MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  idpm2idmp Structured version   Visualization version   GIF version

Theorem idpm2idmp 22724
Description: The transformation of the identity polynomial matrix into polynomials over matrices results in the identity of the polynomials over matrices. (Contributed by AV, 18-Oct-2019.) (Revised by AV, 5-Dec-2019.)
Hypotheses
Ref Expression
pm2mpval.p 𝑃 = (Poly1𝑅)
pm2mpval.c 𝐶 = (𝑁 Mat 𝑃)
pm2mpval.b 𝐵 = (Base‘𝐶)
pm2mpval.m = ( ·𝑠𝑄)
pm2mpval.e = (.g‘(mulGrp‘𝑄))
pm2mpval.x 𝑋 = (var1𝐴)
pm2mpval.a 𝐴 = (𝑁 Mat 𝑅)
pm2mpval.q 𝑄 = (Poly1𝐴)
pm2mpval.t 𝑇 = (𝑁 pMatToMatPoly 𝑅)
Assertion
Ref Expression
idpm2idmp ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑇‘(1r𝐶)) = (1r𝑄))

Proof of Theorem idpm2idmp
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 pm2mpval.p . . . . 5 𝑃 = (Poly1𝑅)
2 pm2mpval.c . . . . 5 𝐶 = (𝑁 Mat 𝑃)
31, 2pmatring 22615 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐶 ∈ Ring)
4 pm2mpval.b . . . . 5 𝐵 = (Base‘𝐶)
5 eqid 2734 . . . . 5 (1r𝐶) = (1r𝐶)
64, 5ringidcl 20210 . . . 4 (𝐶 ∈ Ring → (1r𝐶) ∈ 𝐵)
73, 6syl 17 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (1r𝐶) ∈ 𝐵)
8 pm2mpval.m . . . 4 = ( ·𝑠𝑄)
9 pm2mpval.e . . . 4 = (.g‘(mulGrp‘𝑄))
10 pm2mpval.x . . . 4 𝑋 = (var1𝐴)
11 pm2mpval.a . . . 4 𝐴 = (𝑁 Mat 𝑅)
12 pm2mpval.q . . . 4 𝑄 = (Poly1𝐴)
13 pm2mpval.t . . . 4 𝑇 = (𝑁 pMatToMatPoly 𝑅)
141, 2, 4, 8, 9, 10, 11, 12, 13pm2mpfval 22719 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (1r𝐶) ∈ 𝐵) → (𝑇‘(1r𝐶)) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ (((1r𝐶) decompPMat 𝑘) (𝑘 𝑋)))))
157, 14mpd3an3 1463 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑇‘(1r𝐶)) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ (((1r𝐶) decompPMat 𝑘) (𝑘 𝑋)))))
16 eqid 2734 . . . . . . 7 (0g𝐴) = (0g𝐴)
17 eqid 2734 . . . . . . 7 (1r𝐴) = (1r𝐴)
181, 2, 5, 11, 16, 17decpmatid 22693 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑘 ∈ ℕ0) → ((1r𝐶) decompPMat 𝑘) = if(𝑘 = 0, (1r𝐴), (0g𝐴)))
19183expa 1118 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑘 ∈ ℕ0) → ((1r𝐶) decompPMat 𝑘) = if(𝑘 = 0, (1r𝐴), (0g𝐴)))
2019oveq1d 7414 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑘 ∈ ℕ0) → (((1r𝐶) decompPMat 𝑘) (𝑘 𝑋)) = (if(𝑘 = 0, (1r𝐴), (0g𝐴)) (𝑘 𝑋)))
2120mpteq2dva 5211 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑘 ∈ ℕ0 ↦ (((1r𝐶) decompPMat 𝑘) (𝑘 𝑋))) = (𝑘 ∈ ℕ0 ↦ (if(𝑘 = 0, (1r𝐴), (0g𝐴)) (𝑘 𝑋))))
2221oveq2d 7415 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑄 Σg (𝑘 ∈ ℕ0 ↦ (((1r𝐶) decompPMat 𝑘) (𝑘 𝑋)))) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ (if(𝑘 = 0, (1r𝐴), (0g𝐴)) (𝑘 𝑋)))))
23 ovif 7499 . . . . . 6 (if(𝑘 = 0, (1r𝐴), (0g𝐴)) (𝑘 𝑋)) = if(𝑘 = 0, ((1r𝐴) (𝑘 𝑋)), ((0g𝐴) (𝑘 𝑋)))
2411matring 22366 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring)
2512ply1sca 22173 . . . . . . . . . . . 12 (𝐴 ∈ Ring → 𝐴 = (Scalar‘𝑄))
2624, 25syl 17 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 = (Scalar‘𝑄))
2726adantr 480 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑘 ∈ ℕ0) → 𝐴 = (Scalar‘𝑄))
2827fveq2d 6876 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑘 ∈ ℕ0) → (1r𝐴) = (1r‘(Scalar‘𝑄)))
2928oveq1d 7414 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑘 ∈ ℕ0) → ((1r𝐴) (𝑘 𝑋)) = ((1r‘(Scalar‘𝑄)) (𝑘 𝑋)))
3012ply1lmod 22172 . . . . . . . . . 10 (𝐴 ∈ Ring → 𝑄 ∈ LMod)
3124, 30syl 17 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑄 ∈ LMod)
32 eqid 2734 . . . . . . . . . . 11 (mulGrp‘𝑄) = (mulGrp‘𝑄)
33 eqid 2734 . . . . . . . . . . 11 (Base‘𝑄) = (Base‘𝑄)
3412, 10, 32, 9, 33ply1moncl 22193 . . . . . . . . . 10 ((𝐴 ∈ Ring ∧ 𝑘 ∈ ℕ0) → (𝑘 𝑋) ∈ (Base‘𝑄))
3524, 34sylan 580 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑘 ∈ ℕ0) → (𝑘 𝑋) ∈ (Base‘𝑄))
36 eqid 2734 . . . . . . . . . 10 (Scalar‘𝑄) = (Scalar‘𝑄)
37 eqid 2734 . . . . . . . . . 10 (1r‘(Scalar‘𝑄)) = (1r‘(Scalar‘𝑄))
3833, 36, 8, 37lmodvs1 20832 . . . . . . . . 9 ((𝑄 ∈ LMod ∧ (𝑘 𝑋) ∈ (Base‘𝑄)) → ((1r‘(Scalar‘𝑄)) (𝑘 𝑋)) = (𝑘 𝑋))
3931, 35, 38syl2an2r 685 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑘 ∈ ℕ0) → ((1r‘(Scalar‘𝑄)) (𝑘 𝑋)) = (𝑘 𝑋))
4029, 39eqtrd 2769 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑘 ∈ ℕ0) → ((1r𝐴) (𝑘 𝑋)) = (𝑘 𝑋))
4127fveq2d 6876 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑘 ∈ ℕ0) → (0g𝐴) = (0g‘(Scalar‘𝑄)))
4241oveq1d 7414 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑘 ∈ ℕ0) → ((0g𝐴) (𝑘 𝑋)) = ((0g‘(Scalar‘𝑄)) (𝑘 𝑋)))
43 eqid 2734 . . . . . . . . . 10 (0g‘(Scalar‘𝑄)) = (0g‘(Scalar‘𝑄))
44 eqid 2734 . . . . . . . . . 10 (0g𝑄) = (0g𝑄)
4533, 36, 8, 43, 44lmod0vs 20837 . . . . . . . . 9 ((𝑄 ∈ LMod ∧ (𝑘 𝑋) ∈ (Base‘𝑄)) → ((0g‘(Scalar‘𝑄)) (𝑘 𝑋)) = (0g𝑄))
4631, 35, 45syl2an2r 685 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑘 ∈ ℕ0) → ((0g‘(Scalar‘𝑄)) (𝑘 𝑋)) = (0g𝑄))
4742, 46eqtrd 2769 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑘 ∈ ℕ0) → ((0g𝐴) (𝑘 𝑋)) = (0g𝑄))
4840, 47ifeq12d 4520 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑘 ∈ ℕ0) → if(𝑘 = 0, ((1r𝐴) (𝑘 𝑋)), ((0g𝐴) (𝑘 𝑋))) = if(𝑘 = 0, (𝑘 𝑋), (0g𝑄)))
4923, 48eqtrid 2781 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑘 ∈ ℕ0) → (if(𝑘 = 0, (1r𝐴), (0g𝐴)) (𝑘 𝑋)) = if(𝑘 = 0, (𝑘 𝑋), (0g𝑄)))
5049mpteq2dva 5211 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑘 ∈ ℕ0 ↦ (if(𝑘 = 0, (1r𝐴), (0g𝐴)) (𝑘 𝑋))) = (𝑘 ∈ ℕ0 ↦ if(𝑘 = 0, (𝑘 𝑋), (0g𝑄))))
5150oveq2d 7415 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑄 Σg (𝑘 ∈ ℕ0 ↦ (if(𝑘 = 0, (1r𝐴), (0g𝐴)) (𝑘 𝑋)))) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ if(𝑘 = 0, (𝑘 𝑋), (0g𝑄)))))
5212ply1ring 22168 . . . . 5 (𝐴 ∈ Ring → 𝑄 ∈ Ring)
53 ringmnd 20188 . . . . 5 (𝑄 ∈ Ring → 𝑄 ∈ Mnd)
5424, 52, 533syl 18 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑄 ∈ Mnd)
55 nn0ex 12499 . . . . 5 0 ∈ V
5655a1i 11 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ℕ0 ∈ V)
57 0nn0 12508 . . . . 5 0 ∈ ℕ0
5857a1i 11 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 0 ∈ ℕ0)
59 eqid 2734 . . . 4 (𝑘 ∈ ℕ0 ↦ if(𝑘 = 0, (𝑘 𝑋), (0g𝑄))) = (𝑘 ∈ ℕ0 ↦ if(𝑘 = 0, (𝑘 𝑋), (0g𝑄)))
6035ralrimiva 3130 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ∀𝑘 ∈ ℕ0 (𝑘 𝑋) ∈ (Base‘𝑄))
6144, 54, 56, 58, 59, 60gsummpt1n0 19931 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑄 Σg (𝑘 ∈ ℕ0 ↦ if(𝑘 = 0, (𝑘 𝑋), (0g𝑄)))) = 0 / 𝑘(𝑘 𝑋))
62 c0ex 11221 . . . . 5 0 ∈ V
63 csbov1g 7446 . . . . 5 (0 ∈ V → 0 / 𝑘(𝑘 𝑋) = (0 / 𝑘𝑘 𝑋))
6462, 63mp1i 13 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 0 / 𝑘(𝑘 𝑋) = (0 / 𝑘𝑘 𝑋))
65 csbvarg 4407 . . . . . 6 (0 ∈ V → 0 / 𝑘𝑘 = 0)
6662, 65mp1i 13 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 0 / 𝑘𝑘 = 0)
6766oveq1d 7414 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (0 / 𝑘𝑘 𝑋) = (0 𝑋))
6812, 10, 32, 9ply1idvr1 22217 . . . . 5 (𝐴 ∈ Ring → (0 𝑋) = (1r𝑄))
6924, 68syl 17 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (0 𝑋) = (1r𝑄))
7064, 67, 693eqtrd 2773 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 0 / 𝑘(𝑘 𝑋) = (1r𝑄))
7151, 61, 703eqtrd 2773 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑄 Σg (𝑘 ∈ ℕ0 ↦ (if(𝑘 = 0, (1r𝐴), (0g𝐴)) (𝑘 𝑋)))) = (1r𝑄))
7215, 22, 713eqtrd 2773 1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑇‘(1r𝐶)) = (1r𝑄))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  Vcvv 3457  csb 3872  ifcif 4498  cmpt 5198  cfv 6527  (class class class)co 7399  Fincfn 8953  0cc0 11121  0cn0 12493  Basecbs 17213  Scalarcsca 17259   ·𝑠 cvsca 17260  0gc0g 17438   Σg cgsu 17439  Mndcmnd 18697  .gcmg 19035  mulGrpcmgp 20085  1rcur 20126  Ringcrg 20178  LModclmod 20802  var1cv1 22096  Poly1cpl1 22097   Mat cmat 22330   decompPMat cdecpmat 22685   pMatToMatPoly cpm2mp 22715
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5246  ax-sep 5263  ax-nul 5273  ax-pow 5332  ax-pr 5399  ax-un 7723  ax-cnex 11177  ax-resscn 11178  ax-1cn 11179  ax-icn 11180  ax-addcl 11181  ax-addrcl 11182  ax-mulcl 11183  ax-mulrcl 11184  ax-mulcom 11185  ax-addass 11186  ax-mulass 11187  ax-distr 11188  ax-i2m1 11189  ax-1ne0 11190  ax-1rid 11191  ax-rnegex 11192  ax-rrecex 11193  ax-cnre 11194  ax-pre-lttri 11195  ax-pre-lttrn 11196  ax-pre-ltadd 11197  ax-pre-mulgt0 11198
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3357  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-pss 3944  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-tp 4604  df-op 4606  df-ot 4608  df-uni 4881  df-int 4920  df-iun 4966  df-iin 4967  df-br 5117  df-opab 5179  df-mpt 5199  df-tr 5227  df-id 5545  df-eprel 5550  df-po 5558  df-so 5559  df-fr 5603  df-se 5604  df-we 5605  df-xp 5657  df-rel 5658  df-cnv 5659  df-co 5660  df-dm 5661  df-rn 5662  df-res 5663  df-ima 5664  df-pred 6287  df-ord 6352  df-on 6353  df-lim 6354  df-suc 6355  df-iota 6480  df-fun 6529  df-fn 6530  df-f 6531  df-f1 6532  df-fo 6533  df-f1o 6534  df-fv 6535  df-isom 6536  df-riota 7356  df-ov 7402  df-oprab 7403  df-mpo 7404  df-of 7665  df-ofr 7666  df-om 7856  df-1st 7982  df-2nd 7983  df-supp 8154  df-frecs 8274  df-wrecs 8305  df-recs 8379  df-rdg 8418  df-1o 8474  df-2o 8475  df-er 8713  df-map 8836  df-pm 8837  df-ixp 8906  df-en 8954  df-dom 8955  df-sdom 8956  df-fin 8957  df-fsupp 9368  df-sup 9448  df-oi 9516  df-card 9945  df-pnf 11263  df-mnf 11264  df-xr 11265  df-ltxr 11266  df-le 11267  df-sub 11460  df-neg 11461  df-nn 12233  df-2 12295  df-3 12296  df-4 12297  df-5 12298  df-6 12299  df-7 12300  df-8 12301  df-9 12302  df-n0 12494  df-z 12581  df-dec 12701  df-uz 12845  df-fz 13514  df-fzo 13661  df-seq 14009  df-hash 14337  df-struct 17151  df-sets 17168  df-slot 17186  df-ndx 17198  df-base 17214  df-ress 17237  df-plusg 17269  df-mulr 17270  df-sca 17272  df-vsca 17273  df-ip 17274  df-tset 17275  df-ple 17276  df-ds 17278  df-hom 17280  df-cco 17281  df-0g 17440  df-gsum 17441  df-prds 17446  df-pws 17448  df-mre 17583  df-mrc 17584  df-acs 17586  df-mgm 18603  df-sgrp 18682  df-mnd 18698  df-mhm 18746  df-submnd 18747  df-grp 18904  df-minusg 18905  df-sbg 18906  df-mulg 19036  df-subg 19091  df-ghm 19181  df-cntz 19285  df-cmn 19748  df-abl 19749  df-mgp 20086  df-rng 20098  df-ur 20127  df-ring 20180  df-subrng 20491  df-subrg 20515  df-lmod 20804  df-lss 20874  df-sra 21116  df-rgmod 21117  df-dsmm 21677  df-frlm 21692  df-psr 21854  df-mvr 21855  df-mpl 21856  df-opsr 21858  df-psr1 22100  df-vr1 22101  df-ply1 22102  df-coe1 22103  df-mamu 22314  df-mat 22331  df-decpmat 22686  df-pm2mp 22716
This theorem is referenced by:  pm2mpmhm  22743
  Copyright terms: Public domain W3C validator