MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  idpm2idmp Structured version   Visualization version   GIF version

Theorem idpm2idmp 21858
Description: The transformation of the identity polynomial matrix into polynomials over matrices results in the identity of the polynomials over matrices. (Contributed by AV, 18-Oct-2019.) (Revised by AV, 5-Dec-2019.)
Hypotheses
Ref Expression
pm2mpval.p 𝑃 = (Poly1𝑅)
pm2mpval.c 𝐶 = (𝑁 Mat 𝑃)
pm2mpval.b 𝐵 = (Base‘𝐶)
pm2mpval.m = ( ·𝑠𝑄)
pm2mpval.e = (.g‘(mulGrp‘𝑄))
pm2mpval.x 𝑋 = (var1𝐴)
pm2mpval.a 𝐴 = (𝑁 Mat 𝑅)
pm2mpval.q 𝑄 = (Poly1𝐴)
pm2mpval.t 𝑇 = (𝑁 pMatToMatPoly 𝑅)
Assertion
Ref Expression
idpm2idmp ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑇‘(1r𝐶)) = (1r𝑄))

Proof of Theorem idpm2idmp
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 pm2mpval.p . . . . 5 𝑃 = (Poly1𝑅)
2 pm2mpval.c . . . . 5 𝐶 = (𝑁 Mat 𝑃)
31, 2pmatring 21749 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐶 ∈ Ring)
4 pm2mpval.b . . . . 5 𝐵 = (Base‘𝐶)
5 eqid 2738 . . . . 5 (1r𝐶) = (1r𝐶)
64, 5ringidcl 19722 . . . 4 (𝐶 ∈ Ring → (1r𝐶) ∈ 𝐵)
73, 6syl 17 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (1r𝐶) ∈ 𝐵)
8 pm2mpval.m . . . 4 = ( ·𝑠𝑄)
9 pm2mpval.e . . . 4 = (.g‘(mulGrp‘𝑄))
10 pm2mpval.x . . . 4 𝑋 = (var1𝐴)
11 pm2mpval.a . . . 4 𝐴 = (𝑁 Mat 𝑅)
12 pm2mpval.q . . . 4 𝑄 = (Poly1𝐴)
13 pm2mpval.t . . . 4 𝑇 = (𝑁 pMatToMatPoly 𝑅)
141, 2, 4, 8, 9, 10, 11, 12, 13pm2mpfval 21853 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (1r𝐶) ∈ 𝐵) → (𝑇‘(1r𝐶)) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ (((1r𝐶) decompPMat 𝑘) (𝑘 𝑋)))))
157, 14mpd3an3 1460 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑇‘(1r𝐶)) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ (((1r𝐶) decompPMat 𝑘) (𝑘 𝑋)))))
16 eqid 2738 . . . . . . 7 (0g𝐴) = (0g𝐴)
17 eqid 2738 . . . . . . 7 (1r𝐴) = (1r𝐴)
181, 2, 5, 11, 16, 17decpmatid 21827 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑘 ∈ ℕ0) → ((1r𝐶) decompPMat 𝑘) = if(𝑘 = 0, (1r𝐴), (0g𝐴)))
19183expa 1116 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑘 ∈ ℕ0) → ((1r𝐶) decompPMat 𝑘) = if(𝑘 = 0, (1r𝐴), (0g𝐴)))
2019oveq1d 7270 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑘 ∈ ℕ0) → (((1r𝐶) decompPMat 𝑘) (𝑘 𝑋)) = (if(𝑘 = 0, (1r𝐴), (0g𝐴)) (𝑘 𝑋)))
2120mpteq2dva 5170 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑘 ∈ ℕ0 ↦ (((1r𝐶) decompPMat 𝑘) (𝑘 𝑋))) = (𝑘 ∈ ℕ0 ↦ (if(𝑘 = 0, (1r𝐴), (0g𝐴)) (𝑘 𝑋))))
2221oveq2d 7271 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑄 Σg (𝑘 ∈ ℕ0 ↦ (((1r𝐶) decompPMat 𝑘) (𝑘 𝑋)))) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ (if(𝑘 = 0, (1r𝐴), (0g𝐴)) (𝑘 𝑋)))))
23 ovif 7350 . . . . . 6 (if(𝑘 = 0, (1r𝐴), (0g𝐴)) (𝑘 𝑋)) = if(𝑘 = 0, ((1r𝐴) (𝑘 𝑋)), ((0g𝐴) (𝑘 𝑋)))
2411matring 21500 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring)
2512ply1sca 21334 . . . . . . . . . . . 12 (𝐴 ∈ Ring → 𝐴 = (Scalar‘𝑄))
2624, 25syl 17 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 = (Scalar‘𝑄))
2726adantr 480 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑘 ∈ ℕ0) → 𝐴 = (Scalar‘𝑄))
2827fveq2d 6760 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑘 ∈ ℕ0) → (1r𝐴) = (1r‘(Scalar‘𝑄)))
2928oveq1d 7270 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑘 ∈ ℕ0) → ((1r𝐴) (𝑘 𝑋)) = ((1r‘(Scalar‘𝑄)) (𝑘 𝑋)))
3012ply1lmod 21333 . . . . . . . . . 10 (𝐴 ∈ Ring → 𝑄 ∈ LMod)
3124, 30syl 17 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑄 ∈ LMod)
32 eqid 2738 . . . . . . . . . . 11 (mulGrp‘𝑄) = (mulGrp‘𝑄)
33 eqid 2738 . . . . . . . . . . 11 (Base‘𝑄) = (Base‘𝑄)
3412, 10, 32, 9, 33ply1moncl 21352 . . . . . . . . . 10 ((𝐴 ∈ Ring ∧ 𝑘 ∈ ℕ0) → (𝑘 𝑋) ∈ (Base‘𝑄))
3524, 34sylan 579 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑘 ∈ ℕ0) → (𝑘 𝑋) ∈ (Base‘𝑄))
36 eqid 2738 . . . . . . . . . 10 (Scalar‘𝑄) = (Scalar‘𝑄)
37 eqid 2738 . . . . . . . . . 10 (1r‘(Scalar‘𝑄)) = (1r‘(Scalar‘𝑄))
3833, 36, 8, 37lmodvs1 20066 . . . . . . . . 9 ((𝑄 ∈ LMod ∧ (𝑘 𝑋) ∈ (Base‘𝑄)) → ((1r‘(Scalar‘𝑄)) (𝑘 𝑋)) = (𝑘 𝑋))
3931, 35, 38syl2an2r 681 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑘 ∈ ℕ0) → ((1r‘(Scalar‘𝑄)) (𝑘 𝑋)) = (𝑘 𝑋))
4029, 39eqtrd 2778 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑘 ∈ ℕ0) → ((1r𝐴) (𝑘 𝑋)) = (𝑘 𝑋))
4127fveq2d 6760 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑘 ∈ ℕ0) → (0g𝐴) = (0g‘(Scalar‘𝑄)))
4241oveq1d 7270 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑘 ∈ ℕ0) → ((0g𝐴) (𝑘 𝑋)) = ((0g‘(Scalar‘𝑄)) (𝑘 𝑋)))
43 eqid 2738 . . . . . . . . . 10 (0g‘(Scalar‘𝑄)) = (0g‘(Scalar‘𝑄))
44 eqid 2738 . . . . . . . . . 10 (0g𝑄) = (0g𝑄)
4533, 36, 8, 43, 44lmod0vs 20071 . . . . . . . . 9 ((𝑄 ∈ LMod ∧ (𝑘 𝑋) ∈ (Base‘𝑄)) → ((0g‘(Scalar‘𝑄)) (𝑘 𝑋)) = (0g𝑄))
4631, 35, 45syl2an2r 681 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑘 ∈ ℕ0) → ((0g‘(Scalar‘𝑄)) (𝑘 𝑋)) = (0g𝑄))
4742, 46eqtrd 2778 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑘 ∈ ℕ0) → ((0g𝐴) (𝑘 𝑋)) = (0g𝑄))
4840, 47ifeq12d 4477 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑘 ∈ ℕ0) → if(𝑘 = 0, ((1r𝐴) (𝑘 𝑋)), ((0g𝐴) (𝑘 𝑋))) = if(𝑘 = 0, (𝑘 𝑋), (0g𝑄)))
4923, 48eqtrid 2790 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑘 ∈ ℕ0) → (if(𝑘 = 0, (1r𝐴), (0g𝐴)) (𝑘 𝑋)) = if(𝑘 = 0, (𝑘 𝑋), (0g𝑄)))
5049mpteq2dva 5170 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑘 ∈ ℕ0 ↦ (if(𝑘 = 0, (1r𝐴), (0g𝐴)) (𝑘 𝑋))) = (𝑘 ∈ ℕ0 ↦ if(𝑘 = 0, (𝑘 𝑋), (0g𝑄))))
5150oveq2d 7271 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑄 Σg (𝑘 ∈ ℕ0 ↦ (if(𝑘 = 0, (1r𝐴), (0g𝐴)) (𝑘 𝑋)))) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ if(𝑘 = 0, (𝑘 𝑋), (0g𝑄)))))
5212ply1ring 21329 . . . . 5 (𝐴 ∈ Ring → 𝑄 ∈ Ring)
53 ringmnd 19708 . . . . 5 (𝑄 ∈ Ring → 𝑄 ∈ Mnd)
5424, 52, 533syl 18 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑄 ∈ Mnd)
55 nn0ex 12169 . . . . 5 0 ∈ V
5655a1i 11 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ℕ0 ∈ V)
57 0nn0 12178 . . . . 5 0 ∈ ℕ0
5857a1i 11 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 0 ∈ ℕ0)
59 eqid 2738 . . . 4 (𝑘 ∈ ℕ0 ↦ if(𝑘 = 0, (𝑘 𝑋), (0g𝑄))) = (𝑘 ∈ ℕ0 ↦ if(𝑘 = 0, (𝑘 𝑋), (0g𝑄)))
6035ralrimiva 3107 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ∀𝑘 ∈ ℕ0 (𝑘 𝑋) ∈ (Base‘𝑄))
6144, 54, 56, 58, 59, 60gsummpt1n0 19481 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑄 Σg (𝑘 ∈ ℕ0 ↦ if(𝑘 = 0, (𝑘 𝑋), (0g𝑄)))) = 0 / 𝑘(𝑘 𝑋))
62 c0ex 10900 . . . . 5 0 ∈ V
63 csbov1g 7300 . . . . 5 (0 ∈ V → 0 / 𝑘(𝑘 𝑋) = (0 / 𝑘𝑘 𝑋))
6462, 63mp1i 13 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 0 / 𝑘(𝑘 𝑋) = (0 / 𝑘𝑘 𝑋))
65 csbvarg 4362 . . . . . 6 (0 ∈ V → 0 / 𝑘𝑘 = 0)
6662, 65mp1i 13 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 0 / 𝑘𝑘 = 0)
6766oveq1d 7270 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (0 / 𝑘𝑘 𝑋) = (0 𝑋))
6812, 10, 32, 9ply1idvr1 21374 . . . . 5 (𝐴 ∈ Ring → (0 𝑋) = (1r𝑄))
6924, 68syl 17 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (0 𝑋) = (1r𝑄))
7064, 67, 693eqtrd 2782 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 0 / 𝑘(𝑘 𝑋) = (1r𝑄))
7151, 61, 703eqtrd 2782 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑄 Σg (𝑘 ∈ ℕ0 ↦ (if(𝑘 = 0, (1r𝐴), (0g𝐴)) (𝑘 𝑋)))) = (1r𝑄))
7215, 22, 713eqtrd 2782 1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑇‘(1r𝐶)) = (1r𝑄))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  Vcvv 3422  csb 3828  ifcif 4456  cmpt 5153  cfv 6418  (class class class)co 7255  Fincfn 8691  0cc0 10802  0cn0 12163  Basecbs 16840  Scalarcsca 16891   ·𝑠 cvsca 16892  0gc0g 17067   Σg cgsu 17068  Mndcmnd 18300  .gcmg 18615  mulGrpcmgp 19635  1rcur 19652  Ringcrg 19698  LModclmod 20038  var1cv1 21257  Poly1cpl1 21258   Mat cmat 21464   decompPMat cdecpmat 21819   pMatToMatPoly cpm2mp 21849
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-ot 4567  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-ofr 7512  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-sup 9131  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-fz 13169  df-fzo 13312  df-seq 13650  df-hash 13973  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-hom 16912  df-cco 16913  df-0g 17069  df-gsum 17070  df-prds 17075  df-pws 17077  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-mhm 18345  df-submnd 18346  df-grp 18495  df-minusg 18496  df-sbg 18497  df-mulg 18616  df-subg 18667  df-ghm 18747  df-cntz 18838  df-cmn 19303  df-abl 19304  df-mgp 19636  df-ur 19653  df-ring 19700  df-subrg 19937  df-lmod 20040  df-lss 20109  df-sra 20349  df-rgmod 20350  df-dsmm 20849  df-frlm 20864  df-ascl 20972  df-psr 21022  df-mvr 21023  df-mpl 21024  df-opsr 21026  df-psr1 21261  df-vr1 21262  df-ply1 21263  df-coe1 21264  df-mamu 21443  df-mat 21465  df-decpmat 21820  df-pm2mp 21850
This theorem is referenced by:  pm2mpmhm  21877
  Copyright terms: Public domain W3C validator