MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  musumsum Structured version   Visualization version   GIF version

Theorem musumsum 25331
Description: Evaluate a collapsing sum over the Möbius function. (Contributed by Mario Carneiro, 4-May-2016.)
Hypotheses
Ref Expression
musumsum.1 (𝑚 = 1 → 𝐵 = 𝐶)
musumsum.2 (𝜑𝐴 ∈ Fin)
musumsum.3 (𝜑𝐴 ⊆ ℕ)
musumsum.4 (𝜑 → 1 ∈ 𝐴)
musumsum.5 ((𝜑𝑚𝐴) → 𝐵 ∈ ℂ)
Assertion
Ref Expression
musumsum (𝜑 → Σ𝑚𝐴 Σ𝑘 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑚} ((μ‘𝑘) · 𝐵) = 𝐶)
Distinct variable groups:   𝑘,𝑚,𝐴   𝑘,𝑛,𝑚   𝜑,𝑘,𝑚   𝐵,𝑘   𝐶,𝑚
Allowed substitution hints:   𝜑(𝑛)   𝐴(𝑛)   𝐵(𝑚,𝑛)   𝐶(𝑘,𝑛)

Proof of Theorem musumsum
StepHypRef Expression
1 musumsum.3 . . . . . . 7 (𝜑𝐴 ⊆ ℕ)
21sselda 3827 . . . . . 6 ((𝜑𝑚𝐴) → 𝑚 ∈ ℕ)
3 musum 25330 . . . . . 6 (𝑚 ∈ ℕ → Σ𝑘 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑚} (μ‘𝑘) = if(𝑚 = 1, 1, 0))
42, 3syl 17 . . . . 5 ((𝜑𝑚𝐴) → Σ𝑘 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑚} (μ‘𝑘) = if(𝑚 = 1, 1, 0))
54oveq1d 6920 . . . 4 ((𝜑𝑚𝐴) → (Σ𝑘 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑚} (μ‘𝑘) · 𝐵) = (if(𝑚 = 1, 1, 0) · 𝐵))
6 fzfid 13067 . . . . . 6 ((𝜑𝑚𝐴) → (1...𝑚) ∈ Fin)
7 dvdsssfz1 15417 . . . . . . 7 (𝑚 ∈ ℕ → {𝑛 ∈ ℕ ∣ 𝑛𝑚} ⊆ (1...𝑚))
82, 7syl 17 . . . . . 6 ((𝜑𝑚𝐴) → {𝑛 ∈ ℕ ∣ 𝑛𝑚} ⊆ (1...𝑚))
9 ssfi 8449 . . . . . 6 (((1...𝑚) ∈ Fin ∧ {𝑛 ∈ ℕ ∣ 𝑛𝑚} ⊆ (1...𝑚)) → {𝑛 ∈ ℕ ∣ 𝑛𝑚} ∈ Fin)
106, 8, 9syl2anc 579 . . . . 5 ((𝜑𝑚𝐴) → {𝑛 ∈ ℕ ∣ 𝑛𝑚} ∈ Fin)
11 musumsum.5 . . . . 5 ((𝜑𝑚𝐴) → 𝐵 ∈ ℂ)
12 elrabi 3580 . . . . . . . 8 (𝑘 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑚} → 𝑘 ∈ ℕ)
13 mucl 25280 . . . . . . . 8 (𝑘 ∈ ℕ → (μ‘𝑘) ∈ ℤ)
1412, 13syl 17 . . . . . . 7 (𝑘 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑚} → (μ‘𝑘) ∈ ℤ)
1514zcnd 11811 . . . . . 6 (𝑘 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑚} → (μ‘𝑘) ∈ ℂ)
1615adantl 475 . . . . 5 (((𝜑𝑚𝐴) ∧ 𝑘 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑚}) → (μ‘𝑘) ∈ ℂ)
1710, 11, 16fsummulc1 14891 . . . 4 ((𝜑𝑚𝐴) → (Σ𝑘 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑚} (μ‘𝑘) · 𝐵) = Σ𝑘 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑚} ((μ‘𝑘) · 𝐵))
18 ovif 6997 . . . . 5 (if(𝑚 = 1, 1, 0) · 𝐵) = if(𝑚 = 1, (1 · 𝐵), (0 · 𝐵))
19 velsn 4413 . . . . . . . . 9 (𝑚 ∈ {1} ↔ 𝑚 = 1)
2019bicomi 216 . . . . . . . 8 (𝑚 = 1 ↔ 𝑚 ∈ {1})
2120a1i 11 . . . . . . 7 (𝐵 ∈ ℂ → (𝑚 = 1 ↔ 𝑚 ∈ {1}))
22 mulid2 10355 . . . . . . 7 (𝐵 ∈ ℂ → (1 · 𝐵) = 𝐵)
23 mul02 10533 . . . . . . 7 (𝐵 ∈ ℂ → (0 · 𝐵) = 0)
2421, 22, 23ifbieq12d 4333 . . . . . 6 (𝐵 ∈ ℂ → if(𝑚 = 1, (1 · 𝐵), (0 · 𝐵)) = if(𝑚 ∈ {1}, 𝐵, 0))
2511, 24syl 17 . . . . 5 ((𝜑𝑚𝐴) → if(𝑚 = 1, (1 · 𝐵), (0 · 𝐵)) = if(𝑚 ∈ {1}, 𝐵, 0))
2618, 25syl5eq 2873 . . . 4 ((𝜑𝑚𝐴) → (if(𝑚 = 1, 1, 0) · 𝐵) = if(𝑚 ∈ {1}, 𝐵, 0))
275, 17, 263eqtr3d 2869 . . 3 ((𝜑𝑚𝐴) → Σ𝑘 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑚} ((μ‘𝑘) · 𝐵) = if(𝑚 ∈ {1}, 𝐵, 0))
2827sumeq2dv 14810 . 2 (𝜑 → Σ𝑚𝐴 Σ𝑘 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑚} ((μ‘𝑘) · 𝐵) = Σ𝑚𝐴 if(𝑚 ∈ {1}, 𝐵, 0))
29 musumsum.4 . . . 4 (𝜑 → 1 ∈ 𝐴)
3029snssd 4558 . . 3 (𝜑 → {1} ⊆ 𝐴)
3130sselda 3827 . . . . 5 ((𝜑𝑚 ∈ {1}) → 𝑚𝐴)
3231, 11syldan 585 . . . 4 ((𝜑𝑚 ∈ {1}) → 𝐵 ∈ ℂ)
3332ralrimiva 3175 . . 3 (𝜑 → ∀𝑚 ∈ {1}𝐵 ∈ ℂ)
34 musumsum.2 . . . 4 (𝜑𝐴 ∈ Fin)
3534olcd 905 . . 3 (𝜑 → (𝐴 ⊆ (ℤ‘1) ∨ 𝐴 ∈ Fin))
36 sumss2 14834 . . 3 ((({1} ⊆ 𝐴 ∧ ∀𝑚 ∈ {1}𝐵 ∈ ℂ) ∧ (𝐴 ⊆ (ℤ‘1) ∨ 𝐴 ∈ Fin)) → Σ𝑚 ∈ {1}𝐵 = Σ𝑚𝐴 if(𝑚 ∈ {1}, 𝐵, 0))
3730, 33, 35, 36syl21anc 871 . 2 (𝜑 → Σ𝑚 ∈ {1}𝐵 = Σ𝑚𝐴 if(𝑚 ∈ {1}, 𝐵, 0))
38 musumsum.1 . . . . 5 (𝑚 = 1 → 𝐵 = 𝐶)
3938eleq1d 2891 . . . 4 (𝑚 = 1 → (𝐵 ∈ ℂ ↔ 𝐶 ∈ ℂ))
4011ralrimiva 3175 . . . 4 (𝜑 → ∀𝑚𝐴 𝐵 ∈ ℂ)
4139, 40, 29rspcdva 3532 . . 3 (𝜑𝐶 ∈ ℂ)
4238sumsn 14852 . . 3 ((1 ∈ 𝐴𝐶 ∈ ℂ) → Σ𝑚 ∈ {1}𝐵 = 𝐶)
4329, 41, 42syl2anc 579 . 2 (𝜑 → Σ𝑚 ∈ {1}𝐵 = 𝐶)
4428, 37, 433eqtr2d 2867 1 (𝜑 → Σ𝑚𝐴 Σ𝑘 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑚} ((μ‘𝑘) · 𝐵) = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  wo 878   = wceq 1656  wcel 2164  wral 3117  {crab 3121  wss 3798  ifcif 4306  {csn 4397   class class class wbr 4873  cfv 6123  (class class class)co 6905  Fincfn 8222  cc 10250  0cc0 10252  1c1 10253   · cmul 10257  cn 11350  cz 11704  cuz 11968  ...cfz 12619  Σcsu 14793  cdvds 15357  μcmu 25234
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-rep 4994  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-inf2 8815  ax-cnex 10308  ax-resscn 10309  ax-1cn 10310  ax-icn 10311  ax-addcl 10312  ax-addrcl 10313  ax-mulcl 10314  ax-mulrcl 10315  ax-mulcom 10316  ax-addass 10317  ax-mulass 10318  ax-distr 10319  ax-i2m1 10320  ax-1ne0 10321  ax-1rid 10322  ax-rnegex 10323  ax-rrecex 10324  ax-cnre 10325  ax-pre-lttri 10326  ax-pre-lttrn 10327  ax-pre-ltadd 10328  ax-pre-mulgt0 10329  ax-pre-sup 10330
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-fal 1670  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4659  df-int 4698  df-iun 4742  df-disj 4842  df-br 4874  df-opab 4936  df-mpt 4953  df-tr 4976  df-id 5250  df-eprel 5255  df-po 5263  df-so 5264  df-fr 5301  df-se 5302  df-we 5303  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-pred 5920  df-ord 5966  df-on 5967  df-lim 5968  df-suc 5969  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-isom 6132  df-riota 6866  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-om 7327  df-1st 7428  df-2nd 7429  df-wrecs 7672  df-recs 7734  df-rdg 7772  df-1o 7826  df-2o 7827  df-oadd 7830  df-er 8009  df-map 8124  df-en 8223  df-dom 8224  df-sdom 8225  df-fin 8226  df-sup 8617  df-inf 8618  df-oi 8684  df-card 9078  df-cda 9305  df-pnf 10393  df-mnf 10394  df-xr 10395  df-ltxr 10396  df-le 10397  df-sub 10587  df-neg 10588  df-div 11010  df-nn 11351  df-2 11414  df-3 11415  df-n0 11619  df-xnn0 11691  df-z 11705  df-uz 11969  df-q 12072  df-rp 12113  df-fz 12620  df-fzo 12761  df-fl 12888  df-mod 12964  df-seq 13096  df-exp 13155  df-fac 13354  df-bc 13383  df-hash 13411  df-cj 14216  df-re 14217  df-im 14218  df-sqrt 14352  df-abs 14353  df-clim 14596  df-sum 14794  df-dvds 15358  df-gcd 15590  df-prm 15758  df-pc 15913  df-mu 25240
This theorem is referenced by:  dchrmusum2  25596  dchrvmasum2lem  25598  mudivsum  25632  mulogsum  25634  mulog2sumlem2  25637
  Copyright terms: Public domain W3C validator