MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrinvcl Structured version   Visualization version   GIF version

Theorem dchrinvcl 27170
Description: Closure of the group inverse operation on Dirichlet characters. (Contributed by Mario Carneiro, 19-Apr-2016.)
Hypotheses
Ref Expression
dchrmhm.g 𝐺 = (DChr‘𝑁)
dchrmhm.z 𝑍 = (ℤ/nℤ‘𝑁)
dchrmhm.b 𝐷 = (Base‘𝐺)
dchrn0.b 𝐵 = (Base‘𝑍)
dchrn0.u 𝑈 = (Unit‘𝑍)
dchr1cl.o 1 = (𝑘𝐵 ↦ if(𝑘𝑈, 1, 0))
dchrmullid.t · = (+g𝐺)
dchrmullid.x (𝜑𝑋𝐷)
dchrinvcl.n 𝐾 = (𝑘𝐵 ↦ if(𝑘𝑈, (1 / (𝑋𝑘)), 0))
Assertion
Ref Expression
dchrinvcl (𝜑 → (𝐾𝐷 ∧ (𝐾 · 𝑋) = 1 ))
Distinct variable groups:   𝐵,𝑘   𝑈,𝑘   𝑘,𝑁   𝜑,𝑘   𝑘,𝑋   𝑘,𝑍
Allowed substitution hints:   𝐷(𝑘)   · (𝑘)   1 (𝑘)   𝐺(𝑘)   𝐾(𝑘)

Proof of Theorem dchrinvcl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dchrinvcl.n . . 3 𝐾 = (𝑘𝐵 ↦ if(𝑘𝑈, (1 / (𝑋𝑘)), 0))
2 dchrmhm.g . . . 4 𝐺 = (DChr‘𝑁)
3 dchrmhm.z . . . 4 𝑍 = (ℤ/nℤ‘𝑁)
4 dchrn0.b . . . 4 𝐵 = (Base‘𝑍)
5 dchrn0.u . . . 4 𝑈 = (Unit‘𝑍)
6 dchrmullid.x . . . . 5 (𝜑𝑋𝐷)
7 dchrmhm.b . . . . . 6 𝐷 = (Base‘𝐺)
82, 7dchrrcl 27157 . . . . 5 (𝑋𝐷𝑁 ∈ ℕ)
96, 8syl 17 . . . 4 (𝜑𝑁 ∈ ℕ)
10 fveq2 6860 . . . . 5 (𝑘 = 𝑥 → (𝑋𝑘) = (𝑋𝑥))
1110oveq2d 7405 . . . 4 (𝑘 = 𝑥 → (1 / (𝑋𝑘)) = (1 / (𝑋𝑥)))
12 fveq2 6860 . . . . 5 (𝑘 = 𝑦 → (𝑋𝑘) = (𝑋𝑦))
1312oveq2d 7405 . . . 4 (𝑘 = 𝑦 → (1 / (𝑋𝑘)) = (1 / (𝑋𝑦)))
14 fveq2 6860 . . . . 5 (𝑘 = (𝑥(.r𝑍)𝑦) → (𝑋𝑘) = (𝑋‘(𝑥(.r𝑍)𝑦)))
1514oveq2d 7405 . . . 4 (𝑘 = (𝑥(.r𝑍)𝑦) → (1 / (𝑋𝑘)) = (1 / (𝑋‘(𝑥(.r𝑍)𝑦))))
16 fveq2 6860 . . . . 5 (𝑘 = (1r𝑍) → (𝑋𝑘) = (𝑋‘(1r𝑍)))
1716oveq2d 7405 . . . 4 (𝑘 = (1r𝑍) → (1 / (𝑋𝑘)) = (1 / (𝑋‘(1r𝑍))))
182, 3, 7, 4, 6dchrf 27159 . . . . . 6 (𝜑𝑋:𝐵⟶ℂ)
194, 5unitss 20291 . . . . . . 7 𝑈𝐵
2019sseli 3944 . . . . . 6 (𝑘𝑈𝑘𝐵)
21 ffvelcdm 7055 . . . . . 6 ((𝑋:𝐵⟶ℂ ∧ 𝑘𝐵) → (𝑋𝑘) ∈ ℂ)
2218, 20, 21syl2an 596 . . . . 5 ((𝜑𝑘𝑈) → (𝑋𝑘) ∈ ℂ)
23 simpr 484 . . . . . 6 ((𝜑𝑘𝑈) → 𝑘𝑈)
246adantr 480 . . . . . . 7 ((𝜑𝑘𝑈) → 𝑋𝐷)
2520adantl 481 . . . . . . 7 ((𝜑𝑘𝑈) → 𝑘𝐵)
262, 3, 7, 4, 5, 24, 25dchrn0 27167 . . . . . 6 ((𝜑𝑘𝑈) → ((𝑋𝑘) ≠ 0 ↔ 𝑘𝑈))
2723, 26mpbird 257 . . . . 5 ((𝜑𝑘𝑈) → (𝑋𝑘) ≠ 0)
2822, 27reccld 11957 . . . 4 ((𝜑𝑘𝑈) → (1 / (𝑋𝑘)) ∈ ℂ)
29 1t1e1 12349 . . . . . . . 8 (1 · 1) = 1
3029eqcomi 2739 . . . . . . 7 1 = (1 · 1)
3130a1i 11 . . . . . 6 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → 1 = (1 · 1))
322, 3, 7dchrmhm 27158 . . . . . . . 8 𝐷 ⊆ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))
336adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → 𝑋𝐷)
3432, 33sselid 3946 . . . . . . 7 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)))
35 simprl 770 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → 𝑥𝑈)
3619, 35sselid 3946 . . . . . . 7 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → 𝑥𝐵)
37 simprr 772 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → 𝑦𝑈)
3819, 37sselid 3946 . . . . . . 7 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → 𝑦𝐵)
39 eqid 2730 . . . . . . . . 9 (mulGrp‘𝑍) = (mulGrp‘𝑍)
4039, 4mgpbas 20060 . . . . . . . 8 𝐵 = (Base‘(mulGrp‘𝑍))
41 eqid 2730 . . . . . . . . 9 (.r𝑍) = (.r𝑍)
4239, 41mgpplusg 20059 . . . . . . . 8 (.r𝑍) = (+g‘(mulGrp‘𝑍))
43 eqid 2730 . . . . . . . . 9 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
44 cnfldmul 21278 . . . . . . . . 9 · = (.r‘ℂfld)
4543, 44mgpplusg 20059 . . . . . . . 8 · = (+g‘(mulGrp‘ℂfld))
4640, 42, 45mhmlin 18726 . . . . . . 7 ((𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ 𝑥𝐵𝑦𝐵) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)))
4734, 36, 38, 46syl3anc 1373 . . . . . 6 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)))
4831, 47oveq12d 7407 . . . . 5 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → (1 / (𝑋‘(𝑥(.r𝑍)𝑦))) = ((1 · 1) / ((𝑋𝑥) · (𝑋𝑦))))
49 1cnd 11175 . . . . . 6 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → 1 ∈ ℂ)
5018adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → 𝑋:𝐵⟶ℂ)
5150, 36ffvelcdmd 7059 . . . . . 6 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → (𝑋𝑥) ∈ ℂ)
5250, 38ffvelcdmd 7059 . . . . . 6 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → (𝑋𝑦) ∈ ℂ)
532, 3, 7, 4, 5, 33, 36dchrn0 27167 . . . . . . 7 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → ((𝑋𝑥) ≠ 0 ↔ 𝑥𝑈))
5435, 53mpbird 257 . . . . . 6 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → (𝑋𝑥) ≠ 0)
552, 3, 7, 4, 5, 33, 38dchrn0 27167 . . . . . . 7 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → ((𝑋𝑦) ≠ 0 ↔ 𝑦𝑈))
5637, 55mpbird 257 . . . . . 6 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → (𝑋𝑦) ≠ 0)
5749, 51, 49, 52, 54, 56divmuldivd 12005 . . . . 5 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → ((1 / (𝑋𝑥)) · (1 / (𝑋𝑦))) = ((1 · 1) / ((𝑋𝑥) · (𝑋𝑦))))
5848, 57eqtr4d 2768 . . . 4 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → (1 / (𝑋‘(𝑥(.r𝑍)𝑦))) = ((1 / (𝑋𝑥)) · (1 / (𝑋𝑦))))
5932, 6sselid 3946 . . . . . . 7 (𝜑𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)))
60 eqid 2730 . . . . . . . . 9 (1r𝑍) = (1r𝑍)
6139, 60ringidval 20098 . . . . . . . 8 (1r𝑍) = (0g‘(mulGrp‘𝑍))
62 cnfld1 21311 . . . . . . . . 9 1 = (1r‘ℂfld)
6343, 62ringidval 20098 . . . . . . . 8 1 = (0g‘(mulGrp‘ℂfld))
6461, 63mhm0 18727 . . . . . . 7 (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) → (𝑋‘(1r𝑍)) = 1)
6559, 64syl 17 . . . . . 6 (𝜑 → (𝑋‘(1r𝑍)) = 1)
6665oveq2d 7405 . . . . 5 (𝜑 → (1 / (𝑋‘(1r𝑍))) = (1 / 1))
67 1div1e1 11879 . . . . 5 (1 / 1) = 1
6866, 67eqtrdi 2781 . . . 4 (𝜑 → (1 / (𝑋‘(1r𝑍))) = 1)
692, 3, 4, 5, 9, 7, 11, 13, 15, 17, 28, 58, 68dchrelbasd 27156 . . 3 (𝜑 → (𝑘𝐵 ↦ if(𝑘𝑈, (1 / (𝑋𝑘)), 0)) ∈ 𝐷)
701, 69eqeltrid 2833 . 2 (𝜑𝐾𝐷)
71 dchrmullid.t . . . 4 · = (+g𝐺)
722, 3, 7, 71, 70, 6dchrmul 27165 . . 3 (𝜑 → (𝐾 · 𝑋) = (𝐾f · 𝑋))
734fvexi 6874 . . . . . 6 𝐵 ∈ V
7473a1i 11 . . . . 5 (𝜑𝐵 ∈ V)
75 ovex 7422 . . . . . . 7 (1 / (𝑋𝑘)) ∈ V
76 c0ex 11174 . . . . . . 7 0 ∈ V
7775, 76ifex 4541 . . . . . 6 if(𝑘𝑈, (1 / (𝑋𝑘)), 0) ∈ V
7877a1i 11 . . . . 5 ((𝜑𝑘𝐵) → if(𝑘𝑈, (1 / (𝑋𝑘)), 0) ∈ V)
7918ffvelcdmda 7058 . . . . 5 ((𝜑𝑘𝐵) → (𝑋𝑘) ∈ ℂ)
801a1i 11 . . . . 5 (𝜑𝐾 = (𝑘𝐵 ↦ if(𝑘𝑈, (1 / (𝑋𝑘)), 0)))
8118feqmptd 6931 . . . . 5 (𝜑𝑋 = (𝑘𝐵 ↦ (𝑋𝑘)))
8274, 78, 79, 80, 81offval2 7675 . . . 4 (𝜑 → (𝐾f · 𝑋) = (𝑘𝐵 ↦ (if(𝑘𝑈, (1 / (𝑋𝑘)), 0) · (𝑋𝑘))))
83 dchr1cl.o . . . . 5 1 = (𝑘𝐵 ↦ if(𝑘𝑈, 1, 0))
84 ovif 7489 . . . . . . 7 (if(𝑘𝑈, (1 / (𝑋𝑘)), 0) · (𝑋𝑘)) = if(𝑘𝑈, ((1 / (𝑋𝑘)) · (𝑋𝑘)), (0 · (𝑋𝑘)))
8579adantr 480 . . . . . . . . . 10 (((𝜑𝑘𝐵) ∧ 𝑘𝑈) → (𝑋𝑘) ∈ ℂ)
866adantr 480 . . . . . . . . . . . 12 ((𝜑𝑘𝐵) → 𝑋𝐷)
87 simpr 484 . . . . . . . . . . . 12 ((𝜑𝑘𝐵) → 𝑘𝐵)
882, 3, 7, 4, 5, 86, 87dchrn0 27167 . . . . . . . . . . 11 ((𝜑𝑘𝐵) → ((𝑋𝑘) ≠ 0 ↔ 𝑘𝑈))
8988biimpar 477 . . . . . . . . . 10 (((𝜑𝑘𝐵) ∧ 𝑘𝑈) → (𝑋𝑘) ≠ 0)
9085, 89recid2d 11960 . . . . . . . . 9 (((𝜑𝑘𝐵) ∧ 𝑘𝑈) → ((1 / (𝑋𝑘)) · (𝑋𝑘)) = 1)
9190ifeq1da 4522 . . . . . . . 8 ((𝜑𝑘𝐵) → if(𝑘𝑈, ((1 / (𝑋𝑘)) · (𝑋𝑘)), (0 · (𝑋𝑘))) = if(𝑘𝑈, 1, (0 · (𝑋𝑘))))
9279mul02d 11378 . . . . . . . . 9 ((𝜑𝑘𝐵) → (0 · (𝑋𝑘)) = 0)
9392ifeq2d 4511 . . . . . . . 8 ((𝜑𝑘𝐵) → if(𝑘𝑈, 1, (0 · (𝑋𝑘))) = if(𝑘𝑈, 1, 0))
9491, 93eqtrd 2765 . . . . . . 7 ((𝜑𝑘𝐵) → if(𝑘𝑈, ((1 / (𝑋𝑘)) · (𝑋𝑘)), (0 · (𝑋𝑘))) = if(𝑘𝑈, 1, 0))
9584, 94eqtrid 2777 . . . . . 6 ((𝜑𝑘𝐵) → (if(𝑘𝑈, (1 / (𝑋𝑘)), 0) · (𝑋𝑘)) = if(𝑘𝑈, 1, 0))
9695mpteq2dva 5202 . . . . 5 (𝜑 → (𝑘𝐵 ↦ (if(𝑘𝑈, (1 / (𝑋𝑘)), 0) · (𝑋𝑘))) = (𝑘𝐵 ↦ if(𝑘𝑈, 1, 0)))
9783, 96eqtr4id 2784 . . . 4 (𝜑1 = (𝑘𝐵 ↦ (if(𝑘𝑈, (1 / (𝑋𝑘)), 0) · (𝑋𝑘))))
9882, 97eqtr4d 2768 . . 3 (𝜑 → (𝐾f · 𝑋) = 1 )
9972, 98eqtrd 2765 . 2 (𝜑 → (𝐾 · 𝑋) = 1 )
10070, 99jca 511 1 (𝜑 → (𝐾𝐷 ∧ (𝐾 · 𝑋) = 1 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2926  Vcvv 3450  ifcif 4490  cmpt 5190  wf 6509  cfv 6513  (class class class)co 7389  f cof 7653  cc 11072  0cc0 11074  1c1 11075   · cmul 11079   / cdiv 11841  cn 12187  Basecbs 17185  +gcplusg 17226  .rcmulr 17227   MndHom cmhm 18714  mulGrpcmgp 20055  1rcur 20096  Unitcui 20270  fldccnfld 21270  ℤ/nczn 21418  DChrcdchr 27149
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-cnex 11130  ax-resscn 11131  ax-1cn 11132  ax-icn 11133  ax-addcl 11134  ax-addrcl 11135  ax-mulcl 11136  ax-mulrcl 11137  ax-mulcom 11138  ax-addass 11139  ax-mulass 11140  ax-distr 11141  ax-i2m1 11142  ax-1ne0 11143  ax-1rid 11144  ax-rnegex 11145  ax-rrecex 11146  ax-cnre 11147  ax-pre-lttri 11148  ax-pre-lttrn 11149  ax-pre-ltadd 11150  ax-pre-mulgt0 11151  ax-addf 11153  ax-mulf 11154
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-tp 4596  df-op 4598  df-uni 4874  df-int 4913  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-of 7655  df-om 7845  df-1st 7970  df-2nd 7971  df-tpos 8207  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-1o 8436  df-er 8673  df-ec 8675  df-qs 8679  df-map 8803  df-en 8921  df-dom 8922  df-sdom 8923  df-fin 8924  df-sup 9399  df-inf 9400  df-pnf 11216  df-mnf 11217  df-xr 11218  df-ltxr 11219  df-le 11220  df-sub 11413  df-neg 11414  df-div 11842  df-nn 12188  df-2 12250  df-3 12251  df-4 12252  df-5 12253  df-6 12254  df-7 12255  df-8 12256  df-9 12257  df-n0 12449  df-z 12536  df-dec 12656  df-uz 12800  df-fz 13475  df-struct 17123  df-sets 17140  df-slot 17158  df-ndx 17170  df-base 17186  df-ress 17207  df-plusg 17239  df-mulr 17240  df-starv 17241  df-sca 17242  df-vsca 17243  df-ip 17244  df-tset 17245  df-ple 17246  df-ds 17248  df-unif 17249  df-0g 17410  df-imas 17477  df-qus 17478  df-mgm 18573  df-sgrp 18652  df-mnd 18668  df-mhm 18716  df-grp 18874  df-minusg 18875  df-sbg 18876  df-subg 19061  df-nsg 19062  df-eqg 19063  df-cmn 19718  df-abl 19719  df-mgp 20056  df-rng 20068  df-ur 20097  df-ring 20150  df-cring 20151  df-oppr 20252  df-dvdsr 20272  df-unit 20273  df-invr 20303  df-subrng 20461  df-subrg 20485  df-lmod 20774  df-lss 20844  df-lsp 20884  df-sra 21086  df-rgmod 21087  df-lidl 21124  df-rsp 21125  df-2idl 21166  df-cnfld 21271  df-zring 21363  df-zn 21422  df-dchr 27150
This theorem is referenced by:  dchrabl  27171
  Copyright terms: Public domain W3C validator