MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrinvcl Structured version   Visualization version   GIF version

Theorem dchrinvcl 27315
Description: Closure of the group inverse operation on Dirichlet characters. (Contributed by Mario Carneiro, 19-Apr-2016.)
Hypotheses
Ref Expression
dchrmhm.g 𝐺 = (DChr‘𝑁)
dchrmhm.z 𝑍 = (ℤ/nℤ‘𝑁)
dchrmhm.b 𝐷 = (Base‘𝐺)
dchrn0.b 𝐵 = (Base‘𝑍)
dchrn0.u 𝑈 = (Unit‘𝑍)
dchr1cl.o 1 = (𝑘𝐵 ↦ if(𝑘𝑈, 1, 0))
dchrmullid.t · = (+g𝐺)
dchrmullid.x (𝜑𝑋𝐷)
dchrinvcl.n 𝐾 = (𝑘𝐵 ↦ if(𝑘𝑈, (1 / (𝑋𝑘)), 0))
Assertion
Ref Expression
dchrinvcl (𝜑 → (𝐾𝐷 ∧ (𝐾 · 𝑋) = 1 ))
Distinct variable groups:   𝐵,𝑘   𝑈,𝑘   𝑘,𝑁   𝜑,𝑘   𝑘,𝑋   𝑘,𝑍
Allowed substitution hints:   𝐷(𝑘)   · (𝑘)   1 (𝑘)   𝐺(𝑘)   𝐾(𝑘)

Proof of Theorem dchrinvcl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dchrinvcl.n . . 3 𝐾 = (𝑘𝐵 ↦ if(𝑘𝑈, (1 / (𝑋𝑘)), 0))
2 dchrmhm.g . . . 4 𝐺 = (DChr‘𝑁)
3 dchrmhm.z . . . 4 𝑍 = (ℤ/nℤ‘𝑁)
4 dchrn0.b . . . 4 𝐵 = (Base‘𝑍)
5 dchrn0.u . . . 4 𝑈 = (Unit‘𝑍)
6 dchrmullid.x . . . . 5 (𝜑𝑋𝐷)
7 dchrmhm.b . . . . . 6 𝐷 = (Base‘𝐺)
82, 7dchrrcl 27302 . . . . 5 (𝑋𝐷𝑁 ∈ ℕ)
96, 8syl 17 . . . 4 (𝜑𝑁 ∈ ℕ)
10 fveq2 6920 . . . . 5 (𝑘 = 𝑥 → (𝑋𝑘) = (𝑋𝑥))
1110oveq2d 7464 . . . 4 (𝑘 = 𝑥 → (1 / (𝑋𝑘)) = (1 / (𝑋𝑥)))
12 fveq2 6920 . . . . 5 (𝑘 = 𝑦 → (𝑋𝑘) = (𝑋𝑦))
1312oveq2d 7464 . . . 4 (𝑘 = 𝑦 → (1 / (𝑋𝑘)) = (1 / (𝑋𝑦)))
14 fveq2 6920 . . . . 5 (𝑘 = (𝑥(.r𝑍)𝑦) → (𝑋𝑘) = (𝑋‘(𝑥(.r𝑍)𝑦)))
1514oveq2d 7464 . . . 4 (𝑘 = (𝑥(.r𝑍)𝑦) → (1 / (𝑋𝑘)) = (1 / (𝑋‘(𝑥(.r𝑍)𝑦))))
16 fveq2 6920 . . . . 5 (𝑘 = (1r𝑍) → (𝑋𝑘) = (𝑋‘(1r𝑍)))
1716oveq2d 7464 . . . 4 (𝑘 = (1r𝑍) → (1 / (𝑋𝑘)) = (1 / (𝑋‘(1r𝑍))))
182, 3, 7, 4, 6dchrf 27304 . . . . . 6 (𝜑𝑋:𝐵⟶ℂ)
194, 5unitss 20402 . . . . . . 7 𝑈𝐵
2019sseli 4004 . . . . . 6 (𝑘𝑈𝑘𝐵)
21 ffvelcdm 7115 . . . . . 6 ((𝑋:𝐵⟶ℂ ∧ 𝑘𝐵) → (𝑋𝑘) ∈ ℂ)
2218, 20, 21syl2an 595 . . . . 5 ((𝜑𝑘𝑈) → (𝑋𝑘) ∈ ℂ)
23 simpr 484 . . . . . 6 ((𝜑𝑘𝑈) → 𝑘𝑈)
246adantr 480 . . . . . . 7 ((𝜑𝑘𝑈) → 𝑋𝐷)
2520adantl 481 . . . . . . 7 ((𝜑𝑘𝑈) → 𝑘𝐵)
262, 3, 7, 4, 5, 24, 25dchrn0 27312 . . . . . 6 ((𝜑𝑘𝑈) → ((𝑋𝑘) ≠ 0 ↔ 𝑘𝑈))
2723, 26mpbird 257 . . . . 5 ((𝜑𝑘𝑈) → (𝑋𝑘) ≠ 0)
2822, 27reccld 12063 . . . 4 ((𝜑𝑘𝑈) → (1 / (𝑋𝑘)) ∈ ℂ)
29 1t1e1 12455 . . . . . . . 8 (1 · 1) = 1
3029eqcomi 2749 . . . . . . 7 1 = (1 · 1)
3130a1i 11 . . . . . 6 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → 1 = (1 · 1))
322, 3, 7dchrmhm 27303 . . . . . . . 8 𝐷 ⊆ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))
336adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → 𝑋𝐷)
3432, 33sselid 4006 . . . . . . 7 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)))
35 simprl 770 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → 𝑥𝑈)
3619, 35sselid 4006 . . . . . . 7 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → 𝑥𝐵)
37 simprr 772 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → 𝑦𝑈)
3819, 37sselid 4006 . . . . . . 7 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → 𝑦𝐵)
39 eqid 2740 . . . . . . . . 9 (mulGrp‘𝑍) = (mulGrp‘𝑍)
4039, 4mgpbas 20167 . . . . . . . 8 𝐵 = (Base‘(mulGrp‘𝑍))
41 eqid 2740 . . . . . . . . 9 (.r𝑍) = (.r𝑍)
4239, 41mgpplusg 20165 . . . . . . . 8 (.r𝑍) = (+g‘(mulGrp‘𝑍))
43 eqid 2740 . . . . . . . . 9 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
44 cnfldmul 21395 . . . . . . . . 9 · = (.r‘ℂfld)
4543, 44mgpplusg 20165 . . . . . . . 8 · = (+g‘(mulGrp‘ℂfld))
4640, 42, 45mhmlin 18828 . . . . . . 7 ((𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ 𝑥𝐵𝑦𝐵) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)))
4734, 36, 38, 46syl3anc 1371 . . . . . 6 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)))
4831, 47oveq12d 7466 . . . . 5 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → (1 / (𝑋‘(𝑥(.r𝑍)𝑦))) = ((1 · 1) / ((𝑋𝑥) · (𝑋𝑦))))
49 1cnd 11285 . . . . . 6 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → 1 ∈ ℂ)
5018adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → 𝑋:𝐵⟶ℂ)
5150, 36ffvelcdmd 7119 . . . . . 6 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → (𝑋𝑥) ∈ ℂ)
5250, 38ffvelcdmd 7119 . . . . . 6 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → (𝑋𝑦) ∈ ℂ)
532, 3, 7, 4, 5, 33, 36dchrn0 27312 . . . . . . 7 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → ((𝑋𝑥) ≠ 0 ↔ 𝑥𝑈))
5435, 53mpbird 257 . . . . . 6 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → (𝑋𝑥) ≠ 0)
552, 3, 7, 4, 5, 33, 38dchrn0 27312 . . . . . . 7 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → ((𝑋𝑦) ≠ 0 ↔ 𝑦𝑈))
5637, 55mpbird 257 . . . . . 6 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → (𝑋𝑦) ≠ 0)
5749, 51, 49, 52, 54, 56divmuldivd 12111 . . . . 5 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → ((1 / (𝑋𝑥)) · (1 / (𝑋𝑦))) = ((1 · 1) / ((𝑋𝑥) · (𝑋𝑦))))
5848, 57eqtr4d 2783 . . . 4 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → (1 / (𝑋‘(𝑥(.r𝑍)𝑦))) = ((1 / (𝑋𝑥)) · (1 / (𝑋𝑦))))
5932, 6sselid 4006 . . . . . . 7 (𝜑𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)))
60 eqid 2740 . . . . . . . . 9 (1r𝑍) = (1r𝑍)
6139, 60ringidval 20210 . . . . . . . 8 (1r𝑍) = (0g‘(mulGrp‘𝑍))
62 cnfld1 21429 . . . . . . . . 9 1 = (1r‘ℂfld)
6343, 62ringidval 20210 . . . . . . . 8 1 = (0g‘(mulGrp‘ℂfld))
6461, 63mhm0 18829 . . . . . . 7 (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) → (𝑋‘(1r𝑍)) = 1)
6559, 64syl 17 . . . . . 6 (𝜑 → (𝑋‘(1r𝑍)) = 1)
6665oveq2d 7464 . . . . 5 (𝜑 → (1 / (𝑋‘(1r𝑍))) = (1 / 1))
67 1div1e1 11985 . . . . 5 (1 / 1) = 1
6866, 67eqtrdi 2796 . . . 4 (𝜑 → (1 / (𝑋‘(1r𝑍))) = 1)
692, 3, 4, 5, 9, 7, 11, 13, 15, 17, 28, 58, 68dchrelbasd 27301 . . 3 (𝜑 → (𝑘𝐵 ↦ if(𝑘𝑈, (1 / (𝑋𝑘)), 0)) ∈ 𝐷)
701, 69eqeltrid 2848 . 2 (𝜑𝐾𝐷)
71 dchrmullid.t . . . 4 · = (+g𝐺)
722, 3, 7, 71, 70, 6dchrmul 27310 . . 3 (𝜑 → (𝐾 · 𝑋) = (𝐾f · 𝑋))
734fvexi 6934 . . . . . 6 𝐵 ∈ V
7473a1i 11 . . . . 5 (𝜑𝐵 ∈ V)
75 ovex 7481 . . . . . . 7 (1 / (𝑋𝑘)) ∈ V
76 c0ex 11284 . . . . . . 7 0 ∈ V
7775, 76ifex 4598 . . . . . 6 if(𝑘𝑈, (1 / (𝑋𝑘)), 0) ∈ V
7877a1i 11 . . . . 5 ((𝜑𝑘𝐵) → if(𝑘𝑈, (1 / (𝑋𝑘)), 0) ∈ V)
7918ffvelcdmda 7118 . . . . 5 ((𝜑𝑘𝐵) → (𝑋𝑘) ∈ ℂ)
801a1i 11 . . . . 5 (𝜑𝐾 = (𝑘𝐵 ↦ if(𝑘𝑈, (1 / (𝑋𝑘)), 0)))
8118feqmptd 6990 . . . . 5 (𝜑𝑋 = (𝑘𝐵 ↦ (𝑋𝑘)))
8274, 78, 79, 80, 81offval2 7734 . . . 4 (𝜑 → (𝐾f · 𝑋) = (𝑘𝐵 ↦ (if(𝑘𝑈, (1 / (𝑋𝑘)), 0) · (𝑋𝑘))))
83 dchr1cl.o . . . . 5 1 = (𝑘𝐵 ↦ if(𝑘𝑈, 1, 0))
84 ovif 7548 . . . . . . 7 (if(𝑘𝑈, (1 / (𝑋𝑘)), 0) · (𝑋𝑘)) = if(𝑘𝑈, ((1 / (𝑋𝑘)) · (𝑋𝑘)), (0 · (𝑋𝑘)))
8579adantr 480 . . . . . . . . . 10 (((𝜑𝑘𝐵) ∧ 𝑘𝑈) → (𝑋𝑘) ∈ ℂ)
866adantr 480 . . . . . . . . . . . 12 ((𝜑𝑘𝐵) → 𝑋𝐷)
87 simpr 484 . . . . . . . . . . . 12 ((𝜑𝑘𝐵) → 𝑘𝐵)
882, 3, 7, 4, 5, 86, 87dchrn0 27312 . . . . . . . . . . 11 ((𝜑𝑘𝐵) → ((𝑋𝑘) ≠ 0 ↔ 𝑘𝑈))
8988biimpar 477 . . . . . . . . . 10 (((𝜑𝑘𝐵) ∧ 𝑘𝑈) → (𝑋𝑘) ≠ 0)
9085, 89recid2d 12066 . . . . . . . . 9 (((𝜑𝑘𝐵) ∧ 𝑘𝑈) → ((1 / (𝑋𝑘)) · (𝑋𝑘)) = 1)
9190ifeq1da 4579 . . . . . . . 8 ((𝜑𝑘𝐵) → if(𝑘𝑈, ((1 / (𝑋𝑘)) · (𝑋𝑘)), (0 · (𝑋𝑘))) = if(𝑘𝑈, 1, (0 · (𝑋𝑘))))
9279mul02d 11488 . . . . . . . . 9 ((𝜑𝑘𝐵) → (0 · (𝑋𝑘)) = 0)
9392ifeq2d 4568 . . . . . . . 8 ((𝜑𝑘𝐵) → if(𝑘𝑈, 1, (0 · (𝑋𝑘))) = if(𝑘𝑈, 1, 0))
9491, 93eqtrd 2780 . . . . . . 7 ((𝜑𝑘𝐵) → if(𝑘𝑈, ((1 / (𝑋𝑘)) · (𝑋𝑘)), (0 · (𝑋𝑘))) = if(𝑘𝑈, 1, 0))
9584, 94eqtrid 2792 . . . . . 6 ((𝜑𝑘𝐵) → (if(𝑘𝑈, (1 / (𝑋𝑘)), 0) · (𝑋𝑘)) = if(𝑘𝑈, 1, 0))
9695mpteq2dva 5266 . . . . 5 (𝜑 → (𝑘𝐵 ↦ (if(𝑘𝑈, (1 / (𝑋𝑘)), 0) · (𝑋𝑘))) = (𝑘𝐵 ↦ if(𝑘𝑈, 1, 0)))
9783, 96eqtr4id 2799 . . . 4 (𝜑1 = (𝑘𝐵 ↦ (if(𝑘𝑈, (1 / (𝑋𝑘)), 0) · (𝑋𝑘))))
9882, 97eqtr4d 2783 . . 3 (𝜑 → (𝐾f · 𝑋) = 1 )
9972, 98eqtrd 2780 . 2 (𝜑 → (𝐾 · 𝑋) = 1 )
10070, 99jca 511 1 (𝜑 → (𝐾𝐷 ∧ (𝐾 · 𝑋) = 1 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wne 2946  Vcvv 3488  ifcif 4548  cmpt 5249  wf 6569  cfv 6573  (class class class)co 7448  f cof 7712  cc 11182  0cc0 11184  1c1 11185   · cmul 11189   / cdiv 11947  cn 12293  Basecbs 17258  +gcplusg 17311  .rcmulr 17312   MndHom cmhm 18816  mulGrpcmgp 20161  1rcur 20208  Unitcui 20381  fldccnfld 21387  ℤ/nczn 21536  DChrcdchr 27294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-addf 11263  ax-mulf 11264
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-tpos 8267  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-ec 8765  df-qs 8769  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-fz 13568  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-0g 17501  df-imas 17568  df-qus 17569  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-mhm 18818  df-grp 18976  df-minusg 18977  df-sbg 18978  df-subg 19163  df-nsg 19164  df-eqg 19165  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-cring 20263  df-oppr 20360  df-dvdsr 20383  df-unit 20384  df-invr 20414  df-subrng 20572  df-subrg 20597  df-lmod 20882  df-lss 20953  df-lsp 20993  df-sra 21195  df-rgmod 21196  df-lidl 21241  df-rsp 21242  df-2idl 21283  df-cnfld 21388  df-zring 21481  df-zn 21540  df-dchr 27295
This theorem is referenced by:  dchrabl  27316
  Copyright terms: Public domain W3C validator