![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > musumsum | Structured version Visualization version GIF version |
Description: Evaluate a collapsing sum over the Möbius function. (Contributed by Mario Carneiro, 4-May-2016.) |
Ref | Expression |
---|---|
musumsum.1 | ⊢ (𝑚 = 1 → 𝐵 = 𝐶) |
musumsum.2 | ⊢ (𝜑 → 𝐴 ∈ Fin) |
musumsum.3 | ⊢ (𝜑 → 𝐴 ⊆ ℕ) |
musumsum.4 | ⊢ (𝜑 → 1 ∈ 𝐴) |
musumsum.5 | ⊢ ((𝜑 ∧ 𝑚 ∈ 𝐴) → 𝐵 ∈ ℂ) |
Ref | Expression |
---|---|
musumsum | ⊢ (𝜑 → Σ𝑚 ∈ 𝐴 Σ𝑘 ∈ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑚} ((μ‘𝑘) · 𝐵) = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | musumsum.3 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ⊆ ℕ) | |
2 | 1 | sselda 3976 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑚 ∈ 𝐴) → 𝑚 ∈ ℕ) |
3 | musum 27168 | . . . . . 6 ⊢ (𝑚 ∈ ℕ → Σ𝑘 ∈ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑚} (μ‘𝑘) = if(𝑚 = 1, 1, 0)) | |
4 | 2, 3 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝑚 ∈ 𝐴) → Σ𝑘 ∈ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑚} (μ‘𝑘) = if(𝑚 = 1, 1, 0)) |
5 | 4 | oveq1d 7434 | . . . 4 ⊢ ((𝜑 ∧ 𝑚 ∈ 𝐴) → (Σ𝑘 ∈ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑚} (μ‘𝑘) · 𝐵) = (if(𝑚 = 1, 1, 0) · 𝐵)) |
6 | fzfid 13974 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑚 ∈ 𝐴) → (1...𝑚) ∈ Fin) | |
7 | dvdsssfz1 16298 | . . . . . . 7 ⊢ (𝑚 ∈ ℕ → {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑚} ⊆ (1...𝑚)) | |
8 | 2, 7 | syl 17 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑚 ∈ 𝐴) → {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑚} ⊆ (1...𝑚)) |
9 | 6, 8 | ssfid 9292 | . . . . 5 ⊢ ((𝜑 ∧ 𝑚 ∈ 𝐴) → {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑚} ∈ Fin) |
10 | musumsum.5 | . . . . 5 ⊢ ((𝜑 ∧ 𝑚 ∈ 𝐴) → 𝐵 ∈ ℂ) | |
11 | elrabi 3673 | . . . . . . . 8 ⊢ (𝑘 ∈ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑚} → 𝑘 ∈ ℕ) | |
12 | mucl 27118 | . . . . . . . 8 ⊢ (𝑘 ∈ ℕ → (μ‘𝑘) ∈ ℤ) | |
13 | 11, 12 | syl 17 | . . . . . . 7 ⊢ (𝑘 ∈ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑚} → (μ‘𝑘) ∈ ℤ) |
14 | 13 | zcnd 12700 | . . . . . 6 ⊢ (𝑘 ∈ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑚} → (μ‘𝑘) ∈ ℂ) |
15 | 14 | adantl 480 | . . . . 5 ⊢ (((𝜑 ∧ 𝑚 ∈ 𝐴) ∧ 𝑘 ∈ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑚}) → (μ‘𝑘) ∈ ℂ) |
16 | 9, 10, 15 | fsummulc1 15767 | . . . 4 ⊢ ((𝜑 ∧ 𝑚 ∈ 𝐴) → (Σ𝑘 ∈ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑚} (μ‘𝑘) · 𝐵) = Σ𝑘 ∈ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑚} ((μ‘𝑘) · 𝐵)) |
17 | ovif 7518 | . . . . 5 ⊢ (if(𝑚 = 1, 1, 0) · 𝐵) = if(𝑚 = 1, (1 · 𝐵), (0 · 𝐵)) | |
18 | velsn 4646 | . . . . . . . . 9 ⊢ (𝑚 ∈ {1} ↔ 𝑚 = 1) | |
19 | 18 | bicomi 223 | . . . . . . . 8 ⊢ (𝑚 = 1 ↔ 𝑚 ∈ {1}) |
20 | 19 | a1i 11 | . . . . . . 7 ⊢ (𝐵 ∈ ℂ → (𝑚 = 1 ↔ 𝑚 ∈ {1})) |
21 | mullid 11245 | . . . . . . 7 ⊢ (𝐵 ∈ ℂ → (1 · 𝐵) = 𝐵) | |
22 | mul02 11424 | . . . . . . 7 ⊢ (𝐵 ∈ ℂ → (0 · 𝐵) = 0) | |
23 | 20, 21, 22 | ifbieq12d 4558 | . . . . . 6 ⊢ (𝐵 ∈ ℂ → if(𝑚 = 1, (1 · 𝐵), (0 · 𝐵)) = if(𝑚 ∈ {1}, 𝐵, 0)) |
24 | 10, 23 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝑚 ∈ 𝐴) → if(𝑚 = 1, (1 · 𝐵), (0 · 𝐵)) = if(𝑚 ∈ {1}, 𝐵, 0)) |
25 | 17, 24 | eqtrid 2777 | . . . 4 ⊢ ((𝜑 ∧ 𝑚 ∈ 𝐴) → (if(𝑚 = 1, 1, 0) · 𝐵) = if(𝑚 ∈ {1}, 𝐵, 0)) |
26 | 5, 16, 25 | 3eqtr3d 2773 | . . 3 ⊢ ((𝜑 ∧ 𝑚 ∈ 𝐴) → Σ𝑘 ∈ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑚} ((μ‘𝑘) · 𝐵) = if(𝑚 ∈ {1}, 𝐵, 0)) |
27 | 26 | sumeq2dv 15685 | . 2 ⊢ (𝜑 → Σ𝑚 ∈ 𝐴 Σ𝑘 ∈ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑚} ((μ‘𝑘) · 𝐵) = Σ𝑚 ∈ 𝐴 if(𝑚 ∈ {1}, 𝐵, 0)) |
28 | musumsum.4 | . . . 4 ⊢ (𝜑 → 1 ∈ 𝐴) | |
29 | 28 | snssd 4814 | . . 3 ⊢ (𝜑 → {1} ⊆ 𝐴) |
30 | 29 | sselda 3976 | . . . . 5 ⊢ ((𝜑 ∧ 𝑚 ∈ {1}) → 𝑚 ∈ 𝐴) |
31 | 30, 10 | syldan 589 | . . . 4 ⊢ ((𝜑 ∧ 𝑚 ∈ {1}) → 𝐵 ∈ ℂ) |
32 | 31 | ralrimiva 3135 | . . 3 ⊢ (𝜑 → ∀𝑚 ∈ {1}𝐵 ∈ ℂ) |
33 | musumsum.2 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
34 | 33 | olcd 872 | . . 3 ⊢ (𝜑 → (𝐴 ⊆ (ℤ≥‘1) ∨ 𝐴 ∈ Fin)) |
35 | sumss2 15708 | . . 3 ⊢ ((({1} ⊆ 𝐴 ∧ ∀𝑚 ∈ {1}𝐵 ∈ ℂ) ∧ (𝐴 ⊆ (ℤ≥‘1) ∨ 𝐴 ∈ Fin)) → Σ𝑚 ∈ {1}𝐵 = Σ𝑚 ∈ 𝐴 if(𝑚 ∈ {1}, 𝐵, 0)) | |
36 | 29, 32, 34, 35 | syl21anc 836 | . 2 ⊢ (𝜑 → Σ𝑚 ∈ {1}𝐵 = Σ𝑚 ∈ 𝐴 if(𝑚 ∈ {1}, 𝐵, 0)) |
37 | musumsum.1 | . . . . 5 ⊢ (𝑚 = 1 → 𝐵 = 𝐶) | |
38 | 37 | eleq1d 2810 | . . . 4 ⊢ (𝑚 = 1 → (𝐵 ∈ ℂ ↔ 𝐶 ∈ ℂ)) |
39 | 10 | ralrimiva 3135 | . . . 4 ⊢ (𝜑 → ∀𝑚 ∈ 𝐴 𝐵 ∈ ℂ) |
40 | 38, 39, 28 | rspcdva 3607 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℂ) |
41 | 37 | sumsn 15728 | . . 3 ⊢ ((1 ∈ 𝐴 ∧ 𝐶 ∈ ℂ) → Σ𝑚 ∈ {1}𝐵 = 𝐶) |
42 | 28, 40, 41 | syl2anc 582 | . 2 ⊢ (𝜑 → Σ𝑚 ∈ {1}𝐵 = 𝐶) |
43 | 27, 36, 42 | 3eqtr2d 2771 | 1 ⊢ (𝜑 → Σ𝑚 ∈ 𝐴 Σ𝑘 ∈ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑚} ((μ‘𝑘) · 𝐵) = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∨ wo 845 = wceq 1533 ∈ wcel 2098 ∀wral 3050 {crab 3418 ⊆ wss 3944 ifcif 4530 {csn 4630 class class class wbr 5149 ‘cfv 6549 (class class class)co 7419 Fincfn 8964 ℂcc 11138 0cc0 11140 1c1 11141 · cmul 11145 ℕcn 12245 ℤcz 12591 ℤ≥cuz 12855 ...cfz 13519 Σcsu 15668 ∥ cdvds 16234 μcmu 27072 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-inf2 9666 ax-cnex 11196 ax-resscn 11197 ax-1cn 11198 ax-icn 11199 ax-addcl 11200 ax-addrcl 11201 ax-mulcl 11202 ax-mulrcl 11203 ax-mulcom 11204 ax-addass 11205 ax-mulass 11206 ax-distr 11207 ax-i2m1 11208 ax-1ne0 11209 ax-1rid 11210 ax-rnegex 11211 ax-rrecex 11212 ax-cnre 11213 ax-pre-lttri 11214 ax-pre-lttrn 11215 ax-pre-ltadd 11216 ax-pre-mulgt0 11217 ax-pre-sup 11218 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-int 4951 df-iun 4999 df-disj 5115 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-se 5634 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-isom 6558 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-om 7872 df-1st 7994 df-2nd 7995 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-2o 8488 df-oadd 8491 df-er 8725 df-map 8847 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-sup 9467 df-inf 9468 df-oi 9535 df-dju 9926 df-card 9964 df-pnf 11282 df-mnf 11283 df-xr 11284 df-ltxr 11285 df-le 11286 df-sub 11478 df-neg 11479 df-div 11904 df-nn 12246 df-2 12308 df-3 12309 df-n0 12506 df-xnn0 12578 df-z 12592 df-uz 12856 df-q 12966 df-rp 13010 df-fz 13520 df-fzo 13663 df-fl 13793 df-mod 13871 df-seq 14003 df-exp 14063 df-fac 14269 df-bc 14298 df-hash 14326 df-cj 15082 df-re 15083 df-im 15084 df-sqrt 15218 df-abs 15219 df-clim 15468 df-sum 15669 df-dvds 16235 df-gcd 16473 df-prm 16646 df-pc 16809 df-mu 27078 |
This theorem is referenced by: dchrmusum2 27472 dchrvmasum2lem 27474 mudivsum 27508 mulogsum 27510 mulog2sumlem2 27513 |
Copyright terms: Public domain | W3C validator |