| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > musumsum | Structured version Visualization version GIF version | ||
| Description: Evaluate a collapsing sum over the Möbius function. (Contributed by Mario Carneiro, 4-May-2016.) |
| Ref | Expression |
|---|---|
| musumsum.1 | ⊢ (𝑚 = 1 → 𝐵 = 𝐶) |
| musumsum.2 | ⊢ (𝜑 → 𝐴 ∈ Fin) |
| musumsum.3 | ⊢ (𝜑 → 𝐴 ⊆ ℕ) |
| musumsum.4 | ⊢ (𝜑 → 1 ∈ 𝐴) |
| musumsum.5 | ⊢ ((𝜑 ∧ 𝑚 ∈ 𝐴) → 𝐵 ∈ ℂ) |
| Ref | Expression |
|---|---|
| musumsum | ⊢ (𝜑 → Σ𝑚 ∈ 𝐴 Σ𝑘 ∈ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑚} ((μ‘𝑘) · 𝐵) = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | musumsum.3 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ⊆ ℕ) | |
| 2 | 1 | sselda 3958 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑚 ∈ 𝐴) → 𝑚 ∈ ℕ) |
| 3 | musum 27153 | . . . . . 6 ⊢ (𝑚 ∈ ℕ → Σ𝑘 ∈ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑚} (μ‘𝑘) = if(𝑚 = 1, 1, 0)) | |
| 4 | 2, 3 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝑚 ∈ 𝐴) → Σ𝑘 ∈ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑚} (μ‘𝑘) = if(𝑚 = 1, 1, 0)) |
| 5 | 4 | oveq1d 7420 | . . . 4 ⊢ ((𝜑 ∧ 𝑚 ∈ 𝐴) → (Σ𝑘 ∈ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑚} (μ‘𝑘) · 𝐵) = (if(𝑚 = 1, 1, 0) · 𝐵)) |
| 6 | fzfid 13991 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑚 ∈ 𝐴) → (1...𝑚) ∈ Fin) | |
| 7 | dvdsssfz1 16337 | . . . . . . 7 ⊢ (𝑚 ∈ ℕ → {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑚} ⊆ (1...𝑚)) | |
| 8 | 2, 7 | syl 17 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑚 ∈ 𝐴) → {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑚} ⊆ (1...𝑚)) |
| 9 | 6, 8 | ssfid 9273 | . . . . 5 ⊢ ((𝜑 ∧ 𝑚 ∈ 𝐴) → {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑚} ∈ Fin) |
| 10 | musumsum.5 | . . . . 5 ⊢ ((𝜑 ∧ 𝑚 ∈ 𝐴) → 𝐵 ∈ ℂ) | |
| 11 | elrabi 3666 | . . . . . . . 8 ⊢ (𝑘 ∈ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑚} → 𝑘 ∈ ℕ) | |
| 12 | mucl 27103 | . . . . . . . 8 ⊢ (𝑘 ∈ ℕ → (μ‘𝑘) ∈ ℤ) | |
| 13 | 11, 12 | syl 17 | . . . . . . 7 ⊢ (𝑘 ∈ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑚} → (μ‘𝑘) ∈ ℤ) |
| 14 | 13 | zcnd 12698 | . . . . . 6 ⊢ (𝑘 ∈ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑚} → (μ‘𝑘) ∈ ℂ) |
| 15 | 14 | adantl 481 | . . . . 5 ⊢ (((𝜑 ∧ 𝑚 ∈ 𝐴) ∧ 𝑘 ∈ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑚}) → (μ‘𝑘) ∈ ℂ) |
| 16 | 9, 10, 15 | fsummulc1 15801 | . . . 4 ⊢ ((𝜑 ∧ 𝑚 ∈ 𝐴) → (Σ𝑘 ∈ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑚} (μ‘𝑘) · 𝐵) = Σ𝑘 ∈ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑚} ((μ‘𝑘) · 𝐵)) |
| 17 | ovif 7505 | . . . . 5 ⊢ (if(𝑚 = 1, 1, 0) · 𝐵) = if(𝑚 = 1, (1 · 𝐵), (0 · 𝐵)) | |
| 18 | velsn 4617 | . . . . . . . . 9 ⊢ (𝑚 ∈ {1} ↔ 𝑚 = 1) | |
| 19 | 18 | bicomi 224 | . . . . . . . 8 ⊢ (𝑚 = 1 ↔ 𝑚 ∈ {1}) |
| 20 | 19 | a1i 11 | . . . . . . 7 ⊢ (𝐵 ∈ ℂ → (𝑚 = 1 ↔ 𝑚 ∈ {1})) |
| 21 | mullid 11234 | . . . . . . 7 ⊢ (𝐵 ∈ ℂ → (1 · 𝐵) = 𝐵) | |
| 22 | mul02 11413 | . . . . . . 7 ⊢ (𝐵 ∈ ℂ → (0 · 𝐵) = 0) | |
| 23 | 20, 21, 22 | ifbieq12d 4529 | . . . . . 6 ⊢ (𝐵 ∈ ℂ → if(𝑚 = 1, (1 · 𝐵), (0 · 𝐵)) = if(𝑚 ∈ {1}, 𝐵, 0)) |
| 24 | 10, 23 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝑚 ∈ 𝐴) → if(𝑚 = 1, (1 · 𝐵), (0 · 𝐵)) = if(𝑚 ∈ {1}, 𝐵, 0)) |
| 25 | 17, 24 | eqtrid 2782 | . . . 4 ⊢ ((𝜑 ∧ 𝑚 ∈ 𝐴) → (if(𝑚 = 1, 1, 0) · 𝐵) = if(𝑚 ∈ {1}, 𝐵, 0)) |
| 26 | 5, 16, 25 | 3eqtr3d 2778 | . . 3 ⊢ ((𝜑 ∧ 𝑚 ∈ 𝐴) → Σ𝑘 ∈ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑚} ((μ‘𝑘) · 𝐵) = if(𝑚 ∈ {1}, 𝐵, 0)) |
| 27 | 26 | sumeq2dv 15718 | . 2 ⊢ (𝜑 → Σ𝑚 ∈ 𝐴 Σ𝑘 ∈ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑚} ((μ‘𝑘) · 𝐵) = Σ𝑚 ∈ 𝐴 if(𝑚 ∈ {1}, 𝐵, 0)) |
| 28 | musumsum.4 | . . . 4 ⊢ (𝜑 → 1 ∈ 𝐴) | |
| 29 | 28 | snssd 4785 | . . 3 ⊢ (𝜑 → {1} ⊆ 𝐴) |
| 30 | 29 | sselda 3958 | . . . . 5 ⊢ ((𝜑 ∧ 𝑚 ∈ {1}) → 𝑚 ∈ 𝐴) |
| 31 | 30, 10 | syldan 591 | . . . 4 ⊢ ((𝜑 ∧ 𝑚 ∈ {1}) → 𝐵 ∈ ℂ) |
| 32 | 31 | ralrimiva 3132 | . . 3 ⊢ (𝜑 → ∀𝑚 ∈ {1}𝐵 ∈ ℂ) |
| 33 | musumsum.2 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
| 34 | 33 | olcd 874 | . . 3 ⊢ (𝜑 → (𝐴 ⊆ (ℤ≥‘1) ∨ 𝐴 ∈ Fin)) |
| 35 | sumss2 15742 | . . 3 ⊢ ((({1} ⊆ 𝐴 ∧ ∀𝑚 ∈ {1}𝐵 ∈ ℂ) ∧ (𝐴 ⊆ (ℤ≥‘1) ∨ 𝐴 ∈ Fin)) → Σ𝑚 ∈ {1}𝐵 = Σ𝑚 ∈ 𝐴 if(𝑚 ∈ {1}, 𝐵, 0)) | |
| 36 | 29, 32, 34, 35 | syl21anc 837 | . 2 ⊢ (𝜑 → Σ𝑚 ∈ {1}𝐵 = Σ𝑚 ∈ 𝐴 if(𝑚 ∈ {1}, 𝐵, 0)) |
| 37 | musumsum.1 | . . . . 5 ⊢ (𝑚 = 1 → 𝐵 = 𝐶) | |
| 38 | 37 | eleq1d 2819 | . . . 4 ⊢ (𝑚 = 1 → (𝐵 ∈ ℂ ↔ 𝐶 ∈ ℂ)) |
| 39 | 10 | ralrimiva 3132 | . . . 4 ⊢ (𝜑 → ∀𝑚 ∈ 𝐴 𝐵 ∈ ℂ) |
| 40 | 38, 39, 28 | rspcdva 3602 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℂ) |
| 41 | 37 | sumsn 15762 | . . 3 ⊢ ((1 ∈ 𝐴 ∧ 𝐶 ∈ ℂ) → Σ𝑚 ∈ {1}𝐵 = 𝐶) |
| 42 | 28, 40, 41 | syl2anc 584 | . 2 ⊢ (𝜑 → Σ𝑚 ∈ {1}𝐵 = 𝐶) |
| 43 | 27, 36, 42 | 3eqtr2d 2776 | 1 ⊢ (𝜑 → Σ𝑚 ∈ 𝐴 Σ𝑘 ∈ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑚} ((μ‘𝑘) · 𝐵) = 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2108 ∀wral 3051 {crab 3415 ⊆ wss 3926 ifcif 4500 {csn 4601 class class class wbr 5119 ‘cfv 6531 (class class class)co 7405 Fincfn 8959 ℂcc 11127 0cc0 11129 1c1 11130 · cmul 11134 ℕcn 12240 ℤcz 12588 ℤ≥cuz 12852 ...cfz 13524 Σcsu 15702 ∥ cdvds 16272 μcmu 27057 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-inf2 9655 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-disj 5087 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-isom 6540 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-oadd 8484 df-er 8719 df-map 8842 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-sup 9454 df-inf 9455 df-oi 9524 df-dju 9915 df-card 9953 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-3 12304 df-n0 12502 df-xnn0 12575 df-z 12589 df-uz 12853 df-q 12965 df-rp 13009 df-fz 13525 df-fzo 13672 df-fl 13809 df-mod 13887 df-seq 14020 df-exp 14080 df-fac 14292 df-bc 14321 df-hash 14349 df-cj 15118 df-re 15119 df-im 15120 df-sqrt 15254 df-abs 15255 df-clim 15504 df-sum 15703 df-dvds 16273 df-gcd 16514 df-prm 16691 df-pc 16857 df-mu 27063 |
| This theorem is referenced by: dchrmusum2 27457 dchrvmasum2lem 27459 mudivsum 27493 mulogsum 27495 mulog2sumlem2 27498 |
| Copyright terms: Public domain | W3C validator |