| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2oconcl | Structured version Visualization version GIF version | ||
| Description: Closure of the pair swapping function on 2o. (Contributed by Mario Carneiro, 27-Sep-2015.) |
| Ref | Expression |
|---|---|
| 2oconcl | ⊢ (𝐴 ∈ 2o → (1o ∖ 𝐴) ∈ 2o) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpri 4630 | . . . . 5 ⊢ (𝐴 ∈ {∅, 1o} → (𝐴 = ∅ ∨ 𝐴 = 1o)) | |
| 2 | difeq2 4100 | . . . . . . . 8 ⊢ (𝐴 = ∅ → (1o ∖ 𝐴) = (1o ∖ ∅)) | |
| 3 | dif0 4358 | . . . . . . . 8 ⊢ (1o ∖ ∅) = 1o | |
| 4 | 2, 3 | eqtrdi 2787 | . . . . . . 7 ⊢ (𝐴 = ∅ → (1o ∖ 𝐴) = 1o) |
| 5 | difeq2 4100 | . . . . . . . 8 ⊢ (𝐴 = 1o → (1o ∖ 𝐴) = (1o ∖ 1o)) | |
| 6 | difid 4356 | . . . . . . . 8 ⊢ (1o ∖ 1o) = ∅ | |
| 7 | 5, 6 | eqtrdi 2787 | . . . . . . 7 ⊢ (𝐴 = 1o → (1o ∖ 𝐴) = ∅) |
| 8 | 4, 7 | orim12i 908 | . . . . . 6 ⊢ ((𝐴 = ∅ ∨ 𝐴 = 1o) → ((1o ∖ 𝐴) = 1o ∨ (1o ∖ 𝐴) = ∅)) |
| 9 | 8 | orcomd 871 | . . . . 5 ⊢ ((𝐴 = ∅ ∨ 𝐴 = 1o) → ((1o ∖ 𝐴) = ∅ ∨ (1o ∖ 𝐴) = 1o)) |
| 10 | 1, 9 | syl 17 | . . . 4 ⊢ (𝐴 ∈ {∅, 1o} → ((1o ∖ 𝐴) = ∅ ∨ (1o ∖ 𝐴) = 1o)) |
| 11 | 1on 8497 | . . . . . 6 ⊢ 1o ∈ On | |
| 12 | difexg 5304 | . . . . . 6 ⊢ (1o ∈ On → (1o ∖ 𝐴) ∈ V) | |
| 13 | 11, 12 | ax-mp 5 | . . . . 5 ⊢ (1o ∖ 𝐴) ∈ V |
| 14 | 13 | elpr 4631 | . . . 4 ⊢ ((1o ∖ 𝐴) ∈ {∅, 1o} ↔ ((1o ∖ 𝐴) = ∅ ∨ (1o ∖ 𝐴) = 1o)) |
| 15 | 10, 14 | sylibr 234 | . . 3 ⊢ (𝐴 ∈ {∅, 1o} → (1o ∖ 𝐴) ∈ {∅, 1o}) |
| 16 | df2o3 8493 | . . 3 ⊢ 2o = {∅, 1o} | |
| 17 | 15, 16 | eleqtrrdi 2846 | . 2 ⊢ (𝐴 ∈ {∅, 1o} → (1o ∖ 𝐴) ∈ 2o) |
| 18 | 17, 16 | eleq2s 2853 | 1 ⊢ (𝐴 ∈ 2o → (1o ∖ 𝐴) ∈ 2o) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 847 = wceq 1540 ∈ wcel 2109 Vcvv 3464 ∖ cdif 3928 ∅c0 4313 {cpr 4608 Oncon0 6357 1oc1o 8478 2oc2o 8479 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-tr 5235 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-ord 6360 df-on 6361 df-suc 6363 df-1o 8485 df-2o 8486 |
| This theorem is referenced by: efgmf 19699 efgmnvl 19700 efglem 19702 frgpuplem 19758 |
| Copyright terms: Public domain | W3C validator |