MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ang180lem4 Structured version   Visualization version   GIF version

Theorem ang180lem4 26553
Description: Lemma for ang180 26555. Reduce the statement to one variable. (Contributed by Mario Carneiro, 23-Sep-2014.)
Hypothesis
Ref Expression
ang.1 ๐น = (๐‘ฅ โˆˆ (โ„‚ โˆ– {0}), ๐‘ฆ โˆˆ (โ„‚ โˆ– {0}) โ†ฆ (โ„‘โ€˜(logโ€˜(๐‘ฆ / ๐‘ฅ))))
Assertion
Ref Expression
ang180lem4 ((๐ด โˆˆ โ„‚ โˆง ๐ด โ‰  0 โˆง ๐ด โ‰  1) โ†’ ((((1 โˆ’ ๐ด)๐น1) + (๐ด๐น(๐ด โˆ’ 1))) + (1๐น๐ด)) โˆˆ {-ฯ€, ฯ€})
Distinct variable group:   ๐‘ฅ,๐‘ฆ,๐ด
Allowed substitution hints:   ๐น(๐‘ฅ,๐‘ฆ)

Proof of Theorem ang180lem4
StepHypRef Expression
1 ang.1 . . . . . . 7 ๐น = (๐‘ฅ โˆˆ (โ„‚ โˆ– {0}), ๐‘ฆ โˆˆ (โ„‚ โˆ– {0}) โ†ฆ (โ„‘โ€˜(logโ€˜(๐‘ฆ / ๐‘ฅ))))
2 1cnd 11213 . . . . . . . 8 ((๐ด โˆˆ โ„‚ โˆง ๐ด โ‰  0 โˆง ๐ด โ‰  1) โ†’ 1 โˆˆ โ„‚)
3 simp1 1134 . . . . . . . 8 ((๐ด โˆˆ โ„‚ โˆง ๐ด โ‰  0 โˆง ๐ด โ‰  1) โ†’ ๐ด โˆˆ โ„‚)
42, 3subcld 11575 . . . . . . 7 ((๐ด โˆˆ โ„‚ โˆง ๐ด โ‰  0 โˆง ๐ด โ‰  1) โ†’ (1 โˆ’ ๐ด) โˆˆ โ„‚)
5 simp3 1136 . . . . . . . . 9 ((๐ด โˆˆ โ„‚ โˆง ๐ด โ‰  0 โˆง ๐ด โ‰  1) โ†’ ๐ด โ‰  1)
65necomd 2994 . . . . . . . 8 ((๐ด โˆˆ โ„‚ โˆง ๐ด โ‰  0 โˆง ๐ด โ‰  1) โ†’ 1 โ‰  ๐ด)
72, 3, 6subne0d 11584 . . . . . . 7 ((๐ด โˆˆ โ„‚ โˆง ๐ด โ‰  0 โˆง ๐ด โ‰  1) โ†’ (1 โˆ’ ๐ด) โ‰  0)
8 ax-1ne0 11181 . . . . . . . 8 1 โ‰  0
98a1i 11 . . . . . . 7 ((๐ด โˆˆ โ„‚ โˆง ๐ด โ‰  0 โˆง ๐ด โ‰  1) โ†’ 1 โ‰  0)
101, 4, 7, 2, 9angvald 26545 . . . . . 6 ((๐ด โˆˆ โ„‚ โˆง ๐ด โ‰  0 โˆง ๐ด โ‰  1) โ†’ ((1 โˆ’ ๐ด)๐น1) = (โ„‘โ€˜(logโ€˜(1 / (1 โˆ’ ๐ด)))))
11 simp2 1135 . . . . . . 7 ((๐ด โˆˆ โ„‚ โˆง ๐ด โ‰  0 โˆง ๐ด โ‰  1) โ†’ ๐ด โ‰  0)
123, 2subcld 11575 . . . . . . 7 ((๐ด โˆˆ โ„‚ โˆง ๐ด โ‰  0 โˆง ๐ด โ‰  1) โ†’ (๐ด โˆ’ 1) โˆˆ โ„‚)
133, 2, 5subne0d 11584 . . . . . . 7 ((๐ด โˆˆ โ„‚ โˆง ๐ด โ‰  0 โˆง ๐ด โ‰  1) โ†’ (๐ด โˆ’ 1) โ‰  0)
141, 3, 11, 12, 13angvald 26545 . . . . . 6 ((๐ด โˆˆ โ„‚ โˆง ๐ด โ‰  0 โˆง ๐ด โ‰  1) โ†’ (๐ด๐น(๐ด โˆ’ 1)) = (โ„‘โ€˜(logโ€˜((๐ด โˆ’ 1) / ๐ด))))
1510, 14oveq12d 7429 . . . . 5 ((๐ด โˆˆ โ„‚ โˆง ๐ด โ‰  0 โˆง ๐ด โ‰  1) โ†’ (((1 โˆ’ ๐ด)๐น1) + (๐ด๐น(๐ด โˆ’ 1))) = ((โ„‘โ€˜(logโ€˜(1 / (1 โˆ’ ๐ด)))) + (โ„‘โ€˜(logโ€˜((๐ด โˆ’ 1) / ๐ด)))))
162, 4, 7divcld 11994 . . . . . . 7 ((๐ด โˆˆ โ„‚ โˆง ๐ด โ‰  0 โˆง ๐ด โ‰  1) โ†’ (1 / (1 โˆ’ ๐ด)) โˆˆ โ„‚)
174, 7recne0d 11988 . . . . . . 7 ((๐ด โˆˆ โ„‚ โˆง ๐ด โ‰  0 โˆง ๐ด โ‰  1) โ†’ (1 / (1 โˆ’ ๐ด)) โ‰  0)
1816, 17logcld 26315 . . . . . 6 ((๐ด โˆˆ โ„‚ โˆง ๐ด โ‰  0 โˆง ๐ด โ‰  1) โ†’ (logโ€˜(1 / (1 โˆ’ ๐ด))) โˆˆ โ„‚)
1912, 3, 11divcld 11994 . . . . . . 7 ((๐ด โˆˆ โ„‚ โˆง ๐ด โ‰  0 โˆง ๐ด โ‰  1) โ†’ ((๐ด โˆ’ 1) / ๐ด) โˆˆ โ„‚)
2012, 3, 13, 11divne0d 12010 . . . . . . 7 ((๐ด โˆˆ โ„‚ โˆง ๐ด โ‰  0 โˆง ๐ด โ‰  1) โ†’ ((๐ด โˆ’ 1) / ๐ด) โ‰  0)
2119, 20logcld 26315 . . . . . 6 ((๐ด โˆˆ โ„‚ โˆง ๐ด โ‰  0 โˆง ๐ด โ‰  1) โ†’ (logโ€˜((๐ด โˆ’ 1) / ๐ด)) โˆˆ โ„‚)
2218, 21imaddd 15166 . . . . 5 ((๐ด โˆˆ โ„‚ โˆง ๐ด โ‰  0 โˆง ๐ด โ‰  1) โ†’ (โ„‘โ€˜((logโ€˜(1 / (1 โˆ’ ๐ด))) + (logโ€˜((๐ด โˆ’ 1) / ๐ด)))) = ((โ„‘โ€˜(logโ€˜(1 / (1 โˆ’ ๐ด)))) + (โ„‘โ€˜(logโ€˜((๐ด โˆ’ 1) / ๐ด)))))
2315, 22eqtr4d 2773 . . . 4 ((๐ด โˆˆ โ„‚ โˆง ๐ด โ‰  0 โˆง ๐ด โ‰  1) โ†’ (((1 โˆ’ ๐ด)๐น1) + (๐ด๐น(๐ด โˆ’ 1))) = (โ„‘โ€˜((logโ€˜(1 / (1 โˆ’ ๐ด))) + (logโ€˜((๐ด โˆ’ 1) / ๐ด)))))
241, 2, 9, 3, 11angvald 26545 . . . . 5 ((๐ด โˆˆ โ„‚ โˆง ๐ด โ‰  0 โˆง ๐ด โ‰  1) โ†’ (1๐น๐ด) = (โ„‘โ€˜(logโ€˜(๐ด / 1))))
253div1d 11986 . . . . . . 7 ((๐ด โˆˆ โ„‚ โˆง ๐ด โ‰  0 โˆง ๐ด โ‰  1) โ†’ (๐ด / 1) = ๐ด)
2625fveq2d 6894 . . . . . 6 ((๐ด โˆˆ โ„‚ โˆง ๐ด โ‰  0 โˆง ๐ด โ‰  1) โ†’ (logโ€˜(๐ด / 1)) = (logโ€˜๐ด))
2726fveq2d 6894 . . . . 5 ((๐ด โˆˆ โ„‚ โˆง ๐ด โ‰  0 โˆง ๐ด โ‰  1) โ†’ (โ„‘โ€˜(logโ€˜(๐ด / 1))) = (โ„‘โ€˜(logโ€˜๐ด)))
2824, 27eqtrd 2770 . . . 4 ((๐ด โˆˆ โ„‚ โˆง ๐ด โ‰  0 โˆง ๐ด โ‰  1) โ†’ (1๐น๐ด) = (โ„‘โ€˜(logโ€˜๐ด)))
2923, 28oveq12d 7429 . . 3 ((๐ด โˆˆ โ„‚ โˆง ๐ด โ‰  0 โˆง ๐ด โ‰  1) โ†’ ((((1 โˆ’ ๐ด)๐น1) + (๐ด๐น(๐ด โˆ’ 1))) + (1๐น๐ด)) = ((โ„‘โ€˜((logโ€˜(1 / (1 โˆ’ ๐ด))) + (logโ€˜((๐ด โˆ’ 1) / ๐ด)))) + (โ„‘โ€˜(logโ€˜๐ด))))
3018, 21addcld 11237 . . . 4 ((๐ด โˆˆ โ„‚ โˆง ๐ด โ‰  0 โˆง ๐ด โ‰  1) โ†’ ((logโ€˜(1 / (1 โˆ’ ๐ด))) + (logโ€˜((๐ด โˆ’ 1) / ๐ด))) โˆˆ โ„‚)
313, 11logcld 26315 . . . 4 ((๐ด โˆˆ โ„‚ โˆง ๐ด โ‰  0 โˆง ๐ด โ‰  1) โ†’ (logโ€˜๐ด) โˆˆ โ„‚)
3230, 31imaddd 15166 . . 3 ((๐ด โˆˆ โ„‚ โˆง ๐ด โ‰  0 โˆง ๐ด โ‰  1) โ†’ (โ„‘โ€˜(((logโ€˜(1 / (1 โˆ’ ๐ด))) + (logโ€˜((๐ด โˆ’ 1) / ๐ด))) + (logโ€˜๐ด))) = ((โ„‘โ€˜((logโ€˜(1 / (1 โˆ’ ๐ด))) + (logโ€˜((๐ด โˆ’ 1) / ๐ด)))) + (โ„‘โ€˜(logโ€˜๐ด))))
3329, 32eqtr4d 2773 . 2 ((๐ด โˆˆ โ„‚ โˆง ๐ด โ‰  0 โˆง ๐ด โ‰  1) โ†’ ((((1 โˆ’ ๐ด)๐น1) + (๐ด๐น(๐ด โˆ’ 1))) + (1๐น๐ด)) = (โ„‘โ€˜(((logโ€˜(1 / (1 โˆ’ ๐ด))) + (logโ€˜((๐ด โˆ’ 1) / ๐ด))) + (logโ€˜๐ด))))
34 eqid 2730 . . . 4 (((logโ€˜(1 / (1 โˆ’ ๐ด))) + (logโ€˜((๐ด โˆ’ 1) / ๐ด))) + (logโ€˜๐ด)) = (((logโ€˜(1 / (1 โˆ’ ๐ด))) + (logโ€˜((๐ด โˆ’ 1) / ๐ด))) + (logโ€˜๐ด))
35 eqid 2730 . . . 4 ((((((logโ€˜(1 / (1 โˆ’ ๐ด))) + (logโ€˜((๐ด โˆ’ 1) / ๐ด))) + (logโ€˜๐ด)) / i) / (2 ยท ฯ€)) โˆ’ (1 / 2)) = ((((((logโ€˜(1 / (1 โˆ’ ๐ด))) + (logโ€˜((๐ด โˆ’ 1) / ๐ด))) + (logโ€˜๐ด)) / i) / (2 ยท ฯ€)) โˆ’ (1 / 2))
361, 34, 35ang180lem3 26552 . . 3 ((๐ด โˆˆ โ„‚ โˆง ๐ด โ‰  0 โˆง ๐ด โ‰  1) โ†’ (((logโ€˜(1 / (1 โˆ’ ๐ด))) + (logโ€˜((๐ด โˆ’ 1) / ๐ด))) + (logโ€˜๐ด)) โˆˆ {-(i ยท ฯ€), (i ยท ฯ€)})
37 fveq2 6890 . . . . . 6 ((((logโ€˜(1 / (1 โˆ’ ๐ด))) + (logโ€˜((๐ด โˆ’ 1) / ๐ด))) + (logโ€˜๐ด)) = -(i ยท ฯ€) โ†’ (โ„‘โ€˜(((logโ€˜(1 / (1 โˆ’ ๐ด))) + (logโ€˜((๐ด โˆ’ 1) / ๐ด))) + (logโ€˜๐ด))) = (โ„‘โ€˜-(i ยท ฯ€)))
38 ax-icn 11171 . . . . . . . . 9 i โˆˆ โ„‚
39 picn 26205 . . . . . . . . 9 ฯ€ โˆˆ โ„‚
4038, 39mulcli 11225 . . . . . . . 8 (i ยท ฯ€) โˆˆ โ„‚
4140imnegi 15132 . . . . . . 7 (โ„‘โ€˜-(i ยท ฯ€)) = -(โ„‘โ€˜(i ยท ฯ€))
4240addlidi 11406 . . . . . . . . . 10 (0 + (i ยท ฯ€)) = (i ยท ฯ€)
4342fveq2i 6893 . . . . . . . . 9 (โ„‘โ€˜(0 + (i ยท ฯ€))) = (โ„‘โ€˜(i ยท ฯ€))
44 0re 11220 . . . . . . . . . 10 0 โˆˆ โ„
45 pire 26204 . . . . . . . . . 10 ฯ€ โˆˆ โ„
4644, 45crimi 15144 . . . . . . . . 9 (โ„‘โ€˜(0 + (i ยท ฯ€))) = ฯ€
4743, 46eqtr3i 2760 . . . . . . . 8 (โ„‘โ€˜(i ยท ฯ€)) = ฯ€
4847negeqi 11457 . . . . . . 7 -(โ„‘โ€˜(i ยท ฯ€)) = -ฯ€
4941, 48eqtri 2758 . . . . . 6 (โ„‘โ€˜-(i ยท ฯ€)) = -ฯ€
5037, 49eqtrdi 2786 . . . . 5 ((((logโ€˜(1 / (1 โˆ’ ๐ด))) + (logโ€˜((๐ด โˆ’ 1) / ๐ด))) + (logโ€˜๐ด)) = -(i ยท ฯ€) โ†’ (โ„‘โ€˜(((logโ€˜(1 / (1 โˆ’ ๐ด))) + (logโ€˜((๐ด โˆ’ 1) / ๐ด))) + (logโ€˜๐ด))) = -ฯ€)
51 fveq2 6890 . . . . . 6 ((((logโ€˜(1 / (1 โˆ’ ๐ด))) + (logโ€˜((๐ด โˆ’ 1) / ๐ด))) + (logโ€˜๐ด)) = (i ยท ฯ€) โ†’ (โ„‘โ€˜(((logโ€˜(1 / (1 โˆ’ ๐ด))) + (logโ€˜((๐ด โˆ’ 1) / ๐ด))) + (logโ€˜๐ด))) = (โ„‘โ€˜(i ยท ฯ€)))
5251, 47eqtrdi 2786 . . . . 5 ((((logโ€˜(1 / (1 โˆ’ ๐ด))) + (logโ€˜((๐ด โˆ’ 1) / ๐ด))) + (logโ€˜๐ด)) = (i ยท ฯ€) โ†’ (โ„‘โ€˜(((logโ€˜(1 / (1 โˆ’ ๐ด))) + (logโ€˜((๐ด โˆ’ 1) / ๐ด))) + (logโ€˜๐ด))) = ฯ€)
5350, 52orim12i 905 . . . 4 (((((logโ€˜(1 / (1 โˆ’ ๐ด))) + (logโ€˜((๐ด โˆ’ 1) / ๐ด))) + (logโ€˜๐ด)) = -(i ยท ฯ€) โˆจ (((logโ€˜(1 / (1 โˆ’ ๐ด))) + (logโ€˜((๐ด โˆ’ 1) / ๐ด))) + (logโ€˜๐ด)) = (i ยท ฯ€)) โ†’ ((โ„‘โ€˜(((logโ€˜(1 / (1 โˆ’ ๐ด))) + (logโ€˜((๐ด โˆ’ 1) / ๐ด))) + (logโ€˜๐ด))) = -ฯ€ โˆจ (โ„‘โ€˜(((logโ€˜(1 / (1 โˆ’ ๐ด))) + (logโ€˜((๐ด โˆ’ 1) / ๐ด))) + (logโ€˜๐ด))) = ฯ€))
54 ovex 7444 . . . . 5 (((logโ€˜(1 / (1 โˆ’ ๐ด))) + (logโ€˜((๐ด โˆ’ 1) / ๐ด))) + (logโ€˜๐ด)) โˆˆ V
5554elpr 4650 . . . 4 ((((logโ€˜(1 / (1 โˆ’ ๐ด))) + (logโ€˜((๐ด โˆ’ 1) / ๐ด))) + (logโ€˜๐ด)) โˆˆ {-(i ยท ฯ€), (i ยท ฯ€)} โ†” ((((logโ€˜(1 / (1 โˆ’ ๐ด))) + (logโ€˜((๐ด โˆ’ 1) / ๐ด))) + (logโ€˜๐ด)) = -(i ยท ฯ€) โˆจ (((logโ€˜(1 / (1 โˆ’ ๐ด))) + (logโ€˜((๐ด โˆ’ 1) / ๐ด))) + (logโ€˜๐ด)) = (i ยท ฯ€)))
56 fvex 6903 . . . . 5 (โ„‘โ€˜(((logโ€˜(1 / (1 โˆ’ ๐ด))) + (logโ€˜((๐ด โˆ’ 1) / ๐ด))) + (logโ€˜๐ด))) โˆˆ V
5756elpr 4650 . . . 4 ((โ„‘โ€˜(((logโ€˜(1 / (1 โˆ’ ๐ด))) + (logโ€˜((๐ด โˆ’ 1) / ๐ด))) + (logโ€˜๐ด))) โˆˆ {-ฯ€, ฯ€} โ†” ((โ„‘โ€˜(((logโ€˜(1 / (1 โˆ’ ๐ด))) + (logโ€˜((๐ด โˆ’ 1) / ๐ด))) + (logโ€˜๐ด))) = -ฯ€ โˆจ (โ„‘โ€˜(((logโ€˜(1 / (1 โˆ’ ๐ด))) + (logโ€˜((๐ด โˆ’ 1) / ๐ด))) + (logโ€˜๐ด))) = ฯ€))
5853, 55, 573imtr4i 291 . . 3 ((((logโ€˜(1 / (1 โˆ’ ๐ด))) + (logโ€˜((๐ด โˆ’ 1) / ๐ด))) + (logโ€˜๐ด)) โˆˆ {-(i ยท ฯ€), (i ยท ฯ€)} โ†’ (โ„‘โ€˜(((logโ€˜(1 / (1 โˆ’ ๐ด))) + (logโ€˜((๐ด โˆ’ 1) / ๐ด))) + (logโ€˜๐ด))) โˆˆ {-ฯ€, ฯ€})
5936, 58syl 17 . 2 ((๐ด โˆˆ โ„‚ โˆง ๐ด โ‰  0 โˆง ๐ด โ‰  1) โ†’ (โ„‘โ€˜(((logโ€˜(1 / (1 โˆ’ ๐ด))) + (logโ€˜((๐ด โˆ’ 1) / ๐ด))) + (logโ€˜๐ด))) โˆˆ {-ฯ€, ฯ€})
6033, 59eqeltrd 2831 1 ((๐ด โˆˆ โ„‚ โˆง ๐ด โ‰  0 โˆง ๐ด โ‰  1) โ†’ ((((1 โˆ’ ๐ด)๐น1) + (๐ด๐น(๐ด โˆ’ 1))) + (1๐น๐ด)) โˆˆ {-ฯ€, ฯ€})
Colors of variables: wff setvar class
Syntax hints:   โ†’ wi 4   โˆจ wo 843   โˆง w3a 1085   = wceq 1539   โˆˆ wcel 2104   โ‰  wne 2938   โˆ– cdif 3944  {csn 4627  {cpr 4629  โ€˜cfv 6542  (class class class)co 7411   โˆˆ cmpo 7413  โ„‚cc 11110  0cc0 11112  1c1 11113  ici 11114   + caddc 11115   ยท cmul 11117   โˆ’ cmin 11448  -cneg 11449   / cdiv 11875  2c2 12271  โ„‘cim 15049  ฯ€cpi 16014  logclog 26299
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727  ax-inf2 9638  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189  ax-pre-sup 11190  ax-addf 11191
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-iin 4999  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-of 7672  df-om 7858  df-1st 7977  df-2nd 7978  df-supp 8149  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-1o 8468  df-2o 8469  df-er 8705  df-map 8824  df-pm 8825  df-ixp 8894  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-fsupp 9364  df-fi 9408  df-sup 9439  df-inf 9440  df-oi 9507  df-card 9936  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-div 11876  df-nn 12217  df-2 12279  df-3 12280  df-4 12281  df-5 12282  df-6 12283  df-7 12284  df-8 12285  df-9 12286  df-n0 12477  df-z 12563  df-dec 12682  df-uz 12827  df-q 12937  df-rp 12979  df-xneg 13096  df-xadd 13097  df-xmul 13098  df-ioo 13332  df-ioc 13333  df-ico 13334  df-icc 13335  df-fz 13489  df-fzo 13632  df-fl 13761  df-mod 13839  df-seq 13971  df-exp 14032  df-fac 14238  df-bc 14267  df-hash 14295  df-shft 15018  df-cj 15050  df-re 15051  df-im 15052  df-sqrt 15186  df-abs 15187  df-limsup 15419  df-clim 15436  df-rlim 15437  df-sum 15637  df-ef 16015  df-sin 16017  df-cos 16018  df-pi 16020  df-struct 17084  df-sets 17101  df-slot 17119  df-ndx 17131  df-base 17149  df-ress 17178  df-plusg 17214  df-mulr 17215  df-starv 17216  df-sca 17217  df-vsca 17218  df-ip 17219  df-tset 17220  df-ple 17221  df-ds 17223  df-unif 17224  df-hom 17225  df-cco 17226  df-rest 17372  df-topn 17373  df-0g 17391  df-gsum 17392  df-topgen 17393  df-pt 17394  df-prds 17397  df-xrs 17452  df-qtop 17457  df-imas 17458  df-xps 17460  df-mre 17534  df-mrc 17535  df-acs 17537  df-mgm 18565  df-sgrp 18644  df-mnd 18660  df-submnd 18706  df-mulg 18987  df-cntz 19222  df-cmn 19691  df-psmet 21136  df-xmet 21137  df-met 21138  df-bl 21139  df-mopn 21140  df-fbas 21141  df-fg 21142  df-cnfld 21145  df-top 22616  df-topon 22633  df-topsp 22655  df-bases 22669  df-cld 22743  df-ntr 22744  df-cls 22745  df-nei 22822  df-lp 22860  df-perf 22861  df-cn 22951  df-cnp 22952  df-haus 23039  df-tx 23286  df-hmeo 23479  df-fil 23570  df-fm 23662  df-flim 23663  df-flf 23664  df-xms 24046  df-ms 24047  df-tms 24048  df-cncf 24618  df-limc 25615  df-dv 25616  df-log 26301
This theorem is referenced by:  ang180lem5  26554
  Copyright terms: Public domain W3C validator