MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrinvcl Structured version   Visualization version   GIF version

Theorem dchrinvcl 27231
Description: Closure of the group inverse operation on Dirichlet characters. (Contributed by Mario Carneiro, 19-Apr-2016.)
Hypotheses
Ref Expression
dchrmhm.g 𝐺 = (DChr‘𝑁)
dchrmhm.z 𝑍 = (ℤ/nℤ‘𝑁)
dchrmhm.b 𝐷 = (Base‘𝐺)
dchrn0.b 𝐵 = (Base‘𝑍)
dchrn0.u 𝑈 = (Unit‘𝑍)
dchr1cl.o 1 = (𝑘𝐵 ↦ if(𝑘𝑈, 1, 0))
dchrmullid.t · = (+g𝐺)
dchrmullid.x (𝜑𝑋𝐷)
dchrinvcl.n 𝐾 = (𝑘𝐵 ↦ if(𝑘𝑈, (1 / (𝑋𝑘)), 0))
Assertion
Ref Expression
dchrinvcl (𝜑 → (𝐾𝐷 ∧ (𝐾 · 𝑋) = 1 ))
Distinct variable groups:   𝐵,𝑘   𝑈,𝑘   𝑘,𝑁   𝜑,𝑘   𝑘,𝑋   𝑘,𝑍
Allowed substitution hints:   𝐷(𝑘)   · (𝑘)   1 (𝑘)   𝐺(𝑘)   𝐾(𝑘)

Proof of Theorem dchrinvcl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dchrinvcl.n . . 3 𝐾 = (𝑘𝐵 ↦ if(𝑘𝑈, (1 / (𝑋𝑘)), 0))
2 dchrmhm.g . . . 4 𝐺 = (DChr‘𝑁)
3 dchrmhm.z . . . 4 𝑍 = (ℤ/nℤ‘𝑁)
4 dchrn0.b . . . 4 𝐵 = (Base‘𝑍)
5 dchrn0.u . . . 4 𝑈 = (Unit‘𝑍)
6 dchrmullid.x . . . . 5 (𝜑𝑋𝐷)
7 dchrmhm.b . . . . . 6 𝐷 = (Base‘𝐺)
82, 7dchrrcl 27218 . . . . 5 (𝑋𝐷𝑁 ∈ ℕ)
96, 8syl 17 . . . 4 (𝜑𝑁 ∈ ℕ)
10 fveq2 6896 . . . . 5 (𝑘 = 𝑥 → (𝑋𝑘) = (𝑋𝑥))
1110oveq2d 7435 . . . 4 (𝑘 = 𝑥 → (1 / (𝑋𝑘)) = (1 / (𝑋𝑥)))
12 fveq2 6896 . . . . 5 (𝑘 = 𝑦 → (𝑋𝑘) = (𝑋𝑦))
1312oveq2d 7435 . . . 4 (𝑘 = 𝑦 → (1 / (𝑋𝑘)) = (1 / (𝑋𝑦)))
14 fveq2 6896 . . . . 5 (𝑘 = (𝑥(.r𝑍)𝑦) → (𝑋𝑘) = (𝑋‘(𝑥(.r𝑍)𝑦)))
1514oveq2d 7435 . . . 4 (𝑘 = (𝑥(.r𝑍)𝑦) → (1 / (𝑋𝑘)) = (1 / (𝑋‘(𝑥(.r𝑍)𝑦))))
16 fveq2 6896 . . . . 5 (𝑘 = (1r𝑍) → (𝑋𝑘) = (𝑋‘(1r𝑍)))
1716oveq2d 7435 . . . 4 (𝑘 = (1r𝑍) → (1 / (𝑋𝑘)) = (1 / (𝑋‘(1r𝑍))))
182, 3, 7, 4, 6dchrf 27220 . . . . . 6 (𝜑𝑋:𝐵⟶ℂ)
194, 5unitss 20327 . . . . . . 7 𝑈𝐵
2019sseli 3972 . . . . . 6 (𝑘𝑈𝑘𝐵)
21 ffvelcdm 7090 . . . . . 6 ((𝑋:𝐵⟶ℂ ∧ 𝑘𝐵) → (𝑋𝑘) ∈ ℂ)
2218, 20, 21syl2an 594 . . . . 5 ((𝜑𝑘𝑈) → (𝑋𝑘) ∈ ℂ)
23 simpr 483 . . . . . 6 ((𝜑𝑘𝑈) → 𝑘𝑈)
246adantr 479 . . . . . . 7 ((𝜑𝑘𝑈) → 𝑋𝐷)
2520adantl 480 . . . . . . 7 ((𝜑𝑘𝑈) → 𝑘𝐵)
262, 3, 7, 4, 5, 24, 25dchrn0 27228 . . . . . 6 ((𝜑𝑘𝑈) → ((𝑋𝑘) ≠ 0 ↔ 𝑘𝑈))
2723, 26mpbird 256 . . . . 5 ((𝜑𝑘𝑈) → (𝑋𝑘) ≠ 0)
2822, 27reccld 12016 . . . 4 ((𝜑𝑘𝑈) → (1 / (𝑋𝑘)) ∈ ℂ)
29 1t1e1 12407 . . . . . . . 8 (1 · 1) = 1
3029eqcomi 2734 . . . . . . 7 1 = (1 · 1)
3130a1i 11 . . . . . 6 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → 1 = (1 · 1))
322, 3, 7dchrmhm 27219 . . . . . . . 8 𝐷 ⊆ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))
336adantr 479 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → 𝑋𝐷)
3432, 33sselid 3974 . . . . . . 7 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)))
35 simprl 769 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → 𝑥𝑈)
3619, 35sselid 3974 . . . . . . 7 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → 𝑥𝐵)
37 simprr 771 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → 𝑦𝑈)
3819, 37sselid 3974 . . . . . . 7 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → 𝑦𝐵)
39 eqid 2725 . . . . . . . . 9 (mulGrp‘𝑍) = (mulGrp‘𝑍)
4039, 4mgpbas 20092 . . . . . . . 8 𝐵 = (Base‘(mulGrp‘𝑍))
41 eqid 2725 . . . . . . . . 9 (.r𝑍) = (.r𝑍)
4239, 41mgpplusg 20090 . . . . . . . 8 (.r𝑍) = (+g‘(mulGrp‘𝑍))
43 eqid 2725 . . . . . . . . 9 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
44 cnfldmul 21304 . . . . . . . . 9 · = (.r‘ℂfld)
4543, 44mgpplusg 20090 . . . . . . . 8 · = (+g‘(mulGrp‘ℂfld))
4640, 42, 45mhmlin 18753 . . . . . . 7 ((𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ 𝑥𝐵𝑦𝐵) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)))
4734, 36, 38, 46syl3anc 1368 . . . . . 6 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)))
4831, 47oveq12d 7437 . . . . 5 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → (1 / (𝑋‘(𝑥(.r𝑍)𝑦))) = ((1 · 1) / ((𝑋𝑥) · (𝑋𝑦))))
49 1cnd 11241 . . . . . 6 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → 1 ∈ ℂ)
5018adantr 479 . . . . . . 7 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → 𝑋:𝐵⟶ℂ)
5150, 36ffvelcdmd 7094 . . . . . 6 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → (𝑋𝑥) ∈ ℂ)
5250, 38ffvelcdmd 7094 . . . . . 6 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → (𝑋𝑦) ∈ ℂ)
532, 3, 7, 4, 5, 33, 36dchrn0 27228 . . . . . . 7 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → ((𝑋𝑥) ≠ 0 ↔ 𝑥𝑈))
5435, 53mpbird 256 . . . . . 6 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → (𝑋𝑥) ≠ 0)
552, 3, 7, 4, 5, 33, 38dchrn0 27228 . . . . . . 7 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → ((𝑋𝑦) ≠ 0 ↔ 𝑦𝑈))
5637, 55mpbird 256 . . . . . 6 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → (𝑋𝑦) ≠ 0)
5749, 51, 49, 52, 54, 56divmuldivd 12064 . . . . 5 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → ((1 / (𝑋𝑥)) · (1 / (𝑋𝑦))) = ((1 · 1) / ((𝑋𝑥) · (𝑋𝑦))))
5848, 57eqtr4d 2768 . . . 4 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → (1 / (𝑋‘(𝑥(.r𝑍)𝑦))) = ((1 / (𝑋𝑥)) · (1 / (𝑋𝑦))))
5932, 6sselid 3974 . . . . . . 7 (𝜑𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)))
60 eqid 2725 . . . . . . . . 9 (1r𝑍) = (1r𝑍)
6139, 60ringidval 20135 . . . . . . . 8 (1r𝑍) = (0g‘(mulGrp‘𝑍))
62 cnfld1 21338 . . . . . . . . 9 1 = (1r‘ℂfld)
6343, 62ringidval 20135 . . . . . . . 8 1 = (0g‘(mulGrp‘ℂfld))
6461, 63mhm0 18754 . . . . . . 7 (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) → (𝑋‘(1r𝑍)) = 1)
6559, 64syl 17 . . . . . 6 (𝜑 → (𝑋‘(1r𝑍)) = 1)
6665oveq2d 7435 . . . . 5 (𝜑 → (1 / (𝑋‘(1r𝑍))) = (1 / 1))
67 1div1e1 11937 . . . . 5 (1 / 1) = 1
6866, 67eqtrdi 2781 . . . 4 (𝜑 → (1 / (𝑋‘(1r𝑍))) = 1)
692, 3, 4, 5, 9, 7, 11, 13, 15, 17, 28, 58, 68dchrelbasd 27217 . . 3 (𝜑 → (𝑘𝐵 ↦ if(𝑘𝑈, (1 / (𝑋𝑘)), 0)) ∈ 𝐷)
701, 69eqeltrid 2829 . 2 (𝜑𝐾𝐷)
71 dchrmullid.t . . . 4 · = (+g𝐺)
722, 3, 7, 71, 70, 6dchrmul 27226 . . 3 (𝜑 → (𝐾 · 𝑋) = (𝐾f · 𝑋))
734fvexi 6910 . . . . . 6 𝐵 ∈ V
7473a1i 11 . . . . 5 (𝜑𝐵 ∈ V)
75 ovex 7452 . . . . . . 7 (1 / (𝑋𝑘)) ∈ V
76 c0ex 11240 . . . . . . 7 0 ∈ V
7775, 76ifex 4580 . . . . . 6 if(𝑘𝑈, (1 / (𝑋𝑘)), 0) ∈ V
7877a1i 11 . . . . 5 ((𝜑𝑘𝐵) → if(𝑘𝑈, (1 / (𝑋𝑘)), 0) ∈ V)
7918ffvelcdmda 7093 . . . . 5 ((𝜑𝑘𝐵) → (𝑋𝑘) ∈ ℂ)
801a1i 11 . . . . 5 (𝜑𝐾 = (𝑘𝐵 ↦ if(𝑘𝑈, (1 / (𝑋𝑘)), 0)))
8118feqmptd 6966 . . . . 5 (𝜑𝑋 = (𝑘𝐵 ↦ (𝑋𝑘)))
8274, 78, 79, 80, 81offval2 7705 . . . 4 (𝜑 → (𝐾f · 𝑋) = (𝑘𝐵 ↦ (if(𝑘𝑈, (1 / (𝑋𝑘)), 0) · (𝑋𝑘))))
83 dchr1cl.o . . . . 5 1 = (𝑘𝐵 ↦ if(𝑘𝑈, 1, 0))
84 ovif 7518 . . . . . . 7 (if(𝑘𝑈, (1 / (𝑋𝑘)), 0) · (𝑋𝑘)) = if(𝑘𝑈, ((1 / (𝑋𝑘)) · (𝑋𝑘)), (0 · (𝑋𝑘)))
8579adantr 479 . . . . . . . . . 10 (((𝜑𝑘𝐵) ∧ 𝑘𝑈) → (𝑋𝑘) ∈ ℂ)
866adantr 479 . . . . . . . . . . . 12 ((𝜑𝑘𝐵) → 𝑋𝐷)
87 simpr 483 . . . . . . . . . . . 12 ((𝜑𝑘𝐵) → 𝑘𝐵)
882, 3, 7, 4, 5, 86, 87dchrn0 27228 . . . . . . . . . . 11 ((𝜑𝑘𝐵) → ((𝑋𝑘) ≠ 0 ↔ 𝑘𝑈))
8988biimpar 476 . . . . . . . . . 10 (((𝜑𝑘𝐵) ∧ 𝑘𝑈) → (𝑋𝑘) ≠ 0)
9085, 89recid2d 12019 . . . . . . . . 9 (((𝜑𝑘𝐵) ∧ 𝑘𝑈) → ((1 / (𝑋𝑘)) · (𝑋𝑘)) = 1)
9190ifeq1da 4561 . . . . . . . 8 ((𝜑𝑘𝐵) → if(𝑘𝑈, ((1 / (𝑋𝑘)) · (𝑋𝑘)), (0 · (𝑋𝑘))) = if(𝑘𝑈, 1, (0 · (𝑋𝑘))))
9279mul02d 11444 . . . . . . . . 9 ((𝜑𝑘𝐵) → (0 · (𝑋𝑘)) = 0)
9392ifeq2d 4550 . . . . . . . 8 ((𝜑𝑘𝐵) → if(𝑘𝑈, 1, (0 · (𝑋𝑘))) = if(𝑘𝑈, 1, 0))
9491, 93eqtrd 2765 . . . . . . 7 ((𝜑𝑘𝐵) → if(𝑘𝑈, ((1 / (𝑋𝑘)) · (𝑋𝑘)), (0 · (𝑋𝑘))) = if(𝑘𝑈, 1, 0))
9584, 94eqtrid 2777 . . . . . 6 ((𝜑𝑘𝐵) → (if(𝑘𝑈, (1 / (𝑋𝑘)), 0) · (𝑋𝑘)) = if(𝑘𝑈, 1, 0))
9695mpteq2dva 5249 . . . . 5 (𝜑 → (𝑘𝐵 ↦ (if(𝑘𝑈, (1 / (𝑋𝑘)), 0) · (𝑋𝑘))) = (𝑘𝐵 ↦ if(𝑘𝑈, 1, 0)))
9783, 96eqtr4id 2784 . . . 4 (𝜑1 = (𝑘𝐵 ↦ (if(𝑘𝑈, (1 / (𝑋𝑘)), 0) · (𝑋𝑘))))
9882, 97eqtr4d 2768 . . 3 (𝜑 → (𝐾f · 𝑋) = 1 )
9972, 98eqtrd 2765 . 2 (𝜑 → (𝐾 · 𝑋) = 1 )
10070, 99jca 510 1 (𝜑 → (𝐾𝐷 ∧ (𝐾 · 𝑋) = 1 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  wne 2929  Vcvv 3461  ifcif 4530  cmpt 5232  wf 6545  cfv 6549  (class class class)co 7419  f cof 7683  cc 11138  0cc0 11140  1c1 11141   · cmul 11145   / cdiv 11903  cn 12245  Basecbs 17183  +gcplusg 17236  .rcmulr 17237   MndHom cmhm 18741  mulGrpcmgp 20086  1rcur 20133  Unitcui 20306  fldccnfld 21296  ℤ/nczn 21445  DChrcdchr 27210
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217  ax-addf 11219  ax-mulf 11220
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4910  df-int 4951  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-of 7685  df-om 7872  df-1st 7994  df-2nd 7995  df-tpos 8232  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-er 8725  df-ec 8727  df-qs 8731  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9467  df-inf 9468  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-div 11904  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12506  df-z 12592  df-dec 12711  df-uz 12856  df-fz 13520  df-struct 17119  df-sets 17136  df-slot 17154  df-ndx 17166  df-base 17184  df-ress 17213  df-plusg 17249  df-mulr 17250  df-starv 17251  df-sca 17252  df-vsca 17253  df-ip 17254  df-tset 17255  df-ple 17256  df-ds 17258  df-unif 17259  df-0g 17426  df-imas 17493  df-qus 17494  df-mgm 18603  df-sgrp 18682  df-mnd 18698  df-mhm 18743  df-grp 18901  df-minusg 18902  df-sbg 18903  df-subg 19086  df-nsg 19087  df-eqg 19088  df-cmn 19749  df-abl 19750  df-mgp 20087  df-rng 20105  df-ur 20134  df-ring 20187  df-cring 20188  df-oppr 20285  df-dvdsr 20308  df-unit 20309  df-invr 20339  df-subrng 20495  df-subrg 20520  df-lmod 20757  df-lss 20828  df-lsp 20868  df-sra 21070  df-rgmod 21071  df-lidl 21116  df-rsp 21117  df-2idl 21157  df-cnfld 21297  df-zring 21390  df-zn 21449  df-dchr 27211
This theorem is referenced by:  dchrabl  27232
  Copyright terms: Public domain W3C validator