Step | Hyp | Ref
| Expression |
1 | | dchrinvcl.n |
. . 3
⊢ 𝐾 = (𝑘 ∈ 𝐵 ↦ if(𝑘 ∈ 𝑈, (1 / (𝑋‘𝑘)), 0)) |
2 | | dchrmhm.g |
. . . 4
⊢ 𝐺 = (DChr‘𝑁) |
3 | | dchrmhm.z |
. . . 4
⊢ 𝑍 =
(ℤ/nℤ‘𝑁) |
4 | | dchrn0.b |
. . . 4
⊢ 𝐵 = (Base‘𝑍) |
5 | | dchrn0.u |
. . . 4
⊢ 𝑈 = (Unit‘𝑍) |
6 | | dchrmulid2.x |
. . . . 5
⊢ (𝜑 → 𝑋 ∈ 𝐷) |
7 | | dchrmhm.b |
. . . . . 6
⊢ 𝐷 = (Base‘𝐺) |
8 | 2, 7 | dchrrcl 26388 |
. . . . 5
⊢ (𝑋 ∈ 𝐷 → 𝑁 ∈ ℕ) |
9 | 6, 8 | syl 17 |
. . . 4
⊢ (𝜑 → 𝑁 ∈ ℕ) |
10 | | fveq2 6774 |
. . . . 5
⊢ (𝑘 = 𝑥 → (𝑋‘𝑘) = (𝑋‘𝑥)) |
11 | 10 | oveq2d 7291 |
. . . 4
⊢ (𝑘 = 𝑥 → (1 / (𝑋‘𝑘)) = (1 / (𝑋‘𝑥))) |
12 | | fveq2 6774 |
. . . . 5
⊢ (𝑘 = 𝑦 → (𝑋‘𝑘) = (𝑋‘𝑦)) |
13 | 12 | oveq2d 7291 |
. . . 4
⊢ (𝑘 = 𝑦 → (1 / (𝑋‘𝑘)) = (1 / (𝑋‘𝑦))) |
14 | | fveq2 6774 |
. . . . 5
⊢ (𝑘 = (𝑥(.r‘𝑍)𝑦) → (𝑋‘𝑘) = (𝑋‘(𝑥(.r‘𝑍)𝑦))) |
15 | 14 | oveq2d 7291 |
. . . 4
⊢ (𝑘 = (𝑥(.r‘𝑍)𝑦) → (1 / (𝑋‘𝑘)) = (1 / (𝑋‘(𝑥(.r‘𝑍)𝑦)))) |
16 | | fveq2 6774 |
. . . . 5
⊢ (𝑘 = (1r‘𝑍) → (𝑋‘𝑘) = (𝑋‘(1r‘𝑍))) |
17 | 16 | oveq2d 7291 |
. . . 4
⊢ (𝑘 = (1r‘𝑍) → (1 / (𝑋‘𝑘)) = (1 / (𝑋‘(1r‘𝑍)))) |
18 | 2, 3, 7, 4, 6 | dchrf 26390 |
. . . . . 6
⊢ (𝜑 → 𝑋:𝐵⟶ℂ) |
19 | 4, 5 | unitss 19902 |
. . . . . . 7
⊢ 𝑈 ⊆ 𝐵 |
20 | 19 | sseli 3917 |
. . . . . 6
⊢ (𝑘 ∈ 𝑈 → 𝑘 ∈ 𝐵) |
21 | | ffvelrn 6959 |
. . . . . 6
⊢ ((𝑋:𝐵⟶ℂ ∧ 𝑘 ∈ 𝐵) → (𝑋‘𝑘) ∈ ℂ) |
22 | 18, 20, 21 | syl2an 596 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑈) → (𝑋‘𝑘) ∈ ℂ) |
23 | | simpr 485 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑈) → 𝑘 ∈ 𝑈) |
24 | 6 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑈) → 𝑋 ∈ 𝐷) |
25 | 20 | adantl 482 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑈) → 𝑘 ∈ 𝐵) |
26 | 2, 3, 7, 4, 5, 24,
25 | dchrn0 26398 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑈) → ((𝑋‘𝑘) ≠ 0 ↔ 𝑘 ∈ 𝑈)) |
27 | 23, 26 | mpbird 256 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑈) → (𝑋‘𝑘) ≠ 0) |
28 | 22, 27 | reccld 11744 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑈) → (1 / (𝑋‘𝑘)) ∈ ℂ) |
29 | | 1t1e1 12135 |
. . . . . . . 8
⊢ (1
· 1) = 1 |
30 | 29 | eqcomi 2747 |
. . . . . . 7
⊢ 1 = (1
· 1) |
31 | 30 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) → 1 = (1 ·
1)) |
32 | 2, 3, 7 | dchrmhm 26389 |
. . . . . . . 8
⊢ 𝐷 ⊆ ((mulGrp‘𝑍) MndHom
(mulGrp‘ℂfld)) |
33 | 6 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) → 𝑋 ∈ 𝐷) |
34 | 32, 33 | sselid 3919 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) → 𝑋 ∈ ((mulGrp‘𝑍) MndHom
(mulGrp‘ℂfld))) |
35 | | simprl 768 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) → 𝑥 ∈ 𝑈) |
36 | 19, 35 | sselid 3919 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) → 𝑥 ∈ 𝐵) |
37 | | simprr 770 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) → 𝑦 ∈ 𝑈) |
38 | 19, 37 | sselid 3919 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) → 𝑦 ∈ 𝐵) |
39 | | eqid 2738 |
. . . . . . . . 9
⊢
(mulGrp‘𝑍) =
(mulGrp‘𝑍) |
40 | 39, 4 | mgpbas 19726 |
. . . . . . . 8
⊢ 𝐵 =
(Base‘(mulGrp‘𝑍)) |
41 | | eqid 2738 |
. . . . . . . . 9
⊢
(.r‘𝑍) = (.r‘𝑍) |
42 | 39, 41 | mgpplusg 19724 |
. . . . . . . 8
⊢
(.r‘𝑍) = (+g‘(mulGrp‘𝑍)) |
43 | | eqid 2738 |
. . . . . . . . 9
⊢
(mulGrp‘ℂfld) =
(mulGrp‘ℂfld) |
44 | | cnfldmul 20603 |
. . . . . . . . 9
⊢ ·
= (.r‘ℂfld) |
45 | 43, 44 | mgpplusg 19724 |
. . . . . . . 8
⊢ ·
= (+g‘(mulGrp‘ℂfld)) |
46 | 40, 42, 45 | mhmlin 18437 |
. . . . . . 7
⊢ ((𝑋 ∈ ((mulGrp‘𝑍) MndHom
(mulGrp‘ℂfld)) ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑋‘(𝑥(.r‘𝑍)𝑦)) = ((𝑋‘𝑥) · (𝑋‘𝑦))) |
47 | 34, 36, 38, 46 | syl3anc 1370 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) → (𝑋‘(𝑥(.r‘𝑍)𝑦)) = ((𝑋‘𝑥) · (𝑋‘𝑦))) |
48 | 31, 47 | oveq12d 7293 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) → (1 / (𝑋‘(𝑥(.r‘𝑍)𝑦))) = ((1 · 1) / ((𝑋‘𝑥) · (𝑋‘𝑦)))) |
49 | | 1cnd 10970 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) → 1 ∈ ℂ) |
50 | 18 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) → 𝑋:𝐵⟶ℂ) |
51 | 50, 36 | ffvelrnd 6962 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) → (𝑋‘𝑥) ∈ ℂ) |
52 | 50, 38 | ffvelrnd 6962 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) → (𝑋‘𝑦) ∈ ℂ) |
53 | 2, 3, 7, 4, 5, 33,
36 | dchrn0 26398 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) → ((𝑋‘𝑥) ≠ 0 ↔ 𝑥 ∈ 𝑈)) |
54 | 35, 53 | mpbird 256 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) → (𝑋‘𝑥) ≠ 0) |
55 | 2, 3, 7, 4, 5, 33,
38 | dchrn0 26398 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) → ((𝑋‘𝑦) ≠ 0 ↔ 𝑦 ∈ 𝑈)) |
56 | 37, 55 | mpbird 256 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) → (𝑋‘𝑦) ≠ 0) |
57 | 49, 51, 49, 52, 54, 56 | divmuldivd 11792 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) → ((1 / (𝑋‘𝑥)) · (1 / (𝑋‘𝑦))) = ((1 · 1) / ((𝑋‘𝑥) · (𝑋‘𝑦)))) |
58 | 48, 57 | eqtr4d 2781 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) → (1 / (𝑋‘(𝑥(.r‘𝑍)𝑦))) = ((1 / (𝑋‘𝑥)) · (1 / (𝑋‘𝑦)))) |
59 | 32, 6 | sselid 3919 |
. . . . . . 7
⊢ (𝜑 → 𝑋 ∈ ((mulGrp‘𝑍) MndHom
(mulGrp‘ℂfld))) |
60 | | eqid 2738 |
. . . . . . . . 9
⊢
(1r‘𝑍) = (1r‘𝑍) |
61 | 39, 60 | ringidval 19739 |
. . . . . . . 8
⊢
(1r‘𝑍) = (0g‘(mulGrp‘𝑍)) |
62 | | cnfld1 20623 |
. . . . . . . . 9
⊢ 1 =
(1r‘ℂfld) |
63 | 43, 62 | ringidval 19739 |
. . . . . . . 8
⊢ 1 =
(0g‘(mulGrp‘ℂfld)) |
64 | 61, 63 | mhm0 18438 |
. . . . . . 7
⊢ (𝑋 ∈ ((mulGrp‘𝑍) MndHom
(mulGrp‘ℂfld)) → (𝑋‘(1r‘𝑍)) = 1) |
65 | 59, 64 | syl 17 |
. . . . . 6
⊢ (𝜑 → (𝑋‘(1r‘𝑍)) = 1) |
66 | 65 | oveq2d 7291 |
. . . . 5
⊢ (𝜑 → (1 / (𝑋‘(1r‘𝑍))) = (1 / 1)) |
67 | | 1div1e1 11665 |
. . . . 5
⊢ (1 / 1) =
1 |
68 | 66, 67 | eqtrdi 2794 |
. . . 4
⊢ (𝜑 → (1 / (𝑋‘(1r‘𝑍))) = 1) |
69 | 2, 3, 4, 5, 9, 7, 11, 13, 15, 17, 28, 58, 68 | dchrelbasd 26387 |
. . 3
⊢ (𝜑 → (𝑘 ∈ 𝐵 ↦ if(𝑘 ∈ 𝑈, (1 / (𝑋‘𝑘)), 0)) ∈ 𝐷) |
70 | 1, 69 | eqeltrid 2843 |
. 2
⊢ (𝜑 → 𝐾 ∈ 𝐷) |
71 | | dchrmulid2.t |
. . . 4
⊢ · =
(+g‘𝐺) |
72 | 2, 3, 7, 71, 70, 6 | dchrmul 26396 |
. . 3
⊢ (𝜑 → (𝐾 · 𝑋) = (𝐾 ∘f · 𝑋)) |
73 | 4 | fvexi 6788 |
. . . . . 6
⊢ 𝐵 ∈ V |
74 | 73 | a1i 11 |
. . . . 5
⊢ (𝜑 → 𝐵 ∈ V) |
75 | | ovex 7308 |
. . . . . . 7
⊢ (1 /
(𝑋‘𝑘)) ∈ V |
76 | | c0ex 10969 |
. . . . . . 7
⊢ 0 ∈
V |
77 | 75, 76 | ifex 4509 |
. . . . . 6
⊢ if(𝑘 ∈ 𝑈, (1 / (𝑋‘𝑘)), 0) ∈ V |
78 | 77 | a1i 11 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → if(𝑘 ∈ 𝑈, (1 / (𝑋‘𝑘)), 0) ∈ V) |
79 | 18 | ffvelrnda 6961 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → (𝑋‘𝑘) ∈ ℂ) |
80 | 1 | a1i 11 |
. . . . 5
⊢ (𝜑 → 𝐾 = (𝑘 ∈ 𝐵 ↦ if(𝑘 ∈ 𝑈, (1 / (𝑋‘𝑘)), 0))) |
81 | 18 | feqmptd 6837 |
. . . . 5
⊢ (𝜑 → 𝑋 = (𝑘 ∈ 𝐵 ↦ (𝑋‘𝑘))) |
82 | 74, 78, 79, 80, 81 | offval2 7553 |
. . . 4
⊢ (𝜑 → (𝐾 ∘f · 𝑋) = (𝑘 ∈ 𝐵 ↦ (if(𝑘 ∈ 𝑈, (1 / (𝑋‘𝑘)), 0) · (𝑋‘𝑘)))) |
83 | | dchr1cl.o |
. . . . 5
⊢ 1 = (𝑘 ∈ 𝐵 ↦ if(𝑘 ∈ 𝑈, 1, 0)) |
84 | | ovif 7372 |
. . . . . . 7
⊢ (if(𝑘 ∈ 𝑈, (1 / (𝑋‘𝑘)), 0) · (𝑋‘𝑘)) = if(𝑘 ∈ 𝑈, ((1 / (𝑋‘𝑘)) · (𝑋‘𝑘)), (0 · (𝑋‘𝑘))) |
85 | 79 | adantr 481 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐵) ∧ 𝑘 ∈ 𝑈) → (𝑋‘𝑘) ∈ ℂ) |
86 | 6 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → 𝑋 ∈ 𝐷) |
87 | | simpr 485 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → 𝑘 ∈ 𝐵) |
88 | 2, 3, 7, 4, 5, 86,
87 | dchrn0 26398 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → ((𝑋‘𝑘) ≠ 0 ↔ 𝑘 ∈ 𝑈)) |
89 | 88 | biimpar 478 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐵) ∧ 𝑘 ∈ 𝑈) → (𝑋‘𝑘) ≠ 0) |
90 | 85, 89 | recid2d 11747 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐵) ∧ 𝑘 ∈ 𝑈) → ((1 / (𝑋‘𝑘)) · (𝑋‘𝑘)) = 1) |
91 | 90 | ifeq1da 4490 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → if(𝑘 ∈ 𝑈, ((1 / (𝑋‘𝑘)) · (𝑋‘𝑘)), (0 · (𝑋‘𝑘))) = if(𝑘 ∈ 𝑈, 1, (0 · (𝑋‘𝑘)))) |
92 | 79 | mul02d 11173 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → (0 · (𝑋‘𝑘)) = 0) |
93 | 92 | ifeq2d 4479 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → if(𝑘 ∈ 𝑈, 1, (0 · (𝑋‘𝑘))) = if(𝑘 ∈ 𝑈, 1, 0)) |
94 | 91, 93 | eqtrd 2778 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → if(𝑘 ∈ 𝑈, ((1 / (𝑋‘𝑘)) · (𝑋‘𝑘)), (0 · (𝑋‘𝑘))) = if(𝑘 ∈ 𝑈, 1, 0)) |
95 | 84, 94 | eqtrid 2790 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → (if(𝑘 ∈ 𝑈, (1 / (𝑋‘𝑘)), 0) · (𝑋‘𝑘)) = if(𝑘 ∈ 𝑈, 1, 0)) |
96 | 95 | mpteq2dva 5174 |
. . . . 5
⊢ (𝜑 → (𝑘 ∈ 𝐵 ↦ (if(𝑘 ∈ 𝑈, (1 / (𝑋‘𝑘)), 0) · (𝑋‘𝑘))) = (𝑘 ∈ 𝐵 ↦ if(𝑘 ∈ 𝑈, 1, 0))) |
97 | 83, 96 | eqtr4id 2797 |
. . . 4
⊢ (𝜑 → 1 = (𝑘 ∈ 𝐵 ↦ (if(𝑘 ∈ 𝑈, (1 / (𝑋‘𝑘)), 0) · (𝑋‘𝑘)))) |
98 | 82, 97 | eqtr4d 2781 |
. . 3
⊢ (𝜑 → (𝐾 ∘f · 𝑋) = 1 ) |
99 | 72, 98 | eqtrd 2778 |
. 2
⊢ (𝜑 → (𝐾 · 𝑋) = 1 ) |
100 | 70, 99 | jca 512 |
1
⊢ (𝜑 → (𝐾 ∈ 𝐷 ∧ (𝐾 · 𝑋) = 1 )) |