MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trclfvg Structured version   Visualization version   GIF version

Theorem trclfvg 14962
Description: The value of the transitive closure of a relation is a superset or (for proper classes) the empty set. (Contributed by RP, 8-May-2020.)
Assertion
Ref Expression
trclfvg (𝑅 ⊆ (t+‘𝑅) ∨ (t+‘𝑅) = ∅)

Proof of Theorem trclfvg
StepHypRef Expression
1 exmid 894 . 2 (𝑅 ∈ V ∨ ¬ 𝑅 ∈ V)
2 trclfvlb 14955 . . 3 (𝑅 ∈ V → 𝑅 ⊆ (t+‘𝑅))
3 fvprc 6884 . . 3 𝑅 ∈ V → (t+‘𝑅) = ∅)
42, 3orim12i 908 . 2 ((𝑅 ∈ V ∨ ¬ 𝑅 ∈ V) → (𝑅 ⊆ (t+‘𝑅) ∨ (t+‘𝑅) = ∅))
51, 4ax-mp 5 1 (𝑅 ⊆ (t+‘𝑅) ∨ (t+‘𝑅) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wo 846   = wceq 1542  wcel 2107  Vcvv 3475  wss 3949  c0 4323  cfv 6544  t+ctcl 14932
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-iota 6496  df-fun 6546  df-fv 6552  df-trcl 14934
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator