Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > trclfvg | Structured version Visualization version GIF version |
Description: The value of the transitive closure of a relation is a superset or (for proper classes) the empty set. (Contributed by RP, 8-May-2020.) |
Ref | Expression |
---|---|
trclfvg | ⊢ (𝑅 ⊆ (t+‘𝑅) ∨ (t+‘𝑅) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exmid 893 | . 2 ⊢ (𝑅 ∈ V ∨ ¬ 𝑅 ∈ V) | |
2 | trclfvlb 14819 | . . 3 ⊢ (𝑅 ∈ V → 𝑅 ⊆ (t+‘𝑅)) | |
3 | fvprc 6822 | . . 3 ⊢ (¬ 𝑅 ∈ V → (t+‘𝑅) = ∅) | |
4 | 2, 3 | orim12i 907 | . 2 ⊢ ((𝑅 ∈ V ∨ ¬ 𝑅 ∈ V) → (𝑅 ⊆ (t+‘𝑅) ∨ (t+‘𝑅) = ∅)) |
5 | 1, 4 | ax-mp 5 | 1 ⊢ (𝑅 ⊆ (t+‘𝑅) ∨ (t+‘𝑅) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∨ wo 845 = wceq 1541 ∈ wcel 2106 Vcvv 3442 ⊆ wss 3902 ∅c0 4274 ‘cfv 6484 t+ctcl 14796 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-sep 5248 ax-nul 5255 ax-pow 5313 ax-pr 5377 ax-un 7655 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3405 df-v 3444 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4275 df-if 4479 df-pw 4554 df-sn 4579 df-pr 4581 df-op 4585 df-uni 4858 df-int 4900 df-br 5098 df-opab 5160 df-mpt 5181 df-id 5523 df-xp 5631 df-rel 5632 df-cnv 5633 df-co 5634 df-dm 5635 df-rn 5636 df-res 5637 df-iota 6436 df-fun 6486 df-fv 6492 df-trcl 14798 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |