MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  musumsum Structured version   Visualization version   GIF version

Theorem musumsum 26246
Description: Evaluate a collapsing sum over the Möbius function. (Contributed by Mario Carneiro, 4-May-2016.)
Hypotheses
Ref Expression
musumsum.1 (𝑚 = 1 → 𝐵 = 𝐶)
musumsum.2 (𝜑𝐴 ∈ Fin)
musumsum.3 (𝜑𝐴 ⊆ ℕ)
musumsum.4 (𝜑 → 1 ∈ 𝐴)
musumsum.5 ((𝜑𝑚𝐴) → 𝐵 ∈ ℂ)
Assertion
Ref Expression
musumsum (𝜑 → Σ𝑚𝐴 Σ𝑘 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑚} ((μ‘𝑘) · 𝐵) = 𝐶)
Distinct variable groups:   𝑘,𝑚,𝐴   𝑘,𝑛,𝑚   𝜑,𝑘,𝑚   𝐵,𝑘   𝐶,𝑚
Allowed substitution hints:   𝜑(𝑛)   𝐴(𝑛)   𝐵(𝑚,𝑛)   𝐶(𝑘,𝑛)

Proof of Theorem musumsum
StepHypRef Expression
1 musumsum.3 . . . . . . 7 (𝜑𝐴 ⊆ ℕ)
21sselda 3917 . . . . . 6 ((𝜑𝑚𝐴) → 𝑚 ∈ ℕ)
3 musum 26245 . . . . . 6 (𝑚 ∈ ℕ → Σ𝑘 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑚} (μ‘𝑘) = if(𝑚 = 1, 1, 0))
42, 3syl 17 . . . . 5 ((𝜑𝑚𝐴) → Σ𝑘 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑚} (μ‘𝑘) = if(𝑚 = 1, 1, 0))
54oveq1d 7270 . . . 4 ((𝜑𝑚𝐴) → (Σ𝑘 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑚} (μ‘𝑘) · 𝐵) = (if(𝑚 = 1, 1, 0) · 𝐵))
6 fzfid 13621 . . . . . 6 ((𝜑𝑚𝐴) → (1...𝑚) ∈ Fin)
7 dvdsssfz1 15955 . . . . . . 7 (𝑚 ∈ ℕ → {𝑛 ∈ ℕ ∣ 𝑛𝑚} ⊆ (1...𝑚))
82, 7syl 17 . . . . . 6 ((𝜑𝑚𝐴) → {𝑛 ∈ ℕ ∣ 𝑛𝑚} ⊆ (1...𝑚))
96, 8ssfid 8971 . . . . 5 ((𝜑𝑚𝐴) → {𝑛 ∈ ℕ ∣ 𝑛𝑚} ∈ Fin)
10 musumsum.5 . . . . 5 ((𝜑𝑚𝐴) → 𝐵 ∈ ℂ)
11 elrabi 3611 . . . . . . . 8 (𝑘 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑚} → 𝑘 ∈ ℕ)
12 mucl 26195 . . . . . . . 8 (𝑘 ∈ ℕ → (μ‘𝑘) ∈ ℤ)
1311, 12syl 17 . . . . . . 7 (𝑘 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑚} → (μ‘𝑘) ∈ ℤ)
1413zcnd 12356 . . . . . 6 (𝑘 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑚} → (μ‘𝑘) ∈ ℂ)
1514adantl 481 . . . . 5 (((𝜑𝑚𝐴) ∧ 𝑘 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑚}) → (μ‘𝑘) ∈ ℂ)
169, 10, 15fsummulc1 15425 . . . 4 ((𝜑𝑚𝐴) → (Σ𝑘 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑚} (μ‘𝑘) · 𝐵) = Σ𝑘 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑚} ((μ‘𝑘) · 𝐵))
17 ovif 7350 . . . . 5 (if(𝑚 = 1, 1, 0) · 𝐵) = if(𝑚 = 1, (1 · 𝐵), (0 · 𝐵))
18 velsn 4574 . . . . . . . . 9 (𝑚 ∈ {1} ↔ 𝑚 = 1)
1918bicomi 223 . . . . . . . 8 (𝑚 = 1 ↔ 𝑚 ∈ {1})
2019a1i 11 . . . . . . 7 (𝐵 ∈ ℂ → (𝑚 = 1 ↔ 𝑚 ∈ {1}))
21 mulid2 10905 . . . . . . 7 (𝐵 ∈ ℂ → (1 · 𝐵) = 𝐵)
22 mul02 11083 . . . . . . 7 (𝐵 ∈ ℂ → (0 · 𝐵) = 0)
2320, 21, 22ifbieq12d 4484 . . . . . 6 (𝐵 ∈ ℂ → if(𝑚 = 1, (1 · 𝐵), (0 · 𝐵)) = if(𝑚 ∈ {1}, 𝐵, 0))
2410, 23syl 17 . . . . 5 ((𝜑𝑚𝐴) → if(𝑚 = 1, (1 · 𝐵), (0 · 𝐵)) = if(𝑚 ∈ {1}, 𝐵, 0))
2517, 24syl5eq 2791 . . . 4 ((𝜑𝑚𝐴) → (if(𝑚 = 1, 1, 0) · 𝐵) = if(𝑚 ∈ {1}, 𝐵, 0))
265, 16, 253eqtr3d 2786 . . 3 ((𝜑𝑚𝐴) → Σ𝑘 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑚} ((μ‘𝑘) · 𝐵) = if(𝑚 ∈ {1}, 𝐵, 0))
2726sumeq2dv 15343 . 2 (𝜑 → Σ𝑚𝐴 Σ𝑘 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑚} ((μ‘𝑘) · 𝐵) = Σ𝑚𝐴 if(𝑚 ∈ {1}, 𝐵, 0))
28 musumsum.4 . . . 4 (𝜑 → 1 ∈ 𝐴)
2928snssd 4739 . . 3 (𝜑 → {1} ⊆ 𝐴)
3029sselda 3917 . . . . 5 ((𝜑𝑚 ∈ {1}) → 𝑚𝐴)
3130, 10syldan 590 . . . 4 ((𝜑𝑚 ∈ {1}) → 𝐵 ∈ ℂ)
3231ralrimiva 3107 . . 3 (𝜑 → ∀𝑚 ∈ {1}𝐵 ∈ ℂ)
33 musumsum.2 . . . 4 (𝜑𝐴 ∈ Fin)
3433olcd 870 . . 3 (𝜑 → (𝐴 ⊆ (ℤ‘1) ∨ 𝐴 ∈ Fin))
35 sumss2 15366 . . 3 ((({1} ⊆ 𝐴 ∧ ∀𝑚 ∈ {1}𝐵 ∈ ℂ) ∧ (𝐴 ⊆ (ℤ‘1) ∨ 𝐴 ∈ Fin)) → Σ𝑚 ∈ {1}𝐵 = Σ𝑚𝐴 if(𝑚 ∈ {1}, 𝐵, 0))
3629, 32, 34, 35syl21anc 834 . 2 (𝜑 → Σ𝑚 ∈ {1}𝐵 = Σ𝑚𝐴 if(𝑚 ∈ {1}, 𝐵, 0))
37 musumsum.1 . . . . 5 (𝑚 = 1 → 𝐵 = 𝐶)
3837eleq1d 2823 . . . 4 (𝑚 = 1 → (𝐵 ∈ ℂ ↔ 𝐶 ∈ ℂ))
3910ralrimiva 3107 . . . 4 (𝜑 → ∀𝑚𝐴 𝐵 ∈ ℂ)
4038, 39, 28rspcdva 3554 . . 3 (𝜑𝐶 ∈ ℂ)
4137sumsn 15386 . . 3 ((1 ∈ 𝐴𝐶 ∈ ℂ) → Σ𝑚 ∈ {1}𝐵 = 𝐶)
4228, 40, 41syl2anc 583 . 2 (𝜑 → Σ𝑚 ∈ {1}𝐵 = 𝐶)
4327, 36, 423eqtr2d 2784 1 (𝜑 → Σ𝑚𝐴 Σ𝑘 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑚} ((μ‘𝑘) · 𝐵) = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wo 843   = wceq 1539  wcel 2108  wral 3063  {crab 3067  wss 3883  ifcif 4456  {csn 4558   class class class wbr 5070  cfv 6418  (class class class)co 7255  Fincfn 8691  cc 10800  0cc0 10802  1c1 10803   · cmul 10807  cn 11903  cz 12249  cuz 12511  ...cfz 13168  Σcsu 15325  cdvds 15891  μcmu 26149
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-disj 5036  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-oadd 8271  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-oi 9199  df-dju 9590  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-xnn0 12236  df-z 12250  df-uz 12512  df-q 12618  df-rp 12660  df-fz 13169  df-fzo 13312  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-fac 13916  df-bc 13945  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-sum 15326  df-dvds 15892  df-gcd 16130  df-prm 16305  df-pc 16466  df-mu 26155
This theorem is referenced by:  dchrmusum2  26547  dchrvmasum2lem  26549  mudivsum  26583  mulogsum  26585  mulog2sumlem2  26588
  Copyright terms: Public domain W3C validator