MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  idpm2idmp Structured version   Visualization version   GIF version

Theorem idpm2idmp 22688
Description: The transformation of the identity polynomial matrix into polynomials over matrices results in the identity of the polynomials over matrices. (Contributed by AV, 18-Oct-2019.) (Revised by AV, 5-Dec-2019.)
Hypotheses
Ref Expression
pm2mpval.p 𝑃 = (Poly1𝑅)
pm2mpval.c 𝐶 = (𝑁 Mat 𝑃)
pm2mpval.b 𝐵 = (Base‘𝐶)
pm2mpval.m = ( ·𝑠𝑄)
pm2mpval.e = (.g‘(mulGrp‘𝑄))
pm2mpval.x 𝑋 = (var1𝐴)
pm2mpval.a 𝐴 = (𝑁 Mat 𝑅)
pm2mpval.q 𝑄 = (Poly1𝐴)
pm2mpval.t 𝑇 = (𝑁 pMatToMatPoly 𝑅)
Assertion
Ref Expression
idpm2idmp ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑇‘(1r𝐶)) = (1r𝑄))

Proof of Theorem idpm2idmp
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 pm2mpval.p . . . . 5 𝑃 = (Poly1𝑅)
2 pm2mpval.c . . . . 5 𝐶 = (𝑁 Mat 𝑃)
31, 2pmatring 22579 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐶 ∈ Ring)
4 pm2mpval.b . . . . 5 𝐵 = (Base‘𝐶)
5 eqid 2729 . . . . 5 (1r𝐶) = (1r𝐶)
64, 5ringidcl 20174 . . . 4 (𝐶 ∈ Ring → (1r𝐶) ∈ 𝐵)
73, 6syl 17 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (1r𝐶) ∈ 𝐵)
8 pm2mpval.m . . . 4 = ( ·𝑠𝑄)
9 pm2mpval.e . . . 4 = (.g‘(mulGrp‘𝑄))
10 pm2mpval.x . . . 4 𝑋 = (var1𝐴)
11 pm2mpval.a . . . 4 𝐴 = (𝑁 Mat 𝑅)
12 pm2mpval.q . . . 4 𝑄 = (Poly1𝐴)
13 pm2mpval.t . . . 4 𝑇 = (𝑁 pMatToMatPoly 𝑅)
141, 2, 4, 8, 9, 10, 11, 12, 13pm2mpfval 22683 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (1r𝐶) ∈ 𝐵) → (𝑇‘(1r𝐶)) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ (((1r𝐶) decompPMat 𝑘) (𝑘 𝑋)))))
157, 14mpd3an3 1464 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑇‘(1r𝐶)) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ (((1r𝐶) decompPMat 𝑘) (𝑘 𝑋)))))
16 eqid 2729 . . . . . . 7 (0g𝐴) = (0g𝐴)
17 eqid 2729 . . . . . . 7 (1r𝐴) = (1r𝐴)
181, 2, 5, 11, 16, 17decpmatid 22657 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑘 ∈ ℕ0) → ((1r𝐶) decompPMat 𝑘) = if(𝑘 = 0, (1r𝐴), (0g𝐴)))
19183expa 1118 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑘 ∈ ℕ0) → ((1r𝐶) decompPMat 𝑘) = if(𝑘 = 0, (1r𝐴), (0g𝐴)))
2019oveq1d 7402 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑘 ∈ ℕ0) → (((1r𝐶) decompPMat 𝑘) (𝑘 𝑋)) = (if(𝑘 = 0, (1r𝐴), (0g𝐴)) (𝑘 𝑋)))
2120mpteq2dva 5200 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑘 ∈ ℕ0 ↦ (((1r𝐶) decompPMat 𝑘) (𝑘 𝑋))) = (𝑘 ∈ ℕ0 ↦ (if(𝑘 = 0, (1r𝐴), (0g𝐴)) (𝑘 𝑋))))
2221oveq2d 7403 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑄 Σg (𝑘 ∈ ℕ0 ↦ (((1r𝐶) decompPMat 𝑘) (𝑘 𝑋)))) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ (if(𝑘 = 0, (1r𝐴), (0g𝐴)) (𝑘 𝑋)))))
23 ovif 7487 . . . . . 6 (if(𝑘 = 0, (1r𝐴), (0g𝐴)) (𝑘 𝑋)) = if(𝑘 = 0, ((1r𝐴) (𝑘 𝑋)), ((0g𝐴) (𝑘 𝑋)))
2411matring 22330 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring)
2512ply1sca 22137 . . . . . . . . . . . 12 (𝐴 ∈ Ring → 𝐴 = (Scalar‘𝑄))
2624, 25syl 17 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 = (Scalar‘𝑄))
2726adantr 480 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑘 ∈ ℕ0) → 𝐴 = (Scalar‘𝑄))
2827fveq2d 6862 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑘 ∈ ℕ0) → (1r𝐴) = (1r‘(Scalar‘𝑄)))
2928oveq1d 7402 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑘 ∈ ℕ0) → ((1r𝐴) (𝑘 𝑋)) = ((1r‘(Scalar‘𝑄)) (𝑘 𝑋)))
3012ply1lmod 22136 . . . . . . . . . 10 (𝐴 ∈ Ring → 𝑄 ∈ LMod)
3124, 30syl 17 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑄 ∈ LMod)
32 eqid 2729 . . . . . . . . . . 11 (mulGrp‘𝑄) = (mulGrp‘𝑄)
33 eqid 2729 . . . . . . . . . . 11 (Base‘𝑄) = (Base‘𝑄)
3412, 10, 32, 9, 33ply1moncl 22157 . . . . . . . . . 10 ((𝐴 ∈ Ring ∧ 𝑘 ∈ ℕ0) → (𝑘 𝑋) ∈ (Base‘𝑄))
3524, 34sylan 580 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑘 ∈ ℕ0) → (𝑘 𝑋) ∈ (Base‘𝑄))
36 eqid 2729 . . . . . . . . . 10 (Scalar‘𝑄) = (Scalar‘𝑄)
37 eqid 2729 . . . . . . . . . 10 (1r‘(Scalar‘𝑄)) = (1r‘(Scalar‘𝑄))
3833, 36, 8, 37lmodvs1 20796 . . . . . . . . 9 ((𝑄 ∈ LMod ∧ (𝑘 𝑋) ∈ (Base‘𝑄)) → ((1r‘(Scalar‘𝑄)) (𝑘 𝑋)) = (𝑘 𝑋))
3931, 35, 38syl2an2r 685 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑘 ∈ ℕ0) → ((1r‘(Scalar‘𝑄)) (𝑘 𝑋)) = (𝑘 𝑋))
4029, 39eqtrd 2764 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑘 ∈ ℕ0) → ((1r𝐴) (𝑘 𝑋)) = (𝑘 𝑋))
4127fveq2d 6862 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑘 ∈ ℕ0) → (0g𝐴) = (0g‘(Scalar‘𝑄)))
4241oveq1d 7402 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑘 ∈ ℕ0) → ((0g𝐴) (𝑘 𝑋)) = ((0g‘(Scalar‘𝑄)) (𝑘 𝑋)))
43 eqid 2729 . . . . . . . . . 10 (0g‘(Scalar‘𝑄)) = (0g‘(Scalar‘𝑄))
44 eqid 2729 . . . . . . . . . 10 (0g𝑄) = (0g𝑄)
4533, 36, 8, 43, 44lmod0vs 20801 . . . . . . . . 9 ((𝑄 ∈ LMod ∧ (𝑘 𝑋) ∈ (Base‘𝑄)) → ((0g‘(Scalar‘𝑄)) (𝑘 𝑋)) = (0g𝑄))
4631, 35, 45syl2an2r 685 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑘 ∈ ℕ0) → ((0g‘(Scalar‘𝑄)) (𝑘 𝑋)) = (0g𝑄))
4742, 46eqtrd 2764 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑘 ∈ ℕ0) → ((0g𝐴) (𝑘 𝑋)) = (0g𝑄))
4840, 47ifeq12d 4510 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑘 ∈ ℕ0) → if(𝑘 = 0, ((1r𝐴) (𝑘 𝑋)), ((0g𝐴) (𝑘 𝑋))) = if(𝑘 = 0, (𝑘 𝑋), (0g𝑄)))
4923, 48eqtrid 2776 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑘 ∈ ℕ0) → (if(𝑘 = 0, (1r𝐴), (0g𝐴)) (𝑘 𝑋)) = if(𝑘 = 0, (𝑘 𝑋), (0g𝑄)))
5049mpteq2dva 5200 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑘 ∈ ℕ0 ↦ (if(𝑘 = 0, (1r𝐴), (0g𝐴)) (𝑘 𝑋))) = (𝑘 ∈ ℕ0 ↦ if(𝑘 = 0, (𝑘 𝑋), (0g𝑄))))
5150oveq2d 7403 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑄 Σg (𝑘 ∈ ℕ0 ↦ (if(𝑘 = 0, (1r𝐴), (0g𝐴)) (𝑘 𝑋)))) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ if(𝑘 = 0, (𝑘 𝑋), (0g𝑄)))))
5212ply1ring 22132 . . . . 5 (𝐴 ∈ Ring → 𝑄 ∈ Ring)
53 ringmnd 20152 . . . . 5 (𝑄 ∈ Ring → 𝑄 ∈ Mnd)
5424, 52, 533syl 18 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑄 ∈ Mnd)
55 nn0ex 12448 . . . . 5 0 ∈ V
5655a1i 11 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ℕ0 ∈ V)
57 0nn0 12457 . . . . 5 0 ∈ ℕ0
5857a1i 11 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 0 ∈ ℕ0)
59 eqid 2729 . . . 4 (𝑘 ∈ ℕ0 ↦ if(𝑘 = 0, (𝑘 𝑋), (0g𝑄))) = (𝑘 ∈ ℕ0 ↦ if(𝑘 = 0, (𝑘 𝑋), (0g𝑄)))
6035ralrimiva 3125 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ∀𝑘 ∈ ℕ0 (𝑘 𝑋) ∈ (Base‘𝑄))
6144, 54, 56, 58, 59, 60gsummpt1n0 19895 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑄 Σg (𝑘 ∈ ℕ0 ↦ if(𝑘 = 0, (𝑘 𝑋), (0g𝑄)))) = 0 / 𝑘(𝑘 𝑋))
62 c0ex 11168 . . . . 5 0 ∈ V
63 csbov1g 7434 . . . . 5 (0 ∈ V → 0 / 𝑘(𝑘 𝑋) = (0 / 𝑘𝑘 𝑋))
6462, 63mp1i 13 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 0 / 𝑘(𝑘 𝑋) = (0 / 𝑘𝑘 𝑋))
65 csbvarg 4397 . . . . . 6 (0 ∈ V → 0 / 𝑘𝑘 = 0)
6662, 65mp1i 13 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 0 / 𝑘𝑘 = 0)
6766oveq1d 7402 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (0 / 𝑘𝑘 𝑋) = (0 𝑋))
6812, 10, 32, 9ply1idvr1 22181 . . . . 5 (𝐴 ∈ Ring → (0 𝑋) = (1r𝑄))
6924, 68syl 17 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (0 𝑋) = (1r𝑄))
7064, 67, 693eqtrd 2768 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 0 / 𝑘(𝑘 𝑋) = (1r𝑄))
7151, 61, 703eqtrd 2768 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑄 Σg (𝑘 ∈ ℕ0 ↦ (if(𝑘 = 0, (1r𝐴), (0g𝐴)) (𝑘 𝑋)))) = (1r𝑄))
7215, 22, 713eqtrd 2768 1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑇‘(1r𝐶)) = (1r𝑄))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3447  csb 3862  ifcif 4488  cmpt 5188  cfv 6511  (class class class)co 7387  Fincfn 8918  0cc0 11068  0cn0 12442  Basecbs 17179  Scalarcsca 17223   ·𝑠 cvsca 17224  0gc0g 17402   Σg cgsu 17403  Mndcmnd 18661  .gcmg 18999  mulGrpcmgp 20049  1rcur 20090  Ringcrg 20142  LModclmod 20766  var1cv1 22060  Poly1cpl1 22061   Mat cmat 22294   decompPMat cdecpmat 22649   pMatToMatPoly cpm2mp 22679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-ot 4598  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-ofr 7654  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-sup 9393  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-fz 13469  df-fzo 13616  df-seq 13967  df-hash 14296  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-hom 17244  df-cco 17245  df-0g 17404  df-gsum 17405  df-prds 17410  df-pws 17412  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-mhm 18710  df-submnd 18711  df-grp 18868  df-minusg 18869  df-sbg 18870  df-mulg 19000  df-subg 19055  df-ghm 19145  df-cntz 19249  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-ring 20144  df-subrng 20455  df-subrg 20479  df-lmod 20768  df-lss 20838  df-sra 21080  df-rgmod 21081  df-dsmm 21641  df-frlm 21656  df-psr 21818  df-mvr 21819  df-mpl 21820  df-opsr 21822  df-psr1 22064  df-vr1 22065  df-ply1 22066  df-coe1 22067  df-mamu 22278  df-mat 22295  df-decpmat 22650  df-pm2mp 22680
This theorem is referenced by:  pm2mpmhm  22707
  Copyright terms: Public domain W3C validator