MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrinvcl Structured version   Visualization version   GIF version

Theorem dchrinvcl 27312
Description: Closure of the group inverse operation on Dirichlet characters. (Contributed by Mario Carneiro, 19-Apr-2016.)
Hypotheses
Ref Expression
dchrmhm.g 𝐺 = (DChr‘𝑁)
dchrmhm.z 𝑍 = (ℤ/nℤ‘𝑁)
dchrmhm.b 𝐷 = (Base‘𝐺)
dchrn0.b 𝐵 = (Base‘𝑍)
dchrn0.u 𝑈 = (Unit‘𝑍)
dchr1cl.o 1 = (𝑘𝐵 ↦ if(𝑘𝑈, 1, 0))
dchrmullid.t · = (+g𝐺)
dchrmullid.x (𝜑𝑋𝐷)
dchrinvcl.n 𝐾 = (𝑘𝐵 ↦ if(𝑘𝑈, (1 / (𝑋𝑘)), 0))
Assertion
Ref Expression
dchrinvcl (𝜑 → (𝐾𝐷 ∧ (𝐾 · 𝑋) = 1 ))
Distinct variable groups:   𝐵,𝑘   𝑈,𝑘   𝑘,𝑁   𝜑,𝑘   𝑘,𝑋   𝑘,𝑍
Allowed substitution hints:   𝐷(𝑘)   · (𝑘)   1 (𝑘)   𝐺(𝑘)   𝐾(𝑘)

Proof of Theorem dchrinvcl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dchrinvcl.n . . 3 𝐾 = (𝑘𝐵 ↦ if(𝑘𝑈, (1 / (𝑋𝑘)), 0))
2 dchrmhm.g . . . 4 𝐺 = (DChr‘𝑁)
3 dchrmhm.z . . . 4 𝑍 = (ℤ/nℤ‘𝑁)
4 dchrn0.b . . . 4 𝐵 = (Base‘𝑍)
5 dchrn0.u . . . 4 𝑈 = (Unit‘𝑍)
6 dchrmullid.x . . . . 5 (𝜑𝑋𝐷)
7 dchrmhm.b . . . . . 6 𝐷 = (Base‘𝐺)
82, 7dchrrcl 27299 . . . . 5 (𝑋𝐷𝑁 ∈ ℕ)
96, 8syl 17 . . . 4 (𝜑𝑁 ∈ ℕ)
10 fveq2 6907 . . . . 5 (𝑘 = 𝑥 → (𝑋𝑘) = (𝑋𝑥))
1110oveq2d 7447 . . . 4 (𝑘 = 𝑥 → (1 / (𝑋𝑘)) = (1 / (𝑋𝑥)))
12 fveq2 6907 . . . . 5 (𝑘 = 𝑦 → (𝑋𝑘) = (𝑋𝑦))
1312oveq2d 7447 . . . 4 (𝑘 = 𝑦 → (1 / (𝑋𝑘)) = (1 / (𝑋𝑦)))
14 fveq2 6907 . . . . 5 (𝑘 = (𝑥(.r𝑍)𝑦) → (𝑋𝑘) = (𝑋‘(𝑥(.r𝑍)𝑦)))
1514oveq2d 7447 . . . 4 (𝑘 = (𝑥(.r𝑍)𝑦) → (1 / (𝑋𝑘)) = (1 / (𝑋‘(𝑥(.r𝑍)𝑦))))
16 fveq2 6907 . . . . 5 (𝑘 = (1r𝑍) → (𝑋𝑘) = (𝑋‘(1r𝑍)))
1716oveq2d 7447 . . . 4 (𝑘 = (1r𝑍) → (1 / (𝑋𝑘)) = (1 / (𝑋‘(1r𝑍))))
182, 3, 7, 4, 6dchrf 27301 . . . . . 6 (𝜑𝑋:𝐵⟶ℂ)
194, 5unitss 20393 . . . . . . 7 𝑈𝐵
2019sseli 3991 . . . . . 6 (𝑘𝑈𝑘𝐵)
21 ffvelcdm 7101 . . . . . 6 ((𝑋:𝐵⟶ℂ ∧ 𝑘𝐵) → (𝑋𝑘) ∈ ℂ)
2218, 20, 21syl2an 596 . . . . 5 ((𝜑𝑘𝑈) → (𝑋𝑘) ∈ ℂ)
23 simpr 484 . . . . . 6 ((𝜑𝑘𝑈) → 𝑘𝑈)
246adantr 480 . . . . . . 7 ((𝜑𝑘𝑈) → 𝑋𝐷)
2520adantl 481 . . . . . . 7 ((𝜑𝑘𝑈) → 𝑘𝐵)
262, 3, 7, 4, 5, 24, 25dchrn0 27309 . . . . . 6 ((𝜑𝑘𝑈) → ((𝑋𝑘) ≠ 0 ↔ 𝑘𝑈))
2723, 26mpbird 257 . . . . 5 ((𝜑𝑘𝑈) → (𝑋𝑘) ≠ 0)
2822, 27reccld 12034 . . . 4 ((𝜑𝑘𝑈) → (1 / (𝑋𝑘)) ∈ ℂ)
29 1t1e1 12426 . . . . . . . 8 (1 · 1) = 1
3029eqcomi 2744 . . . . . . 7 1 = (1 · 1)
3130a1i 11 . . . . . 6 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → 1 = (1 · 1))
322, 3, 7dchrmhm 27300 . . . . . . . 8 𝐷 ⊆ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))
336adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → 𝑋𝐷)
3432, 33sselid 3993 . . . . . . 7 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)))
35 simprl 771 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → 𝑥𝑈)
3619, 35sselid 3993 . . . . . . 7 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → 𝑥𝐵)
37 simprr 773 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → 𝑦𝑈)
3819, 37sselid 3993 . . . . . . 7 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → 𝑦𝐵)
39 eqid 2735 . . . . . . . . 9 (mulGrp‘𝑍) = (mulGrp‘𝑍)
4039, 4mgpbas 20158 . . . . . . . 8 𝐵 = (Base‘(mulGrp‘𝑍))
41 eqid 2735 . . . . . . . . 9 (.r𝑍) = (.r𝑍)
4239, 41mgpplusg 20156 . . . . . . . 8 (.r𝑍) = (+g‘(mulGrp‘𝑍))
43 eqid 2735 . . . . . . . . 9 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
44 cnfldmul 21390 . . . . . . . . 9 · = (.r‘ℂfld)
4543, 44mgpplusg 20156 . . . . . . . 8 · = (+g‘(mulGrp‘ℂfld))
4640, 42, 45mhmlin 18819 . . . . . . 7 ((𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ 𝑥𝐵𝑦𝐵) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)))
4734, 36, 38, 46syl3anc 1370 . . . . . 6 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)))
4831, 47oveq12d 7449 . . . . 5 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → (1 / (𝑋‘(𝑥(.r𝑍)𝑦))) = ((1 · 1) / ((𝑋𝑥) · (𝑋𝑦))))
49 1cnd 11254 . . . . . 6 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → 1 ∈ ℂ)
5018adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → 𝑋:𝐵⟶ℂ)
5150, 36ffvelcdmd 7105 . . . . . 6 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → (𝑋𝑥) ∈ ℂ)
5250, 38ffvelcdmd 7105 . . . . . 6 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → (𝑋𝑦) ∈ ℂ)
532, 3, 7, 4, 5, 33, 36dchrn0 27309 . . . . . . 7 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → ((𝑋𝑥) ≠ 0 ↔ 𝑥𝑈))
5435, 53mpbird 257 . . . . . 6 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → (𝑋𝑥) ≠ 0)
552, 3, 7, 4, 5, 33, 38dchrn0 27309 . . . . . . 7 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → ((𝑋𝑦) ≠ 0 ↔ 𝑦𝑈))
5637, 55mpbird 257 . . . . . 6 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → (𝑋𝑦) ≠ 0)
5749, 51, 49, 52, 54, 56divmuldivd 12082 . . . . 5 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → ((1 / (𝑋𝑥)) · (1 / (𝑋𝑦))) = ((1 · 1) / ((𝑋𝑥) · (𝑋𝑦))))
5848, 57eqtr4d 2778 . . . 4 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → (1 / (𝑋‘(𝑥(.r𝑍)𝑦))) = ((1 / (𝑋𝑥)) · (1 / (𝑋𝑦))))
5932, 6sselid 3993 . . . . . . 7 (𝜑𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)))
60 eqid 2735 . . . . . . . . 9 (1r𝑍) = (1r𝑍)
6139, 60ringidval 20201 . . . . . . . 8 (1r𝑍) = (0g‘(mulGrp‘𝑍))
62 cnfld1 21424 . . . . . . . . 9 1 = (1r‘ℂfld)
6343, 62ringidval 20201 . . . . . . . 8 1 = (0g‘(mulGrp‘ℂfld))
6461, 63mhm0 18820 . . . . . . 7 (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) → (𝑋‘(1r𝑍)) = 1)
6559, 64syl 17 . . . . . 6 (𝜑 → (𝑋‘(1r𝑍)) = 1)
6665oveq2d 7447 . . . . 5 (𝜑 → (1 / (𝑋‘(1r𝑍))) = (1 / 1))
67 1div1e1 11956 . . . . 5 (1 / 1) = 1
6866, 67eqtrdi 2791 . . . 4 (𝜑 → (1 / (𝑋‘(1r𝑍))) = 1)
692, 3, 4, 5, 9, 7, 11, 13, 15, 17, 28, 58, 68dchrelbasd 27298 . . 3 (𝜑 → (𝑘𝐵 ↦ if(𝑘𝑈, (1 / (𝑋𝑘)), 0)) ∈ 𝐷)
701, 69eqeltrid 2843 . 2 (𝜑𝐾𝐷)
71 dchrmullid.t . . . 4 · = (+g𝐺)
722, 3, 7, 71, 70, 6dchrmul 27307 . . 3 (𝜑 → (𝐾 · 𝑋) = (𝐾f · 𝑋))
734fvexi 6921 . . . . . 6 𝐵 ∈ V
7473a1i 11 . . . . 5 (𝜑𝐵 ∈ V)
75 ovex 7464 . . . . . . 7 (1 / (𝑋𝑘)) ∈ V
76 c0ex 11253 . . . . . . 7 0 ∈ V
7775, 76ifex 4581 . . . . . 6 if(𝑘𝑈, (1 / (𝑋𝑘)), 0) ∈ V
7877a1i 11 . . . . 5 ((𝜑𝑘𝐵) → if(𝑘𝑈, (1 / (𝑋𝑘)), 0) ∈ V)
7918ffvelcdmda 7104 . . . . 5 ((𝜑𝑘𝐵) → (𝑋𝑘) ∈ ℂ)
801a1i 11 . . . . 5 (𝜑𝐾 = (𝑘𝐵 ↦ if(𝑘𝑈, (1 / (𝑋𝑘)), 0)))
8118feqmptd 6977 . . . . 5 (𝜑𝑋 = (𝑘𝐵 ↦ (𝑋𝑘)))
8274, 78, 79, 80, 81offval2 7717 . . . 4 (𝜑 → (𝐾f · 𝑋) = (𝑘𝐵 ↦ (if(𝑘𝑈, (1 / (𝑋𝑘)), 0) · (𝑋𝑘))))
83 dchr1cl.o . . . . 5 1 = (𝑘𝐵 ↦ if(𝑘𝑈, 1, 0))
84 ovif 7531 . . . . . . 7 (if(𝑘𝑈, (1 / (𝑋𝑘)), 0) · (𝑋𝑘)) = if(𝑘𝑈, ((1 / (𝑋𝑘)) · (𝑋𝑘)), (0 · (𝑋𝑘)))
8579adantr 480 . . . . . . . . . 10 (((𝜑𝑘𝐵) ∧ 𝑘𝑈) → (𝑋𝑘) ∈ ℂ)
866adantr 480 . . . . . . . . . . . 12 ((𝜑𝑘𝐵) → 𝑋𝐷)
87 simpr 484 . . . . . . . . . . . 12 ((𝜑𝑘𝐵) → 𝑘𝐵)
882, 3, 7, 4, 5, 86, 87dchrn0 27309 . . . . . . . . . . 11 ((𝜑𝑘𝐵) → ((𝑋𝑘) ≠ 0 ↔ 𝑘𝑈))
8988biimpar 477 . . . . . . . . . 10 (((𝜑𝑘𝐵) ∧ 𝑘𝑈) → (𝑋𝑘) ≠ 0)
9085, 89recid2d 12037 . . . . . . . . 9 (((𝜑𝑘𝐵) ∧ 𝑘𝑈) → ((1 / (𝑋𝑘)) · (𝑋𝑘)) = 1)
9190ifeq1da 4562 . . . . . . . 8 ((𝜑𝑘𝐵) → if(𝑘𝑈, ((1 / (𝑋𝑘)) · (𝑋𝑘)), (0 · (𝑋𝑘))) = if(𝑘𝑈, 1, (0 · (𝑋𝑘))))
9279mul02d 11457 . . . . . . . . 9 ((𝜑𝑘𝐵) → (0 · (𝑋𝑘)) = 0)
9392ifeq2d 4551 . . . . . . . 8 ((𝜑𝑘𝐵) → if(𝑘𝑈, 1, (0 · (𝑋𝑘))) = if(𝑘𝑈, 1, 0))
9491, 93eqtrd 2775 . . . . . . 7 ((𝜑𝑘𝐵) → if(𝑘𝑈, ((1 / (𝑋𝑘)) · (𝑋𝑘)), (0 · (𝑋𝑘))) = if(𝑘𝑈, 1, 0))
9584, 94eqtrid 2787 . . . . . 6 ((𝜑𝑘𝐵) → (if(𝑘𝑈, (1 / (𝑋𝑘)), 0) · (𝑋𝑘)) = if(𝑘𝑈, 1, 0))
9695mpteq2dva 5248 . . . . 5 (𝜑 → (𝑘𝐵 ↦ (if(𝑘𝑈, (1 / (𝑋𝑘)), 0) · (𝑋𝑘))) = (𝑘𝐵 ↦ if(𝑘𝑈, 1, 0)))
9783, 96eqtr4id 2794 . . . 4 (𝜑1 = (𝑘𝐵 ↦ (if(𝑘𝑈, (1 / (𝑋𝑘)), 0) · (𝑋𝑘))))
9882, 97eqtr4d 2778 . . 3 (𝜑 → (𝐾f · 𝑋) = 1 )
9972, 98eqtrd 2775 . 2 (𝜑 → (𝐾 · 𝑋) = 1 )
10070, 99jca 511 1 (𝜑 → (𝐾𝐷 ∧ (𝐾 · 𝑋) = 1 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  wne 2938  Vcvv 3478  ifcif 4531  cmpt 5231  wf 6559  cfv 6563  (class class class)co 7431  f cof 7695  cc 11151  0cc0 11153  1c1 11154   · cmul 11158   / cdiv 11918  cn 12264  Basecbs 17245  +gcplusg 17298  .rcmulr 17299   MndHom cmhm 18807  mulGrpcmgp 20152  1rcur 20199  Unitcui 20372  fldccnfld 21382  ℤ/nczn 21531  DChrcdchr 27291
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-addf 11232  ax-mulf 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8013  df-2nd 8014  df-tpos 8250  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-ec 8746  df-qs 8750  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-inf 9481  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-fz 13545  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-0g 17488  df-imas 17555  df-qus 17556  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-mhm 18809  df-grp 18967  df-minusg 18968  df-sbg 18969  df-subg 19154  df-nsg 19155  df-eqg 19156  df-cmn 19815  df-abl 19816  df-mgp 20153  df-rng 20171  df-ur 20200  df-ring 20253  df-cring 20254  df-oppr 20351  df-dvdsr 20374  df-unit 20375  df-invr 20405  df-subrng 20563  df-subrg 20587  df-lmod 20877  df-lss 20948  df-lsp 20988  df-sra 21190  df-rgmod 21191  df-lidl 21236  df-rsp 21237  df-2idl 21278  df-cnfld 21383  df-zring 21476  df-zn 21535  df-dchr 27292
This theorem is referenced by:  dchrabl  27313
  Copyright terms: Public domain W3C validator