgeq  18684  odbezout  18685  odinv  18688  odf1  18689  dfod2  18691  odcl2  18692  odhash2  18700  odhash3  18701  gexnnod  18713  odadd1  18969  odadd2  18970  odadd  18971  gexexlem  18973  gexex  18974  torsubg  18975  iscygodd  19008  lt6abl  19016  ablfacrp  19189  ablfac1b  19193  ablfac1eu  19196  pgpfac1lem2  19198  fincygsubgodd  19235  chrcl  20227
 Copyright terms: Public domain W3C validator