![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > musumsum | Structured version Visualization version GIF version |
Description: Evaluate a collapsing sum over the Möbius function. (Contributed by Mario Carneiro, 4-May-2016.) |
Ref | Expression |
---|---|
musumsum.1 | ⊢ (𝑚 = 1 → 𝐵 = 𝐶) |
musumsum.2 | ⊢ (𝜑 → 𝐴 ∈ Fin) |
musumsum.3 | ⊢ (𝜑 → 𝐴 ⊆ ℕ) |
musumsum.4 | ⊢ (𝜑 → 1 ∈ 𝐴) |
musumsum.5 | ⊢ ((𝜑 ∧ 𝑚 ∈ 𝐴) → 𝐵 ∈ ℂ) |
Ref | Expression |
---|---|
musumsum | ⊢ (𝜑 → Σ𝑚 ∈ 𝐴 Σ𝑘 ∈ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑚} ((μ‘𝑘) · 𝐵) = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | musumsum.3 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ⊆ ℕ) | |
2 | 1 | sselda 3827 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑚 ∈ 𝐴) → 𝑚 ∈ ℕ) |
3 | musum 25330 | . . . . . 6 ⊢ (𝑚 ∈ ℕ → Σ𝑘 ∈ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑚} (μ‘𝑘) = if(𝑚 = 1, 1, 0)) | |
4 | 2, 3 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝑚 ∈ 𝐴) → Σ𝑘 ∈ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑚} (μ‘𝑘) = if(𝑚 = 1, 1, 0)) |
5 | 4 | oveq1d 6920 | . . . 4 ⊢ ((𝜑 ∧ 𝑚 ∈ 𝐴) → (Σ𝑘 ∈ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑚} (μ‘𝑘) · 𝐵) = (if(𝑚 = 1, 1, 0) · 𝐵)) |
6 | fzfid 13067 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑚 ∈ 𝐴) → (1...𝑚) ∈ Fin) | |
7 | dvdsssfz1 15417 | . . . . . . 7 ⊢ (𝑚 ∈ ℕ → {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑚} ⊆ (1...𝑚)) | |
8 | 2, 7 | syl 17 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑚 ∈ 𝐴) → {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑚} ⊆ (1...𝑚)) |
9 | ssfi 8449 | . . . . . 6 ⊢ (((1...𝑚) ∈ Fin ∧ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑚} ⊆ (1...𝑚)) → {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑚} ∈ Fin) | |
10 | 6, 8, 9 | syl2anc 579 | . . . . 5 ⊢ ((𝜑 ∧ 𝑚 ∈ 𝐴) → {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑚} ∈ Fin) |
11 | musumsum.5 | . . . . 5 ⊢ ((𝜑 ∧ 𝑚 ∈ 𝐴) → 𝐵 ∈ ℂ) | |
12 | elrabi 3580 | . . . . . . . 8 ⊢ (𝑘 ∈ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑚} → 𝑘 ∈ ℕ) | |
13 | mucl 25280 | . . . . . . . 8 ⊢ (𝑘 ∈ ℕ → (μ‘𝑘) ∈ ℤ) | |
14 | 12, 13 | syl 17 | . . . . . . 7 ⊢ (𝑘 ∈ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑚} → (μ‘𝑘) ∈ ℤ) |
15 | 14 | zcnd 11811 | . . . . . 6 ⊢ (𝑘 ∈ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑚} → (μ‘𝑘) ∈ ℂ) |
16 | 15 | adantl 475 | . . . . 5 ⊢ (((𝜑 ∧ 𝑚 ∈ 𝐴) ∧ 𝑘 ∈ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑚}) → (μ‘𝑘) ∈ ℂ) |
17 | 10, 11, 16 | fsummulc1 14891 | . . . 4 ⊢ ((𝜑 ∧ 𝑚 ∈ 𝐴) → (Σ𝑘 ∈ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑚} (μ‘𝑘) · 𝐵) = Σ𝑘 ∈ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑚} ((μ‘𝑘) · 𝐵)) |
18 | ovif 6997 | . . . . 5 ⊢ (if(𝑚 = 1, 1, 0) · 𝐵) = if(𝑚 = 1, (1 · 𝐵), (0 · 𝐵)) | |
19 | velsn 4413 | . . . . . . . . 9 ⊢ (𝑚 ∈ {1} ↔ 𝑚 = 1) | |
20 | 19 | bicomi 216 | . . . . . . . 8 ⊢ (𝑚 = 1 ↔ 𝑚 ∈ {1}) |
21 | 20 | a1i 11 | . . . . . . 7 ⊢ (𝐵 ∈ ℂ → (𝑚 = 1 ↔ 𝑚 ∈ {1})) |
22 | mulid2 10355 | . . . . . . 7 ⊢ (𝐵 ∈ ℂ → (1 · 𝐵) = 𝐵) | |
23 | mul02 10533 | . . . . . . 7 ⊢ (𝐵 ∈ ℂ → (0 · 𝐵) = 0) | |
24 | 21, 22, 23 | ifbieq12d 4333 | . . . . . 6 ⊢ (𝐵 ∈ ℂ → if(𝑚 = 1, (1 · 𝐵), (0 · 𝐵)) = if(𝑚 ∈ {1}, 𝐵, 0)) |
25 | 11, 24 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝑚 ∈ 𝐴) → if(𝑚 = 1, (1 · 𝐵), (0 · 𝐵)) = if(𝑚 ∈ {1}, 𝐵, 0)) |
26 | 18, 25 | syl5eq 2873 | . . . 4 ⊢ ((𝜑 ∧ 𝑚 ∈ 𝐴) → (if(𝑚 = 1, 1, 0) · 𝐵) = if(𝑚 ∈ {1}, 𝐵, 0)) |
27 | 5, 17, 26 | 3eqtr3d 2869 | . . 3 ⊢ ((𝜑 ∧ 𝑚 ∈ 𝐴) → Σ𝑘 ∈ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑚} ((μ‘𝑘) · 𝐵) = if(𝑚 ∈ {1}, 𝐵, 0)) |
28 | 27 | sumeq2dv 14810 | . 2 ⊢ (𝜑 → Σ𝑚 ∈ 𝐴 Σ𝑘 ∈ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑚} ((μ‘𝑘) · 𝐵) = Σ𝑚 ∈ 𝐴 if(𝑚 ∈ {1}, 𝐵, 0)) |
29 | musumsum.4 | . . . 4 ⊢ (𝜑 → 1 ∈ 𝐴) | |
30 | 29 | snssd 4558 | . . 3 ⊢ (𝜑 → {1} ⊆ 𝐴) |
31 | 30 | sselda 3827 | . . . . 5 ⊢ ((𝜑 ∧ 𝑚 ∈ {1}) → 𝑚 ∈ 𝐴) |
32 | 31, 11 | syldan 585 | . . . 4 ⊢ ((𝜑 ∧ 𝑚 ∈ {1}) → 𝐵 ∈ ℂ) |
33 | 32 | ralrimiva 3175 | . . 3 ⊢ (𝜑 → ∀𝑚 ∈ {1}𝐵 ∈ ℂ) |
34 | musumsum.2 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
35 | 34 | olcd 905 | . . 3 ⊢ (𝜑 → (𝐴 ⊆ (ℤ≥‘1) ∨ 𝐴 ∈ Fin)) |
36 | sumss2 14834 | . . 3 ⊢ ((({1} ⊆ 𝐴 ∧ ∀𝑚 ∈ {1}𝐵 ∈ ℂ) ∧ (𝐴 ⊆ (ℤ≥‘1) ∨ 𝐴 ∈ Fin)) → Σ𝑚 ∈ {1}𝐵 = Σ𝑚 ∈ 𝐴 if(𝑚 ∈ {1}, 𝐵, 0)) | |
37 | 30, 33, 35, 36 | syl21anc 871 | . 2 ⊢ (𝜑 → Σ𝑚 ∈ {1}𝐵 = Σ𝑚 ∈ 𝐴 if(𝑚 ∈ {1}, 𝐵, 0)) |
38 | musumsum.1 | . . . . 5 ⊢ (𝑚 = 1 → 𝐵 = 𝐶) | |
39 | 38 | eleq1d 2891 | . . . 4 ⊢ (𝑚 = 1 → (𝐵 ∈ ℂ ↔ 𝐶 ∈ ℂ)) |
40 | 11 | ralrimiva 3175 | . . . 4 ⊢ (𝜑 → ∀𝑚 ∈ 𝐴 𝐵 ∈ ℂ) |
41 | 39, 40, 29 | rspcdva 3532 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℂ) |
42 | 38 | sumsn 14852 | . . 3 ⊢ ((1 ∈ 𝐴 ∧ 𝐶 ∈ ℂ) → Σ𝑚 ∈ {1}𝐵 = 𝐶) |
43 | 29, 41, 42 | syl2anc 579 | . 2 ⊢ (𝜑 → Σ𝑚 ∈ {1}𝐵 = 𝐶) |
44 | 28, 37, 43 | 3eqtr2d 2867 | 1 ⊢ (𝜑 → Σ𝑚 ∈ 𝐴 Σ𝑘 ∈ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑚} ((μ‘𝑘) · 𝐵) = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 ∨ wo 878 = wceq 1656 ∈ wcel 2164 ∀wral 3117 {crab 3121 ⊆ wss 3798 ifcif 4306 {csn 4397 class class class wbr 4873 ‘cfv 6123 (class class class)co 6905 Fincfn 8222 ℂcc 10250 0cc0 10252 1c1 10253 · cmul 10257 ℕcn 11350 ℤcz 11704 ℤ≥cuz 11968 ...cfz 12619 Σcsu 14793 ∥ cdvds 15357 μcmu 25234 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-rep 4994 ax-sep 5005 ax-nul 5013 ax-pow 5065 ax-pr 5127 ax-un 7209 ax-inf2 8815 ax-cnex 10308 ax-resscn 10309 ax-1cn 10310 ax-icn 10311 ax-addcl 10312 ax-addrcl 10313 ax-mulcl 10314 ax-mulrcl 10315 ax-mulcom 10316 ax-addass 10317 ax-mulass 10318 ax-distr 10319 ax-i2m1 10320 ax-1ne0 10321 ax-1rid 10322 ax-rnegex 10323 ax-rrecex 10324 ax-cnre 10325 ax-pre-lttri 10326 ax-pre-lttrn 10327 ax-pre-ltadd 10328 ax-pre-mulgt0 10329 ax-pre-sup 10330 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3or 1112 df-3an 1113 df-tru 1660 df-fal 1670 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-nel 3103 df-ral 3122 df-rex 3123 df-reu 3124 df-rmo 3125 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-pss 3814 df-nul 4145 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-tp 4402 df-op 4404 df-uni 4659 df-int 4698 df-iun 4742 df-disj 4842 df-br 4874 df-opab 4936 df-mpt 4953 df-tr 4976 df-id 5250 df-eprel 5255 df-po 5263 df-so 5264 df-fr 5301 df-se 5302 df-we 5303 df-xp 5348 df-rel 5349 df-cnv 5350 df-co 5351 df-dm 5352 df-rn 5353 df-res 5354 df-ima 5355 df-pred 5920 df-ord 5966 df-on 5967 df-lim 5968 df-suc 5969 df-iota 6086 df-fun 6125 df-fn 6126 df-f 6127 df-f1 6128 df-fo 6129 df-f1o 6130 df-fv 6131 df-isom 6132 df-riota 6866 df-ov 6908 df-oprab 6909 df-mpt2 6910 df-om 7327 df-1st 7428 df-2nd 7429 df-wrecs 7672 df-recs 7734 df-rdg 7772 df-1o 7826 df-2o 7827 df-oadd 7830 df-er 8009 df-map 8124 df-en 8223 df-dom 8224 df-sdom 8225 df-fin 8226 df-sup 8617 df-inf 8618 df-oi 8684 df-card 9078 df-cda 9305 df-pnf 10393 df-mnf 10394 df-xr 10395 df-ltxr 10396 df-le 10397 df-sub 10587 df-neg 10588 df-div 11010 df-nn 11351 df-2 11414 df-3 11415 df-n0 11619 df-xnn0 11691 df-z 11705 df-uz 11969 df-q 12072 df-rp 12113 df-fz 12620 df-fzo 12761 df-fl 12888 df-mod 12964 df-seq 13096 df-exp 13155 df-fac 13354 df-bc 13383 df-hash 13411 df-cj 14216 df-re 14217 df-im 14218 df-sqrt 14352 df-abs 14353 df-clim 14596 df-sum 14794 df-dvds 15358 df-gcd 15590 df-prm 15758 df-pc 15913 df-mu 25240 |
This theorem is referenced by: dchrmusum2 25596 dchrvmasum2lem 25598 mudivsum 25632 mulogsum 25634 mulog2sumlem2 25637 |
Copyright terms: Public domain | W3C validator |