MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ang180lem4 Structured version   Visualization version   GIF version

Theorem ang180lem4 26045
Description: Lemma for ang180 26047. Reduce the statement to one variable. (Contributed by Mario Carneiro, 23-Sep-2014.)
Hypothesis
Ref Expression
ang.1 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥))))
Assertion
Ref Expression
ang180lem4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((((1 − 𝐴)𝐹1) + (𝐴𝐹(𝐴 − 1))) + (1𝐹𝐴)) ∈ {-π, π})
Distinct variable group:   𝑥,𝑦,𝐴
Allowed substitution hints:   𝐹(𝑥,𝑦)

Proof of Theorem ang180lem4
StepHypRef Expression
1 ang.1 . . . . . . 7 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥))))
2 1cnd 11050 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 1 ∈ ℂ)
3 simp1 1135 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 𝐴 ∈ ℂ)
42, 3subcld 11412 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (1 − 𝐴) ∈ ℂ)
5 simp3 1137 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 𝐴 ≠ 1)
65necomd 2997 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 1 ≠ 𝐴)
72, 3, 6subne0d 11421 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (1 − 𝐴) ≠ 0)
8 ax-1ne0 11020 . . . . . . . 8 1 ≠ 0
98a1i 11 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 1 ≠ 0)
101, 4, 7, 2, 9angvald 26037 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((1 − 𝐴)𝐹1) = (ℑ‘(log‘(1 / (1 − 𝐴)))))
11 simp2 1136 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 𝐴 ≠ 0)
123, 2subcld 11412 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (𝐴 − 1) ∈ ℂ)
133, 2, 5subne0d 11421 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (𝐴 − 1) ≠ 0)
141, 3, 11, 12, 13angvald 26037 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (𝐴𝐹(𝐴 − 1)) = (ℑ‘(log‘((𝐴 − 1) / 𝐴))))
1510, 14oveq12d 7335 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (((1 − 𝐴)𝐹1) + (𝐴𝐹(𝐴 − 1))) = ((ℑ‘(log‘(1 / (1 − 𝐴)))) + (ℑ‘(log‘((𝐴 − 1) / 𝐴)))))
162, 4, 7divcld 11831 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (1 / (1 − 𝐴)) ∈ ℂ)
174, 7recne0d 11825 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (1 / (1 − 𝐴)) ≠ 0)
1816, 17logcld 25809 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (log‘(1 / (1 − 𝐴))) ∈ ℂ)
1912, 3, 11divcld 11831 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((𝐴 − 1) / 𝐴) ∈ ℂ)
2012, 3, 13, 11divne0d 11847 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((𝐴 − 1) / 𝐴) ≠ 0)
2119, 20logcld 25809 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (log‘((𝐴 − 1) / 𝐴)) ∈ ℂ)
2218, 21imaddd 15005 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴)))) = ((ℑ‘(log‘(1 / (1 − 𝐴)))) + (ℑ‘(log‘((𝐴 − 1) / 𝐴)))))
2315, 22eqtr4d 2780 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (((1 − 𝐴)𝐹1) + (𝐴𝐹(𝐴 − 1))) = (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴)))))
241, 2, 9, 3, 11angvald 26037 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (1𝐹𝐴) = (ℑ‘(log‘(𝐴 / 1))))
253div1d 11823 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (𝐴 / 1) = 𝐴)
2625fveq2d 6816 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (log‘(𝐴 / 1)) = (log‘𝐴))
2726fveq2d 6816 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (ℑ‘(log‘(𝐴 / 1))) = (ℑ‘(log‘𝐴)))
2824, 27eqtrd 2777 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (1𝐹𝐴) = (ℑ‘(log‘𝐴)))
2923, 28oveq12d 7335 . . 3 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((((1 − 𝐴)𝐹1) + (𝐴𝐹(𝐴 − 1))) + (1𝐹𝐴)) = ((ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴)))) + (ℑ‘(log‘𝐴))))
3018, 21addcld 11074 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))) ∈ ℂ)
313, 11logcld 25809 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (log‘𝐴) ∈ ℂ)
3230, 31imaddd 15005 . . 3 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (ℑ‘(((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))) + (log‘𝐴))) = ((ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴)))) + (ℑ‘(log‘𝐴))))
3329, 32eqtr4d 2780 . 2 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((((1 − 𝐴)𝐹1) + (𝐴𝐹(𝐴 − 1))) + (1𝐹𝐴)) = (ℑ‘(((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))) + (log‘𝐴))))
34 eqid 2737 . . . 4 (((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))) + (log‘𝐴)) = (((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))) + (log‘𝐴))
35 eqid 2737 . . . 4 ((((((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))) + (log‘𝐴)) / i) / (2 · π)) − (1 / 2)) = ((((((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))) + (log‘𝐴)) / i) / (2 · π)) − (1 / 2))
361, 34, 35ang180lem3 26044 . . 3 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))) + (log‘𝐴)) ∈ {-(i · π), (i · π)})
37 fveq2 6812 . . . . . 6 ((((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))) + (log‘𝐴)) = -(i · π) → (ℑ‘(((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))) + (log‘𝐴))) = (ℑ‘-(i · π)))
38 ax-icn 11010 . . . . . . . . 9 i ∈ ℂ
39 picn 25699 . . . . . . . . 9 π ∈ ℂ
4038, 39mulcli 11062 . . . . . . . 8 (i · π) ∈ ℂ
4140imnegi 14971 . . . . . . 7 (ℑ‘-(i · π)) = -(ℑ‘(i · π))
4240addid2i 11243 . . . . . . . . . 10 (0 + (i · π)) = (i · π)
4342fveq2i 6815 . . . . . . . . 9 (ℑ‘(0 + (i · π))) = (ℑ‘(i · π))
44 0re 11057 . . . . . . . . . 10 0 ∈ ℝ
45 pire 25698 . . . . . . . . . 10 π ∈ ℝ
4644, 45crimi 14983 . . . . . . . . 9 (ℑ‘(0 + (i · π))) = π
4743, 46eqtr3i 2767 . . . . . . . 8 (ℑ‘(i · π)) = π
4847negeqi 11294 . . . . . . 7 -(ℑ‘(i · π)) = -π
4941, 48eqtri 2765 . . . . . 6 (ℑ‘-(i · π)) = -π
5037, 49eqtrdi 2793 . . . . 5 ((((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))) + (log‘𝐴)) = -(i · π) → (ℑ‘(((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))) + (log‘𝐴))) = -π)
51 fveq2 6812 . . . . . 6 ((((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))) + (log‘𝐴)) = (i · π) → (ℑ‘(((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))) + (log‘𝐴))) = (ℑ‘(i · π)))
5251, 47eqtrdi 2793 . . . . 5 ((((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))) + (log‘𝐴)) = (i · π) → (ℑ‘(((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))) + (log‘𝐴))) = π)
5350, 52orim12i 906 . . . 4 (((((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))) + (log‘𝐴)) = -(i · π) ∨ (((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))) + (log‘𝐴)) = (i · π)) → ((ℑ‘(((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))) + (log‘𝐴))) = -π ∨ (ℑ‘(((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))) + (log‘𝐴))) = π))
54 ovex 7350 . . . . 5 (((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))) + (log‘𝐴)) ∈ V
5554elpr 4594 . . . 4 ((((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))) + (log‘𝐴)) ∈ {-(i · π), (i · π)} ↔ ((((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))) + (log‘𝐴)) = -(i · π) ∨ (((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))) + (log‘𝐴)) = (i · π)))
56 fvex 6825 . . . . 5 (ℑ‘(((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))) + (log‘𝐴))) ∈ V
5756elpr 4594 . . . 4 ((ℑ‘(((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))) + (log‘𝐴))) ∈ {-π, π} ↔ ((ℑ‘(((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))) + (log‘𝐴))) = -π ∨ (ℑ‘(((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))) + (log‘𝐴))) = π))
5853, 55, 573imtr4i 291 . . 3 ((((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))) + (log‘𝐴)) ∈ {-(i · π), (i · π)} → (ℑ‘(((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))) + (log‘𝐴))) ∈ {-π, π})
5936, 58syl 17 . 2 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (ℑ‘(((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))) + (log‘𝐴))) ∈ {-π, π})
6033, 59eqeltrd 2838 1 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((((1 − 𝐴)𝐹1) + (𝐴𝐹(𝐴 − 1))) + (1𝐹𝐴)) ∈ {-π, π})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 844  w3a 1086   = wceq 1540  wcel 2105  wne 2941  cdif 3894  {csn 4571  {cpr 4573  cfv 6466  (class class class)co 7317  cmpo 7319  cc 10949  0cc0 10951  1c1 10952  ici 10953   + caddc 10954   · cmul 10956  cmin 11285  -cneg 11286   / cdiv 11712  2c2 12108  cim 14888  πcpi 15855  logclog 25793
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-rep 5224  ax-sep 5238  ax-nul 5245  ax-pow 5303  ax-pr 5367  ax-un 7630  ax-inf2 9477  ax-cnex 11007  ax-resscn 11008  ax-1cn 11009  ax-icn 11010  ax-addcl 11011  ax-addrcl 11012  ax-mulcl 11013  ax-mulrcl 11014  ax-mulcom 11015  ax-addass 11016  ax-mulass 11017  ax-distr 11018  ax-i2m1 11019  ax-1ne0 11020  ax-1rid 11021  ax-rnegex 11022  ax-rrecex 11023  ax-cnre 11024  ax-pre-lttri 11025  ax-pre-lttrn 11026  ax-pre-ltadd 11027  ax-pre-mulgt0 11028  ax-pre-sup 11029  ax-addf 11030  ax-mulf 11031
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3350  df-reu 3351  df-rab 3405  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3916  df-nul 4268  df-if 4472  df-pw 4547  df-sn 4572  df-pr 4574  df-tp 4576  df-op 4578  df-uni 4851  df-int 4893  df-iun 4939  df-iin 4940  df-br 5088  df-opab 5150  df-mpt 5171  df-tr 5205  df-id 5507  df-eprel 5513  df-po 5521  df-so 5522  df-fr 5563  df-se 5564  df-we 5565  df-xp 5614  df-rel 5615  df-cnv 5616  df-co 5617  df-dm 5618  df-rn 5619  df-res 5620  df-ima 5621  df-pred 6225  df-ord 6292  df-on 6293  df-lim 6294  df-suc 6295  df-iota 6418  df-fun 6468  df-fn 6469  df-f 6470  df-f1 6471  df-fo 6472  df-f1o 6473  df-fv 6474  df-isom 6475  df-riota 7274  df-ov 7320  df-oprab 7321  df-mpo 7322  df-of 7575  df-om 7760  df-1st 7878  df-2nd 7879  df-supp 8027  df-frecs 8146  df-wrecs 8177  df-recs 8251  df-rdg 8290  df-1o 8346  df-2o 8347  df-er 8548  df-map 8667  df-pm 8668  df-ixp 8736  df-en 8784  df-dom 8785  df-sdom 8786  df-fin 8787  df-fsupp 9206  df-fi 9247  df-sup 9278  df-inf 9279  df-oi 9346  df-card 9775  df-pnf 11091  df-mnf 11092  df-xr 11093  df-ltxr 11094  df-le 11095  df-sub 11287  df-neg 11288  df-div 11713  df-nn 12054  df-2 12116  df-3 12117  df-4 12118  df-5 12119  df-6 12120  df-7 12121  df-8 12122  df-9 12123  df-n0 12314  df-z 12400  df-dec 12518  df-uz 12663  df-q 12769  df-rp 12811  df-xneg 12928  df-xadd 12929  df-xmul 12930  df-ioo 13163  df-ioc 13164  df-ico 13165  df-icc 13166  df-fz 13320  df-fzo 13463  df-fl 13592  df-mod 13670  df-seq 13802  df-exp 13863  df-fac 14068  df-bc 14097  df-hash 14125  df-shft 14857  df-cj 14889  df-re 14890  df-im 14891  df-sqrt 15025  df-abs 15026  df-limsup 15259  df-clim 15276  df-rlim 15277  df-sum 15477  df-ef 15856  df-sin 15858  df-cos 15859  df-pi 15861  df-struct 16925  df-sets 16942  df-slot 16960  df-ndx 16972  df-base 16990  df-ress 17019  df-plusg 17052  df-mulr 17053  df-starv 17054  df-sca 17055  df-vsca 17056  df-ip 17057  df-tset 17058  df-ple 17059  df-ds 17061  df-unif 17062  df-hom 17063  df-cco 17064  df-rest 17210  df-topn 17211  df-0g 17229  df-gsum 17230  df-topgen 17231  df-pt 17232  df-prds 17235  df-xrs 17290  df-qtop 17295  df-imas 17296  df-xps 17298  df-mre 17372  df-mrc 17373  df-acs 17375  df-mgm 18403  df-sgrp 18452  df-mnd 18463  df-submnd 18508  df-mulg 18777  df-cntz 18999  df-cmn 19463  df-psmet 20672  df-xmet 20673  df-met 20674  df-bl 20675  df-mopn 20676  df-fbas 20677  df-fg 20678  df-cnfld 20681  df-top 22126  df-topon 22143  df-topsp 22165  df-bases 22179  df-cld 22253  df-ntr 22254  df-cls 22255  df-nei 22332  df-lp 22370  df-perf 22371  df-cn 22461  df-cnp 22462  df-haus 22549  df-tx 22796  df-hmeo 22989  df-fil 23080  df-fm 23172  df-flim 23173  df-flf 23174  df-xms 23556  df-ms 23557  df-tms 23558  df-cncf 24124  df-limc 25113  df-dv 25114  df-log 25795
This theorem is referenced by:  ang180lem5  26046
  Copyright terms: Public domain W3C validator