MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  musumsum Structured version   Visualization version   GIF version

Theorem musumsum 27235
Description: Evaluate a collapsing sum over the Möbius function. (Contributed by Mario Carneiro, 4-May-2016.)
Hypotheses
Ref Expression
musumsum.1 (𝑚 = 1 → 𝐵 = 𝐶)
musumsum.2 (𝜑𝐴 ∈ Fin)
musumsum.3 (𝜑𝐴 ⊆ ℕ)
musumsum.4 (𝜑 → 1 ∈ 𝐴)
musumsum.5 ((𝜑𝑚𝐴) → 𝐵 ∈ ℂ)
Assertion
Ref Expression
musumsum (𝜑 → Σ𝑚𝐴 Σ𝑘 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑚} ((μ‘𝑘) · 𝐵) = 𝐶)
Distinct variable groups:   𝑘,𝑚,𝐴   𝑘,𝑛,𝑚   𝜑,𝑘,𝑚   𝐵,𝑘   𝐶,𝑚
Allowed substitution hints:   𝜑(𝑛)   𝐴(𝑛)   𝐵(𝑚,𝑛)   𝐶(𝑘,𝑛)

Proof of Theorem musumsum
StepHypRef Expression
1 musumsum.3 . . . . . . 7 (𝜑𝐴 ⊆ ℕ)
21sselda 3983 . . . . . 6 ((𝜑𝑚𝐴) → 𝑚 ∈ ℕ)
3 musum 27234 . . . . . 6 (𝑚 ∈ ℕ → Σ𝑘 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑚} (μ‘𝑘) = if(𝑚 = 1, 1, 0))
42, 3syl 17 . . . . 5 ((𝜑𝑚𝐴) → Σ𝑘 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑚} (μ‘𝑘) = if(𝑚 = 1, 1, 0))
54oveq1d 7446 . . . 4 ((𝜑𝑚𝐴) → (Σ𝑘 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑚} (μ‘𝑘) · 𝐵) = (if(𝑚 = 1, 1, 0) · 𝐵))
6 fzfid 14014 . . . . . 6 ((𝜑𝑚𝐴) → (1...𝑚) ∈ Fin)
7 dvdsssfz1 16355 . . . . . . 7 (𝑚 ∈ ℕ → {𝑛 ∈ ℕ ∣ 𝑛𝑚} ⊆ (1...𝑚))
82, 7syl 17 . . . . . 6 ((𝜑𝑚𝐴) → {𝑛 ∈ ℕ ∣ 𝑛𝑚} ⊆ (1...𝑚))
96, 8ssfid 9301 . . . . 5 ((𝜑𝑚𝐴) → {𝑛 ∈ ℕ ∣ 𝑛𝑚} ∈ Fin)
10 musumsum.5 . . . . 5 ((𝜑𝑚𝐴) → 𝐵 ∈ ℂ)
11 elrabi 3687 . . . . . . . 8 (𝑘 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑚} → 𝑘 ∈ ℕ)
12 mucl 27184 . . . . . . . 8 (𝑘 ∈ ℕ → (μ‘𝑘) ∈ ℤ)
1311, 12syl 17 . . . . . . 7 (𝑘 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑚} → (μ‘𝑘) ∈ ℤ)
1413zcnd 12723 . . . . . 6 (𝑘 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑚} → (μ‘𝑘) ∈ ℂ)
1514adantl 481 . . . . 5 (((𝜑𝑚𝐴) ∧ 𝑘 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑚}) → (μ‘𝑘) ∈ ℂ)
169, 10, 15fsummulc1 15821 . . . 4 ((𝜑𝑚𝐴) → (Σ𝑘 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑚} (μ‘𝑘) · 𝐵) = Σ𝑘 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑚} ((μ‘𝑘) · 𝐵))
17 ovif 7531 . . . . 5 (if(𝑚 = 1, 1, 0) · 𝐵) = if(𝑚 = 1, (1 · 𝐵), (0 · 𝐵))
18 velsn 4642 . . . . . . . . 9 (𝑚 ∈ {1} ↔ 𝑚 = 1)
1918bicomi 224 . . . . . . . 8 (𝑚 = 1 ↔ 𝑚 ∈ {1})
2019a1i 11 . . . . . . 7 (𝐵 ∈ ℂ → (𝑚 = 1 ↔ 𝑚 ∈ {1}))
21 mullid 11260 . . . . . . 7 (𝐵 ∈ ℂ → (1 · 𝐵) = 𝐵)
22 mul02 11439 . . . . . . 7 (𝐵 ∈ ℂ → (0 · 𝐵) = 0)
2320, 21, 22ifbieq12d 4554 . . . . . 6 (𝐵 ∈ ℂ → if(𝑚 = 1, (1 · 𝐵), (0 · 𝐵)) = if(𝑚 ∈ {1}, 𝐵, 0))
2410, 23syl 17 . . . . 5 ((𝜑𝑚𝐴) → if(𝑚 = 1, (1 · 𝐵), (0 · 𝐵)) = if(𝑚 ∈ {1}, 𝐵, 0))
2517, 24eqtrid 2789 . . . 4 ((𝜑𝑚𝐴) → (if(𝑚 = 1, 1, 0) · 𝐵) = if(𝑚 ∈ {1}, 𝐵, 0))
265, 16, 253eqtr3d 2785 . . 3 ((𝜑𝑚𝐴) → Σ𝑘 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑚} ((μ‘𝑘) · 𝐵) = if(𝑚 ∈ {1}, 𝐵, 0))
2726sumeq2dv 15738 . 2 (𝜑 → Σ𝑚𝐴 Σ𝑘 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑚} ((μ‘𝑘) · 𝐵) = Σ𝑚𝐴 if(𝑚 ∈ {1}, 𝐵, 0))
28 musumsum.4 . . . 4 (𝜑 → 1 ∈ 𝐴)
2928snssd 4809 . . 3 (𝜑 → {1} ⊆ 𝐴)
3029sselda 3983 . . . . 5 ((𝜑𝑚 ∈ {1}) → 𝑚𝐴)
3130, 10syldan 591 . . . 4 ((𝜑𝑚 ∈ {1}) → 𝐵 ∈ ℂ)
3231ralrimiva 3146 . . 3 (𝜑 → ∀𝑚 ∈ {1}𝐵 ∈ ℂ)
33 musumsum.2 . . . 4 (𝜑𝐴 ∈ Fin)
3433olcd 875 . . 3 (𝜑 → (𝐴 ⊆ (ℤ‘1) ∨ 𝐴 ∈ Fin))
35 sumss2 15762 . . 3 ((({1} ⊆ 𝐴 ∧ ∀𝑚 ∈ {1}𝐵 ∈ ℂ) ∧ (𝐴 ⊆ (ℤ‘1) ∨ 𝐴 ∈ Fin)) → Σ𝑚 ∈ {1}𝐵 = Σ𝑚𝐴 if(𝑚 ∈ {1}, 𝐵, 0))
3629, 32, 34, 35syl21anc 838 . 2 (𝜑 → Σ𝑚 ∈ {1}𝐵 = Σ𝑚𝐴 if(𝑚 ∈ {1}, 𝐵, 0))
37 musumsum.1 . . . . 5 (𝑚 = 1 → 𝐵 = 𝐶)
3837eleq1d 2826 . . . 4 (𝑚 = 1 → (𝐵 ∈ ℂ ↔ 𝐶 ∈ ℂ))
3910ralrimiva 3146 . . . 4 (𝜑 → ∀𝑚𝐴 𝐵 ∈ ℂ)
4038, 39, 28rspcdva 3623 . . 3 (𝜑𝐶 ∈ ℂ)
4137sumsn 15782 . . 3 ((1 ∈ 𝐴𝐶 ∈ ℂ) → Σ𝑚 ∈ {1}𝐵 = 𝐶)
4228, 40, 41syl2anc 584 . 2 (𝜑 → Σ𝑚 ∈ {1}𝐵 = 𝐶)
4327, 36, 423eqtr2d 2783 1 (𝜑 → Σ𝑚𝐴 Σ𝑘 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑚} ((μ‘𝑘) · 𝐵) = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 848   = wceq 1540  wcel 2108  wral 3061  {crab 3436  wss 3951  ifcif 4525  {csn 4626   class class class wbr 5143  cfv 6561  (class class class)co 7431  Fincfn 8985  cc 11153  0cc0 11155  1c1 11156   · cmul 11160  cn 12266  cz 12613  cuz 12878  ...cfz 13547  Σcsu 15722  cdvds 16290  μcmu 27138
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-disj 5111  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-oadd 8510  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-inf 9483  df-oi 9550  df-dju 9941  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-xnn0 12600  df-z 12614  df-uz 12879  df-q 12991  df-rp 13035  df-fz 13548  df-fzo 13695  df-fl 13832  df-mod 13910  df-seq 14043  df-exp 14103  df-fac 14313  df-bc 14342  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-clim 15524  df-sum 15723  df-dvds 16291  df-gcd 16532  df-prm 16709  df-pc 16875  df-mu 27144
This theorem is referenced by:  dchrmusum2  27538  dchrvmasum2lem  27540  mudivsum  27574  mulogsum  27576  mulog2sumlem2  27579
  Copyright terms: Public domain W3C validator