MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2oconcl Structured version   Visualization version   GIF version

Theorem 2oconcl 8111
Description: Closure of the pair swapping function on 2o. (Contributed by Mario Carneiro, 27-Sep-2015.)
Assertion
Ref Expression
2oconcl (𝐴 ∈ 2o → (1o𝐴) ∈ 2o)

Proof of Theorem 2oconcl
StepHypRef Expression
1 elpri 4547 . . . . 5 (𝐴 ∈ {∅, 1o} → (𝐴 = ∅ ∨ 𝐴 = 1o))
2 difeq2 4044 . . . . . . . 8 (𝐴 = ∅ → (1o𝐴) = (1o ∖ ∅))
3 dif0 4286 . . . . . . . 8 (1o ∖ ∅) = 1o
42, 3eqtrdi 2849 . . . . . . 7 (𝐴 = ∅ → (1o𝐴) = 1o)
5 difeq2 4044 . . . . . . . 8 (𝐴 = 1o → (1o𝐴) = (1o ∖ 1o))
6 difid 4284 . . . . . . . 8 (1o ∖ 1o) = ∅
75, 6eqtrdi 2849 . . . . . . 7 (𝐴 = 1o → (1o𝐴) = ∅)
84, 7orim12i 906 . . . . . 6 ((𝐴 = ∅ ∨ 𝐴 = 1o) → ((1o𝐴) = 1o ∨ (1o𝐴) = ∅))
98orcomd 868 . . . . 5 ((𝐴 = ∅ ∨ 𝐴 = 1o) → ((1o𝐴) = ∅ ∨ (1o𝐴) = 1o))
101, 9syl 17 . . . 4 (𝐴 ∈ {∅, 1o} → ((1o𝐴) = ∅ ∨ (1o𝐴) = 1o))
11 1on 8092 . . . . . 6 1o ∈ On
12 difexg 5195 . . . . . 6 (1o ∈ On → (1o𝐴) ∈ V)
1311, 12ax-mp 5 . . . . 5 (1o𝐴) ∈ V
1413elpr 4548 . . . 4 ((1o𝐴) ∈ {∅, 1o} ↔ ((1o𝐴) = ∅ ∨ (1o𝐴) = 1o))
1510, 14sylibr 237 . . 3 (𝐴 ∈ {∅, 1o} → (1o𝐴) ∈ {∅, 1o})
16 df2o3 8100 . . 3 2o = {∅, 1o}
1715, 16eleqtrrdi 2901 . 2 (𝐴 ∈ {∅, 1o} → (1o𝐴) ∈ 2o)
1817, 16eleq2s 2908 1 (𝐴 ∈ 2o → (1o𝐴) ∈ 2o)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 844   = wceq 1538  wcel 2111  Vcvv 3441  cdif 3878  c0 4243  {cpr 4527  Oncon0 6159  1oc1o 8078  2oc2o 8079
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-tr 5137  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-ord 6162  df-on 6163  df-suc 6165  df-1o 8085  df-2o 8086
This theorem is referenced by:  efgmf  18831  efgmnvl  18832  efglem  18834  frgpuplem  18890
  Copyright terms: Public domain W3C validator