Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > musumsum | Structured version Visualization version GIF version |
Description: Evaluate a collapsing sum over the Möbius function. (Contributed by Mario Carneiro, 4-May-2016.) |
Ref | Expression |
---|---|
musumsum.1 | ⊢ (𝑚 = 1 → 𝐵 = 𝐶) |
musumsum.2 | ⊢ (𝜑 → 𝐴 ∈ Fin) |
musumsum.3 | ⊢ (𝜑 → 𝐴 ⊆ ℕ) |
musumsum.4 | ⊢ (𝜑 → 1 ∈ 𝐴) |
musumsum.5 | ⊢ ((𝜑 ∧ 𝑚 ∈ 𝐴) → 𝐵 ∈ ℂ) |
Ref | Expression |
---|---|
musumsum | ⊢ (𝜑 → Σ𝑚 ∈ 𝐴 Σ𝑘 ∈ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑚} ((μ‘𝑘) · 𝐵) = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | musumsum.3 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ⊆ ℕ) | |
2 | 1 | sselda 3877 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑚 ∈ 𝐴) → 𝑚 ∈ ℕ) |
3 | musum 25928 | . . . . . 6 ⊢ (𝑚 ∈ ℕ → Σ𝑘 ∈ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑚} (μ‘𝑘) = if(𝑚 = 1, 1, 0)) | |
4 | 2, 3 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝑚 ∈ 𝐴) → Σ𝑘 ∈ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑚} (μ‘𝑘) = if(𝑚 = 1, 1, 0)) |
5 | 4 | oveq1d 7185 | . . . 4 ⊢ ((𝜑 ∧ 𝑚 ∈ 𝐴) → (Σ𝑘 ∈ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑚} (μ‘𝑘) · 𝐵) = (if(𝑚 = 1, 1, 0) · 𝐵)) |
6 | fzfid 13432 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑚 ∈ 𝐴) → (1...𝑚) ∈ Fin) | |
7 | dvdsssfz1 15763 | . . . . . . 7 ⊢ (𝑚 ∈ ℕ → {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑚} ⊆ (1...𝑚)) | |
8 | 2, 7 | syl 17 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑚 ∈ 𝐴) → {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑚} ⊆ (1...𝑚)) |
9 | 6, 8 | ssfid 8819 | . . . . 5 ⊢ ((𝜑 ∧ 𝑚 ∈ 𝐴) → {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑚} ∈ Fin) |
10 | musumsum.5 | . . . . 5 ⊢ ((𝜑 ∧ 𝑚 ∈ 𝐴) → 𝐵 ∈ ℂ) | |
11 | elrabi 3582 | . . . . . . . 8 ⊢ (𝑘 ∈ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑚} → 𝑘 ∈ ℕ) | |
12 | mucl 25878 | . . . . . . . 8 ⊢ (𝑘 ∈ ℕ → (μ‘𝑘) ∈ ℤ) | |
13 | 11, 12 | syl 17 | . . . . . . 7 ⊢ (𝑘 ∈ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑚} → (μ‘𝑘) ∈ ℤ) |
14 | 13 | zcnd 12169 | . . . . . 6 ⊢ (𝑘 ∈ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑚} → (μ‘𝑘) ∈ ℂ) |
15 | 14 | adantl 485 | . . . . 5 ⊢ (((𝜑 ∧ 𝑚 ∈ 𝐴) ∧ 𝑘 ∈ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑚}) → (μ‘𝑘) ∈ ℂ) |
16 | 9, 10, 15 | fsummulc1 15233 | . . . 4 ⊢ ((𝜑 ∧ 𝑚 ∈ 𝐴) → (Σ𝑘 ∈ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑚} (μ‘𝑘) · 𝐵) = Σ𝑘 ∈ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑚} ((μ‘𝑘) · 𝐵)) |
17 | ovif 7265 | . . . . 5 ⊢ (if(𝑚 = 1, 1, 0) · 𝐵) = if(𝑚 = 1, (1 · 𝐵), (0 · 𝐵)) | |
18 | velsn 4532 | . . . . . . . . 9 ⊢ (𝑚 ∈ {1} ↔ 𝑚 = 1) | |
19 | 18 | bicomi 227 | . . . . . . . 8 ⊢ (𝑚 = 1 ↔ 𝑚 ∈ {1}) |
20 | 19 | a1i 11 | . . . . . . 7 ⊢ (𝐵 ∈ ℂ → (𝑚 = 1 ↔ 𝑚 ∈ {1})) |
21 | mulid2 10718 | . . . . . . 7 ⊢ (𝐵 ∈ ℂ → (1 · 𝐵) = 𝐵) | |
22 | mul02 10896 | . . . . . . 7 ⊢ (𝐵 ∈ ℂ → (0 · 𝐵) = 0) | |
23 | 20, 21, 22 | ifbieq12d 4442 | . . . . . 6 ⊢ (𝐵 ∈ ℂ → if(𝑚 = 1, (1 · 𝐵), (0 · 𝐵)) = if(𝑚 ∈ {1}, 𝐵, 0)) |
24 | 10, 23 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝑚 ∈ 𝐴) → if(𝑚 = 1, (1 · 𝐵), (0 · 𝐵)) = if(𝑚 ∈ {1}, 𝐵, 0)) |
25 | 17, 24 | syl5eq 2785 | . . . 4 ⊢ ((𝜑 ∧ 𝑚 ∈ 𝐴) → (if(𝑚 = 1, 1, 0) · 𝐵) = if(𝑚 ∈ {1}, 𝐵, 0)) |
26 | 5, 16, 25 | 3eqtr3d 2781 | . . 3 ⊢ ((𝜑 ∧ 𝑚 ∈ 𝐴) → Σ𝑘 ∈ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑚} ((μ‘𝑘) · 𝐵) = if(𝑚 ∈ {1}, 𝐵, 0)) |
27 | 26 | sumeq2dv 15153 | . 2 ⊢ (𝜑 → Σ𝑚 ∈ 𝐴 Σ𝑘 ∈ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑚} ((μ‘𝑘) · 𝐵) = Σ𝑚 ∈ 𝐴 if(𝑚 ∈ {1}, 𝐵, 0)) |
28 | musumsum.4 | . . . 4 ⊢ (𝜑 → 1 ∈ 𝐴) | |
29 | 28 | snssd 4697 | . . 3 ⊢ (𝜑 → {1} ⊆ 𝐴) |
30 | 29 | sselda 3877 | . . . . 5 ⊢ ((𝜑 ∧ 𝑚 ∈ {1}) → 𝑚 ∈ 𝐴) |
31 | 30, 10 | syldan 594 | . . . 4 ⊢ ((𝜑 ∧ 𝑚 ∈ {1}) → 𝐵 ∈ ℂ) |
32 | 31 | ralrimiva 3096 | . . 3 ⊢ (𝜑 → ∀𝑚 ∈ {1}𝐵 ∈ ℂ) |
33 | musumsum.2 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
34 | 33 | olcd 873 | . . 3 ⊢ (𝜑 → (𝐴 ⊆ (ℤ≥‘1) ∨ 𝐴 ∈ Fin)) |
35 | sumss2 15176 | . . 3 ⊢ ((({1} ⊆ 𝐴 ∧ ∀𝑚 ∈ {1}𝐵 ∈ ℂ) ∧ (𝐴 ⊆ (ℤ≥‘1) ∨ 𝐴 ∈ Fin)) → Σ𝑚 ∈ {1}𝐵 = Σ𝑚 ∈ 𝐴 if(𝑚 ∈ {1}, 𝐵, 0)) | |
36 | 29, 32, 34, 35 | syl21anc 837 | . 2 ⊢ (𝜑 → Σ𝑚 ∈ {1}𝐵 = Σ𝑚 ∈ 𝐴 if(𝑚 ∈ {1}, 𝐵, 0)) |
37 | musumsum.1 | . . . . 5 ⊢ (𝑚 = 1 → 𝐵 = 𝐶) | |
38 | 37 | eleq1d 2817 | . . . 4 ⊢ (𝑚 = 1 → (𝐵 ∈ ℂ ↔ 𝐶 ∈ ℂ)) |
39 | 10 | ralrimiva 3096 | . . . 4 ⊢ (𝜑 → ∀𝑚 ∈ 𝐴 𝐵 ∈ ℂ) |
40 | 38, 39, 28 | rspcdva 3528 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℂ) |
41 | 37 | sumsn 15194 | . . 3 ⊢ ((1 ∈ 𝐴 ∧ 𝐶 ∈ ℂ) → Σ𝑚 ∈ {1}𝐵 = 𝐶) |
42 | 28, 40, 41 | syl2anc 587 | . 2 ⊢ (𝜑 → Σ𝑚 ∈ {1}𝐵 = 𝐶) |
43 | 27, 36, 42 | 3eqtr2d 2779 | 1 ⊢ (𝜑 → Σ𝑚 ∈ 𝐴 Σ𝑘 ∈ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑚} ((μ‘𝑘) · 𝐵) = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 ∨ wo 846 = wceq 1542 ∈ wcel 2114 ∀wral 3053 {crab 3057 ⊆ wss 3843 ifcif 4414 {csn 4516 class class class wbr 5030 ‘cfv 6339 (class class class)co 7170 Fincfn 8555 ℂcc 10613 0cc0 10615 1c1 10616 · cmul 10620 ℕcn 11716 ℤcz 12062 ℤ≥cuz 12324 ...cfz 12981 Σcsu 15135 ∥ cdvds 15699 μcmu 25832 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-rep 5154 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7479 ax-inf2 9177 ax-cnex 10671 ax-resscn 10672 ax-1cn 10673 ax-icn 10674 ax-addcl 10675 ax-addrcl 10676 ax-mulcl 10677 ax-mulrcl 10678 ax-mulcom 10679 ax-addass 10680 ax-mulass 10681 ax-distr 10682 ax-i2m1 10683 ax-1ne0 10684 ax-1rid 10685 ax-rnegex 10686 ax-rrecex 10687 ax-cnre 10688 ax-pre-lttri 10689 ax-pre-lttrn 10690 ax-pre-ltadd 10691 ax-pre-mulgt0 10692 ax-pre-sup 10693 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-reu 3060 df-rmo 3061 df-rab 3062 df-v 3400 df-sbc 3681 df-csb 3791 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-pss 3862 df-nul 4212 df-if 4415 df-pw 4490 df-sn 4517 df-pr 4519 df-tp 4521 df-op 4523 df-uni 4797 df-int 4837 df-iun 4883 df-disj 4996 df-br 5031 df-opab 5093 df-mpt 5111 df-tr 5137 df-id 5429 df-eprel 5434 df-po 5442 df-so 5443 df-fr 5483 df-se 5484 df-we 5485 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6129 df-ord 6175 df-on 6176 df-lim 6177 df-suc 6178 df-iota 6297 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-isom 6348 df-riota 7127 df-ov 7173 df-oprab 7174 df-mpo 7175 df-om 7600 df-1st 7714 df-2nd 7715 df-wrecs 7976 df-recs 8037 df-rdg 8075 df-1o 8131 df-2o 8132 df-oadd 8135 df-er 8320 df-map 8439 df-en 8556 df-dom 8557 df-sdom 8558 df-fin 8559 df-sup 8979 df-inf 8980 df-oi 9047 df-dju 9403 df-card 9441 df-pnf 10755 df-mnf 10756 df-xr 10757 df-ltxr 10758 df-le 10759 df-sub 10950 df-neg 10951 df-div 11376 df-nn 11717 df-2 11779 df-3 11780 df-n0 11977 df-xnn0 12049 df-z 12063 df-uz 12325 df-q 12431 df-rp 12473 df-fz 12982 df-fzo 13125 df-fl 13253 df-mod 13329 df-seq 13461 df-exp 13522 df-fac 13726 df-bc 13755 df-hash 13783 df-cj 14548 df-re 14549 df-im 14550 df-sqrt 14684 df-abs 14685 df-clim 14935 df-sum 15136 df-dvds 15700 df-gcd 15938 df-prm 16113 df-pc 16274 df-mu 25838 |
This theorem is referenced by: dchrmusum2 26230 dchrvmasum2lem 26232 mudivsum 26266 mulogsum 26268 mulog2sumlem2 26271 |
Copyright terms: Public domain | W3C validator |