MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  musumsum Structured version   Visualization version   GIF version

Theorem musumsum 25780
Description: Evaluate a collapsing sum over the Möbius function. (Contributed by Mario Carneiro, 4-May-2016.)
Hypotheses
Ref Expression
musumsum.1 (𝑚 = 1 → 𝐵 = 𝐶)
musumsum.2 (𝜑𝐴 ∈ Fin)
musumsum.3 (𝜑𝐴 ⊆ ℕ)
musumsum.4 (𝜑 → 1 ∈ 𝐴)
musumsum.5 ((𝜑𝑚𝐴) → 𝐵 ∈ ℂ)
Assertion
Ref Expression
musumsum (𝜑 → Σ𝑚𝐴 Σ𝑘 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑚} ((μ‘𝑘) · 𝐵) = 𝐶)
Distinct variable groups:   𝑘,𝑚,𝐴   𝑘,𝑛,𝑚   𝜑,𝑘,𝑚   𝐵,𝑘   𝐶,𝑚
Allowed substitution hints:   𝜑(𝑛)   𝐴(𝑛)   𝐵(𝑚,𝑛)   𝐶(𝑘,𝑛)

Proof of Theorem musumsum
StepHypRef Expression
1 musumsum.3 . . . . . . 7 (𝜑𝐴 ⊆ ℕ)
21sselda 3953 . . . . . 6 ((𝜑𝑚𝐴) → 𝑚 ∈ ℕ)
3 musum 25779 . . . . . 6 (𝑚 ∈ ℕ → Σ𝑘 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑚} (μ‘𝑘) = if(𝑚 = 1, 1, 0))
42, 3syl 17 . . . . 5 ((𝜑𝑚𝐴) → Σ𝑘 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑚} (μ‘𝑘) = if(𝑚 = 1, 1, 0))
54oveq1d 7164 . . . 4 ((𝜑𝑚𝐴) → (Σ𝑘 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑚} (μ‘𝑘) · 𝐵) = (if(𝑚 = 1, 1, 0) · 𝐵))
6 fzfid 13345 . . . . . 6 ((𝜑𝑚𝐴) → (1...𝑚) ∈ Fin)
7 dvdsssfz1 15668 . . . . . . 7 (𝑚 ∈ ℕ → {𝑛 ∈ ℕ ∣ 𝑛𝑚} ⊆ (1...𝑚))
82, 7syl 17 . . . . . 6 ((𝜑𝑚𝐴) → {𝑛 ∈ ℕ ∣ 𝑛𝑚} ⊆ (1...𝑚))
96, 8ssfid 8738 . . . . 5 ((𝜑𝑚𝐴) → {𝑛 ∈ ℕ ∣ 𝑛𝑚} ∈ Fin)
10 musumsum.5 . . . . 5 ((𝜑𝑚𝐴) → 𝐵 ∈ ℂ)
11 elrabi 3661 . . . . . . . 8 (𝑘 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑚} → 𝑘 ∈ ℕ)
12 mucl 25729 . . . . . . . 8 (𝑘 ∈ ℕ → (μ‘𝑘) ∈ ℤ)
1311, 12syl 17 . . . . . . 7 (𝑘 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑚} → (μ‘𝑘) ∈ ℤ)
1413zcnd 12085 . . . . . 6 (𝑘 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑚} → (μ‘𝑘) ∈ ℂ)
1514adantl 485 . . . . 5 (((𝜑𝑚𝐴) ∧ 𝑘 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑚}) → (μ‘𝑘) ∈ ℂ)
169, 10, 15fsummulc1 15140 . . . 4 ((𝜑𝑚𝐴) → (Σ𝑘 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑚} (μ‘𝑘) · 𝐵) = Σ𝑘 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑚} ((μ‘𝑘) · 𝐵))
17 ovif 7244 . . . . 5 (if(𝑚 = 1, 1, 0) · 𝐵) = if(𝑚 = 1, (1 · 𝐵), (0 · 𝐵))
18 velsn 4566 . . . . . . . . 9 (𝑚 ∈ {1} ↔ 𝑚 = 1)
1918bicomi 227 . . . . . . . 8 (𝑚 = 1 ↔ 𝑚 ∈ {1})
2019a1i 11 . . . . . . 7 (𝐵 ∈ ℂ → (𝑚 = 1 ↔ 𝑚 ∈ {1}))
21 mulid2 10638 . . . . . . 7 (𝐵 ∈ ℂ → (1 · 𝐵) = 𝐵)
22 mul02 10816 . . . . . . 7 (𝐵 ∈ ℂ → (0 · 𝐵) = 0)
2320, 21, 22ifbieq12d 4477 . . . . . 6 (𝐵 ∈ ℂ → if(𝑚 = 1, (1 · 𝐵), (0 · 𝐵)) = if(𝑚 ∈ {1}, 𝐵, 0))
2410, 23syl 17 . . . . 5 ((𝜑𝑚𝐴) → if(𝑚 = 1, (1 · 𝐵), (0 · 𝐵)) = if(𝑚 ∈ {1}, 𝐵, 0))
2517, 24syl5eq 2871 . . . 4 ((𝜑𝑚𝐴) → (if(𝑚 = 1, 1, 0) · 𝐵) = if(𝑚 ∈ {1}, 𝐵, 0))
265, 16, 253eqtr3d 2867 . . 3 ((𝜑𝑚𝐴) → Σ𝑘 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑚} ((μ‘𝑘) · 𝐵) = if(𝑚 ∈ {1}, 𝐵, 0))
2726sumeq2dv 15060 . 2 (𝜑 → Σ𝑚𝐴 Σ𝑘 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑚} ((μ‘𝑘) · 𝐵) = Σ𝑚𝐴 if(𝑚 ∈ {1}, 𝐵, 0))
28 musumsum.4 . . . 4 (𝜑 → 1 ∈ 𝐴)
2928snssd 4726 . . 3 (𝜑 → {1} ⊆ 𝐴)
3029sselda 3953 . . . . 5 ((𝜑𝑚 ∈ {1}) → 𝑚𝐴)
3130, 10syldan 594 . . . 4 ((𝜑𝑚 ∈ {1}) → 𝐵 ∈ ℂ)
3231ralrimiva 3177 . . 3 (𝜑 → ∀𝑚 ∈ {1}𝐵 ∈ ℂ)
33 musumsum.2 . . . 4 (𝜑𝐴 ∈ Fin)
3433olcd 871 . . 3 (𝜑 → (𝐴 ⊆ (ℤ‘1) ∨ 𝐴 ∈ Fin))
35 sumss2 15083 . . 3 ((({1} ⊆ 𝐴 ∧ ∀𝑚 ∈ {1}𝐵 ∈ ℂ) ∧ (𝐴 ⊆ (ℤ‘1) ∨ 𝐴 ∈ Fin)) → Σ𝑚 ∈ {1}𝐵 = Σ𝑚𝐴 if(𝑚 ∈ {1}, 𝐵, 0))
3629, 32, 34, 35syl21anc 836 . 2 (𝜑 → Σ𝑚 ∈ {1}𝐵 = Σ𝑚𝐴 if(𝑚 ∈ {1}, 𝐵, 0))
37 musumsum.1 . . . . 5 (𝑚 = 1 → 𝐵 = 𝐶)
3837eleq1d 2900 . . . 4 (𝑚 = 1 → (𝐵 ∈ ℂ ↔ 𝐶 ∈ ℂ))
3910ralrimiva 3177 . . . 4 (𝜑 → ∀𝑚𝐴 𝐵 ∈ ℂ)
4038, 39, 28rspcdva 3611 . . 3 (𝜑𝐶 ∈ ℂ)
4137sumsn 15101 . . 3 ((1 ∈ 𝐴𝐶 ∈ ℂ) → Σ𝑚 ∈ {1}𝐵 = 𝐶)
4228, 40, 41syl2anc 587 . 2 (𝜑 → Σ𝑚 ∈ {1}𝐵 = 𝐶)
4327, 36, 423eqtr2d 2865 1 (𝜑 → Σ𝑚𝐴 Σ𝑘 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑚} ((μ‘𝑘) · 𝐵) = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wo 844   = wceq 1538  wcel 2115  wral 3133  {crab 3137  wss 3919  ifcif 4450  {csn 4550   class class class wbr 5052  cfv 6343  (class class class)co 7149  Fincfn 8505  cc 10533  0cc0 10535  1c1 10536   · cmul 10540  cn 11634  cz 11978  cuz 12240  ...cfz 12894  Σcsu 15042  cdvds 15607  μcmu 25683
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455  ax-inf2 9101  ax-cnex 10591  ax-resscn 10592  ax-1cn 10593  ax-icn 10594  ax-addcl 10595  ax-addrcl 10596  ax-mulcl 10597  ax-mulrcl 10598  ax-mulcom 10599  ax-addass 10600  ax-mulass 10601  ax-distr 10602  ax-i2m1 10603  ax-1ne0 10604  ax-1rid 10605  ax-rnegex 10606  ax-rrecex 10607  ax-cnre 10608  ax-pre-lttri 10609  ax-pre-lttrn 10610  ax-pre-ltadd 10611  ax-pre-mulgt0 10612  ax-pre-sup 10613
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-int 4863  df-iun 4907  df-disj 5018  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-se 5502  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-isom 6352  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-om 7575  df-1st 7684  df-2nd 7685  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-1o 8098  df-2o 8099  df-oadd 8102  df-er 8285  df-map 8404  df-en 8506  df-dom 8507  df-sdom 8508  df-fin 8509  df-sup 8903  df-inf 8904  df-oi 8971  df-dju 9327  df-card 9365  df-pnf 10675  df-mnf 10676  df-xr 10677  df-ltxr 10678  df-le 10679  df-sub 10870  df-neg 10871  df-div 11296  df-nn 11635  df-2 11697  df-3 11698  df-n0 11895  df-xnn0 11965  df-z 11979  df-uz 12241  df-q 12346  df-rp 12387  df-fz 12895  df-fzo 13038  df-fl 13166  df-mod 13242  df-seq 13374  df-exp 13435  df-fac 13639  df-bc 13668  df-hash 13696  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-clim 14845  df-sum 15043  df-dvds 15608  df-gcd 15842  df-prm 16014  df-pc 16172  df-mu 25689
This theorem is referenced by:  dchrmusum2  26081  dchrvmasum2lem  26083  mudivsum  26117  mulogsum  26119  mulog2sumlem2  26122
  Copyright terms: Public domain W3C validator