Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 2oconcl | Structured version Visualization version GIF version |
Description: Closure of the pair swapping function on 2o. (Contributed by Mario Carneiro, 27-Sep-2015.) |
Ref | Expression |
---|---|
2oconcl | ⊢ (𝐴 ∈ 2o → (1o ∖ 𝐴) ∈ 2o) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpri 4580 | . . . . 5 ⊢ (𝐴 ∈ {∅, 1o} → (𝐴 = ∅ ∨ 𝐴 = 1o)) | |
2 | difeq2 4047 | . . . . . . . 8 ⊢ (𝐴 = ∅ → (1o ∖ 𝐴) = (1o ∖ ∅)) | |
3 | dif0 4303 | . . . . . . . 8 ⊢ (1o ∖ ∅) = 1o | |
4 | 2, 3 | eqtrdi 2795 | . . . . . . 7 ⊢ (𝐴 = ∅ → (1o ∖ 𝐴) = 1o) |
5 | difeq2 4047 | . . . . . . . 8 ⊢ (𝐴 = 1o → (1o ∖ 𝐴) = (1o ∖ 1o)) | |
6 | difid 4301 | . . . . . . . 8 ⊢ (1o ∖ 1o) = ∅ | |
7 | 5, 6 | eqtrdi 2795 | . . . . . . 7 ⊢ (𝐴 = 1o → (1o ∖ 𝐴) = ∅) |
8 | 4, 7 | orim12i 905 | . . . . . 6 ⊢ ((𝐴 = ∅ ∨ 𝐴 = 1o) → ((1o ∖ 𝐴) = 1o ∨ (1o ∖ 𝐴) = ∅)) |
9 | 8 | orcomd 867 | . . . . 5 ⊢ ((𝐴 = ∅ ∨ 𝐴 = 1o) → ((1o ∖ 𝐴) = ∅ ∨ (1o ∖ 𝐴) = 1o)) |
10 | 1, 9 | syl 17 | . . . 4 ⊢ (𝐴 ∈ {∅, 1o} → ((1o ∖ 𝐴) = ∅ ∨ (1o ∖ 𝐴) = 1o)) |
11 | 1on 8274 | . . . . . 6 ⊢ 1o ∈ On | |
12 | difexg 5246 | . . . . . 6 ⊢ (1o ∈ On → (1o ∖ 𝐴) ∈ V) | |
13 | 11, 12 | ax-mp 5 | . . . . 5 ⊢ (1o ∖ 𝐴) ∈ V |
14 | 13 | elpr 4581 | . . . 4 ⊢ ((1o ∖ 𝐴) ∈ {∅, 1o} ↔ ((1o ∖ 𝐴) = ∅ ∨ (1o ∖ 𝐴) = 1o)) |
15 | 10, 14 | sylibr 233 | . . 3 ⊢ (𝐴 ∈ {∅, 1o} → (1o ∖ 𝐴) ∈ {∅, 1o}) |
16 | df2o3 8282 | . . 3 ⊢ 2o = {∅, 1o} | |
17 | 15, 16 | eleqtrrdi 2850 | . 2 ⊢ (𝐴 ∈ {∅, 1o} → (1o ∖ 𝐴) ∈ 2o) |
18 | 17, 16 | eleq2s 2857 | 1 ⊢ (𝐴 ∈ 2o → (1o ∖ 𝐴) ∈ 2o) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 843 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ∖ cdif 3880 ∅c0 4253 {cpr 4560 Oncon0 6251 1oc1o 8260 2oc2o 8261 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-11 2156 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-tr 5188 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-ord 6254 df-on 6255 df-suc 6257 df-1o 8267 df-2o 8268 |
This theorem is referenced by: efgmf 19234 efgmnvl 19235 efglem 19237 frgpuplem 19293 |
Copyright terms: Public domain | W3C validator |