MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  muinv Structured version   Visualization version   GIF version

Theorem muinv 27236
Description: The Möbius inversion formula. If 𝐺(𝑛) = Σ𝑘𝑛𝐹(𝑘) for every 𝑛 ∈ ℕ, then 𝐹(𝑛) = Σ𝑘𝑛 μ(𝑘)𝐺(𝑛 / 𝑘) = Σ𝑘𝑛μ(𝑛 / 𝑘)𝐺(𝑘), i.e. the Möbius function is the Dirichlet convolution inverse of the constant function 1. Theorem 2.9 in [ApostolNT] p. 32. (Contributed by Mario Carneiro, 2-Jul-2015.)
Hypotheses
Ref Expression
muinv.1 (𝜑𝐹:ℕ⟶ℂ)
muinv.2 (𝜑𝐺 = (𝑛 ∈ ℕ ↦ Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} (𝐹𝑘)))
Assertion
Ref Expression
muinv (𝜑𝐹 = (𝑚 ∈ ℕ ↦ Σ𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚} ((μ‘𝑗) · (𝐺‘(𝑚 / 𝑗)))))
Distinct variable groups:   𝑘,𝑚,𝑗,𝑛,𝐹   𝑥,𝑗,𝑘,𝑚,𝑛   𝜑,𝑗,𝑘,𝑚
Allowed substitution hints:   𝜑(𝑥,𝑛)   𝐹(𝑥)   𝐺(𝑥,𝑗,𝑘,𝑚,𝑛)

Proof of Theorem muinv
StepHypRef Expression
1 muinv.1 . . 3 (𝜑𝐹:ℕ⟶ℂ)
21feqmptd 6977 . 2 (𝜑𝐹 = (𝑚 ∈ ℕ ↦ (𝐹𝑚)))
3 muinv.2 . . . . . . . . . 10 (𝜑𝐺 = (𝑛 ∈ ℕ ↦ Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} (𝐹𝑘)))
43ad2antrr 726 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ) ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) → 𝐺 = (𝑛 ∈ ℕ ↦ Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} (𝐹𝑘)))
54fveq1d 6908 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ) ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) → (𝐺‘(𝑚 / 𝑗)) = ((𝑛 ∈ ℕ ↦ Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} (𝐹𝑘))‘(𝑚 / 𝑗)))
6 breq1 5146 . . . . . . . . . . . . . 14 (𝑥 = 𝑗 → (𝑥𝑚𝑗𝑚))
76elrab 3692 . . . . . . . . . . . . 13 (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚} ↔ (𝑗 ∈ ℕ ∧ 𝑗𝑚))
87simprbi 496 . . . . . . . . . . . 12 (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚} → 𝑗𝑚)
98adantl 481 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ) ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) → 𝑗𝑚)
10 elrabi 3687 . . . . . . . . . . . . . 14 (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚} → 𝑗 ∈ ℕ)
1110adantl 481 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ ℕ) ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) → 𝑗 ∈ ℕ)
1211nnzd 12640 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ ℕ) ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) → 𝑗 ∈ ℤ)
1311nnne0d 12316 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ ℕ) ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) → 𝑗 ≠ 0)
14 nnz 12634 . . . . . . . . . . . . 13 (𝑚 ∈ ℕ → 𝑚 ∈ ℤ)
1514ad2antlr 727 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ ℕ) ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) → 𝑚 ∈ ℤ)
16 dvdsval2 16293 . . . . . . . . . . . 12 ((𝑗 ∈ ℤ ∧ 𝑗 ≠ 0 ∧ 𝑚 ∈ ℤ) → (𝑗𝑚 ↔ (𝑚 / 𝑗) ∈ ℤ))
1712, 13, 15, 16syl3anc 1373 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ) ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) → (𝑗𝑚 ↔ (𝑚 / 𝑗) ∈ ℤ))
189, 17mpbid 232 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℕ) ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) → (𝑚 / 𝑗) ∈ ℤ)
19 nnre 12273 . . . . . . . . . . . . 13 (𝑚 ∈ ℕ → 𝑚 ∈ ℝ)
20 nngt0 12297 . . . . . . . . . . . . 13 (𝑚 ∈ ℕ → 0 < 𝑚)
2119, 20jca 511 . . . . . . . . . . . 12 (𝑚 ∈ ℕ → (𝑚 ∈ ℝ ∧ 0 < 𝑚))
2221ad2antlr 727 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ) ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) → (𝑚 ∈ ℝ ∧ 0 < 𝑚))
23 nnre 12273 . . . . . . . . . . . . 13 (𝑗 ∈ ℕ → 𝑗 ∈ ℝ)
24 nngt0 12297 . . . . . . . . . . . . 13 (𝑗 ∈ ℕ → 0 < 𝑗)
2523, 24jca 511 . . . . . . . . . . . 12 (𝑗 ∈ ℕ → (𝑗 ∈ ℝ ∧ 0 < 𝑗))
2611, 25syl 17 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ) ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) → (𝑗 ∈ ℝ ∧ 0 < 𝑗))
27 divgt0 12136 . . . . . . . . . . 11 (((𝑚 ∈ ℝ ∧ 0 < 𝑚) ∧ (𝑗 ∈ ℝ ∧ 0 < 𝑗)) → 0 < (𝑚 / 𝑗))
2822, 26, 27syl2anc 584 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℕ) ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) → 0 < (𝑚 / 𝑗))
29 elnnz 12623 . . . . . . . . . 10 ((𝑚 / 𝑗) ∈ ℕ ↔ ((𝑚 / 𝑗) ∈ ℤ ∧ 0 < (𝑚 / 𝑗)))
3018, 28, 29sylanbrc 583 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ) ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) → (𝑚 / 𝑗) ∈ ℕ)
31 breq2 5147 . . . . . . . . . . . 12 (𝑛 = (𝑚 / 𝑗) → (𝑥𝑛𝑥 ∥ (𝑚 / 𝑗)))
3231rabbidv 3444 . . . . . . . . . . 11 (𝑛 = (𝑚 / 𝑗) → {𝑥 ∈ ℕ ∣ 𝑥𝑛} = {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑚 / 𝑗)})
3332sumeq1d 15736 . . . . . . . . . 10 (𝑛 = (𝑚 / 𝑗) → Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} (𝐹𝑘) = Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑚 / 𝑗)} (𝐹𝑘))
34 eqid 2737 . . . . . . . . . 10 (𝑛 ∈ ℕ ↦ Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} (𝐹𝑘)) = (𝑛 ∈ ℕ ↦ Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} (𝐹𝑘))
35 sumex 15724 . . . . . . . . . 10 Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑚 / 𝑗)} (𝐹𝑘) ∈ V
3633, 34, 35fvmpt 7016 . . . . . . . . 9 ((𝑚 / 𝑗) ∈ ℕ → ((𝑛 ∈ ℕ ↦ Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} (𝐹𝑘))‘(𝑚 / 𝑗)) = Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑚 / 𝑗)} (𝐹𝑘))
3730, 36syl 17 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ) ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) → ((𝑛 ∈ ℕ ↦ Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} (𝐹𝑘))‘(𝑚 / 𝑗)) = Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑚 / 𝑗)} (𝐹𝑘))
385, 37eqtrd 2777 . . . . . . 7 (((𝜑𝑚 ∈ ℕ) ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) → (𝐺‘(𝑚 / 𝑗)) = Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑚 / 𝑗)} (𝐹𝑘))
3938oveq2d 7447 . . . . . 6 (((𝜑𝑚 ∈ ℕ) ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) → ((μ‘𝑗) · (𝐺‘(𝑚 / 𝑗))) = ((μ‘𝑗) · Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑚 / 𝑗)} (𝐹𝑘)))
40 fzfid 14014 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ) ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) → (1...(𝑚 / 𝑗)) ∈ Fin)
41 dvdsssfz1 16355 . . . . . . . . 9 ((𝑚 / 𝑗) ∈ ℕ → {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑚 / 𝑗)} ⊆ (1...(𝑚 / 𝑗)))
4230, 41syl 17 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ) ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) → {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑚 / 𝑗)} ⊆ (1...(𝑚 / 𝑗)))
4340, 42ssfid 9301 . . . . . . 7 (((𝜑𝑚 ∈ ℕ) ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) → {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑚 / 𝑗)} ∈ Fin)
44 mucl 27184 . . . . . . . . 9 (𝑗 ∈ ℕ → (μ‘𝑗) ∈ ℤ)
4511, 44syl 17 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ) ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) → (μ‘𝑗) ∈ ℤ)
4645zcnd 12723 . . . . . . 7 (((𝜑𝑚 ∈ ℕ) ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) → (μ‘𝑗) ∈ ℂ)
471ad2antrr 726 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ) ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) → 𝐹:ℕ⟶ℂ)
48 elrabi 3687 . . . . . . . 8 (𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑚 / 𝑗)} → 𝑘 ∈ ℕ)
49 ffvelcdm 7101 . . . . . . . 8 ((𝐹:ℕ⟶ℂ ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℂ)
5047, 48, 49syl2an 596 . . . . . . 7 ((((𝜑𝑚 ∈ ℕ) ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑚 / 𝑗)}) → (𝐹𝑘) ∈ ℂ)
5143, 46, 50fsummulc2 15820 . . . . . 6 (((𝜑𝑚 ∈ ℕ) ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) → ((μ‘𝑗) · Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑚 / 𝑗)} (𝐹𝑘)) = Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑚 / 𝑗)} ((μ‘𝑗) · (𝐹𝑘)))
5239, 51eqtrd 2777 . . . . 5 (((𝜑𝑚 ∈ ℕ) ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) → ((μ‘𝑗) · (𝐺‘(𝑚 / 𝑗))) = Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑚 / 𝑗)} ((μ‘𝑗) · (𝐹𝑘)))
5352sumeq2dv 15738 . . . 4 ((𝜑𝑚 ∈ ℕ) → Σ𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚} ((μ‘𝑗) · (𝐺‘(𝑚 / 𝑗))) = Σ𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑚 / 𝑗)} ((μ‘𝑗) · (𝐹𝑘)))
54 simpr 484 . . . . 5 ((𝜑𝑚 ∈ ℕ) → 𝑚 ∈ ℕ)
5546adantrr 717 . . . . . 6 (((𝜑𝑚 ∈ ℕ) ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑚 / 𝑗)})) → (μ‘𝑗) ∈ ℂ)
5650anasss 466 . . . . . 6 (((𝜑𝑚 ∈ ℕ) ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑚 / 𝑗)})) → (𝐹𝑘) ∈ ℂ)
5755, 56mulcld 11281 . . . . 5 (((𝜑𝑚 ∈ ℕ) ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑚 / 𝑗)})) → ((μ‘𝑗) · (𝐹𝑘)) ∈ ℂ)
5854, 57fsumdvdsdiag 27227 . . . 4 ((𝜑𝑚 ∈ ℕ) → Σ𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑚 / 𝑗)} ((μ‘𝑗) · (𝐹𝑘)) = Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑚 / 𝑘)} ((μ‘𝑗) · (𝐹𝑘)))
59 ssrab2 4080 . . . . . . . . . 10 {𝑥 ∈ ℕ ∣ 𝑥𝑚} ⊆ ℕ
60 dvdsdivcl 16353 . . . . . . . . . . 11 ((𝑚 ∈ ℕ ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) → (𝑚 / 𝑘) ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚})
6160adantll 714 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) → (𝑚 / 𝑘) ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚})
6259, 61sselid 3981 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) → (𝑚 / 𝑘) ∈ ℕ)
63 musum 27234 . . . . . . . . 9 ((𝑚 / 𝑘) ∈ ℕ → Σ𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑚 / 𝑘)} (μ‘𝑗) = if((𝑚 / 𝑘) = 1, 1, 0))
6462, 63syl 17 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) → Σ𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑚 / 𝑘)} (μ‘𝑗) = if((𝑚 / 𝑘) = 1, 1, 0))
6564oveq1d 7446 . . . . . . 7 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) → (Σ𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑚 / 𝑘)} (μ‘𝑗) · (𝐹𝑘)) = (if((𝑚 / 𝑘) = 1, 1, 0) · (𝐹𝑘)))
66 fzfid 14014 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) → (1...(𝑚 / 𝑘)) ∈ Fin)
67 dvdsssfz1 16355 . . . . . . . . . 10 ((𝑚 / 𝑘) ∈ ℕ → {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑚 / 𝑘)} ⊆ (1...(𝑚 / 𝑘)))
6862, 67syl 17 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) → {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑚 / 𝑘)} ⊆ (1...(𝑚 / 𝑘)))
6966, 68ssfid 9301 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) → {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑚 / 𝑘)} ∈ Fin)
701adantr 480 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ) → 𝐹:ℕ⟶ℂ)
71 elrabi 3687 . . . . . . . . 9 (𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚} → 𝑘 ∈ ℕ)
7270, 71, 49syl2an 596 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) → (𝐹𝑘) ∈ ℂ)
73 ssrab2 4080 . . . . . . . . . . 11 {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑚 / 𝑘)} ⊆ ℕ
74 simpr 484 . . . . . . . . . . 11 ((((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑚 / 𝑘)}) → 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑚 / 𝑘)})
7573, 74sselid 3981 . . . . . . . . . 10 ((((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑚 / 𝑘)}) → 𝑗 ∈ ℕ)
7675, 44syl 17 . . . . . . . . 9 ((((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑚 / 𝑘)}) → (μ‘𝑗) ∈ ℤ)
7776zcnd 12723 . . . . . . . 8 ((((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑚 / 𝑘)}) → (μ‘𝑗) ∈ ℂ)
7869, 72, 77fsummulc1 15821 . . . . . . 7 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) → (Σ𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑚 / 𝑘)} (μ‘𝑗) · (𝐹𝑘)) = Σ𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑚 / 𝑘)} ((μ‘𝑗) · (𝐹𝑘)))
79 ovif 7531 . . . . . . . 8 (if((𝑚 / 𝑘) = 1, 1, 0) · (𝐹𝑘)) = if((𝑚 / 𝑘) = 1, (1 · (𝐹𝑘)), (0 · (𝐹𝑘)))
80 nncn 12274 . . . . . . . . . . . 12 (𝑚 ∈ ℕ → 𝑚 ∈ ℂ)
8180ad2antlr 727 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) → 𝑚 ∈ ℂ)
8271adantl 481 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) → 𝑘 ∈ ℕ)
8382nncnd 12282 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) → 𝑘 ∈ ℂ)
84 1cnd 11256 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) → 1 ∈ ℂ)
8582nnne0d 12316 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) → 𝑘 ≠ 0)
8681, 83, 84, 85divmuld 12065 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) → ((𝑚 / 𝑘) = 1 ↔ (𝑘 · 1) = 𝑚))
8783mulridd 11278 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) → (𝑘 · 1) = 𝑘)
8887eqeq1d 2739 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) → ((𝑘 · 1) = 𝑚𝑘 = 𝑚))
8986, 88bitrd 279 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) → ((𝑚 / 𝑘) = 1 ↔ 𝑘 = 𝑚))
9072mullidd 11279 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) → (1 · (𝐹𝑘)) = (𝐹𝑘))
9172mul02d 11459 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) → (0 · (𝐹𝑘)) = 0)
9289, 90, 91ifbieq12d 4554 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) → if((𝑚 / 𝑘) = 1, (1 · (𝐹𝑘)), (0 · (𝐹𝑘))) = if(𝑘 = 𝑚, (𝐹𝑘), 0))
9379, 92eqtrid 2789 . . . . . . 7 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) → (if((𝑚 / 𝑘) = 1, 1, 0) · (𝐹𝑘)) = if(𝑘 = 𝑚, (𝐹𝑘), 0))
9465, 78, 933eqtr3d 2785 . . . . . 6 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) → Σ𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑚 / 𝑘)} ((μ‘𝑗) · (𝐹𝑘)) = if(𝑘 = 𝑚, (𝐹𝑘), 0))
9594sumeq2dv 15738 . . . . 5 ((𝜑𝑚 ∈ ℕ) → Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑚 / 𝑘)} ((μ‘𝑗) · (𝐹𝑘)) = Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}if(𝑘 = 𝑚, (𝐹𝑘), 0))
96 breq1 5146 . . . . . . . 8 (𝑥 = 𝑚 → (𝑥𝑚𝑚𝑚))
9754nnzd 12640 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ) → 𝑚 ∈ ℤ)
98 iddvds 16307 . . . . . . . . 9 (𝑚 ∈ ℤ → 𝑚𝑚)
9997, 98syl 17 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ) → 𝑚𝑚)
10096, 54, 99elrabd 3694 . . . . . . 7 ((𝜑𝑚 ∈ ℕ) → 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚})
101100snssd 4809 . . . . . 6 ((𝜑𝑚 ∈ ℕ) → {𝑚} ⊆ {𝑥 ∈ ℕ ∣ 𝑥𝑚})
102101sselda 3983 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ {𝑚}) → 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚})
103102, 72syldan 591 . . . . . . 7 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ {𝑚}) → (𝐹𝑘) ∈ ℂ)
104 0cn 11253 . . . . . . 7 0 ∈ ℂ
105 ifcl 4571 . . . . . . 7 (((𝐹𝑘) ∈ ℂ ∧ 0 ∈ ℂ) → if(𝑘 = 𝑚, (𝐹𝑘), 0) ∈ ℂ)
106103, 104, 105sylancl 586 . . . . . 6 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ {𝑚}) → if(𝑘 = 𝑚, (𝐹𝑘), 0) ∈ ℂ)
107 eldifsni 4790 . . . . . . . . 9 (𝑘 ∈ ({𝑥 ∈ ℕ ∣ 𝑥𝑚} ∖ {𝑚}) → 𝑘𝑚)
108107adantl 481 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ ({𝑥 ∈ ℕ ∣ 𝑥𝑚} ∖ {𝑚})) → 𝑘𝑚)
109108neneqd 2945 . . . . . . 7 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ ({𝑥 ∈ ℕ ∣ 𝑥𝑚} ∖ {𝑚})) → ¬ 𝑘 = 𝑚)
110109iffalsed 4536 . . . . . 6 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ ({𝑥 ∈ ℕ ∣ 𝑥𝑚} ∖ {𝑚})) → if(𝑘 = 𝑚, (𝐹𝑘), 0) = 0)
111 fzfid 14014 . . . . . . 7 ((𝜑𝑚 ∈ ℕ) → (1...𝑚) ∈ Fin)
112 dvdsssfz1 16355 . . . . . . . 8 (𝑚 ∈ ℕ → {𝑥 ∈ ℕ ∣ 𝑥𝑚} ⊆ (1...𝑚))
113112adantl 481 . . . . . . 7 ((𝜑𝑚 ∈ ℕ) → {𝑥 ∈ ℕ ∣ 𝑥𝑚} ⊆ (1...𝑚))
114111, 113ssfid 9301 . . . . . 6 ((𝜑𝑚 ∈ ℕ) → {𝑥 ∈ ℕ ∣ 𝑥𝑚} ∈ Fin)
115101, 106, 110, 114fsumss 15761 . . . . 5 ((𝜑𝑚 ∈ ℕ) → Σ𝑘 ∈ {𝑚}if(𝑘 = 𝑚, (𝐹𝑘), 0) = Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}if(𝑘 = 𝑚, (𝐹𝑘), 0))
1161ffvelcdmda 7104 . . . . . 6 ((𝜑𝑚 ∈ ℕ) → (𝐹𝑚) ∈ ℂ)
117 iftrue 4531 . . . . . . . 8 (𝑘 = 𝑚 → if(𝑘 = 𝑚, (𝐹𝑘), 0) = (𝐹𝑘))
118 fveq2 6906 . . . . . . . 8 (𝑘 = 𝑚 → (𝐹𝑘) = (𝐹𝑚))
119117, 118eqtrd 2777 . . . . . . 7 (𝑘 = 𝑚 → if(𝑘 = 𝑚, (𝐹𝑘), 0) = (𝐹𝑚))
120119sumsn 15782 . . . . . 6 ((𝑚 ∈ ℕ ∧ (𝐹𝑚) ∈ ℂ) → Σ𝑘 ∈ {𝑚}if(𝑘 = 𝑚, (𝐹𝑘), 0) = (𝐹𝑚))
12154, 116, 120syl2anc 584 . . . . 5 ((𝜑𝑚 ∈ ℕ) → Σ𝑘 ∈ {𝑚}if(𝑘 = 𝑚, (𝐹𝑘), 0) = (𝐹𝑚))
12295, 115, 1213eqtr2d 2783 . . . 4 ((𝜑𝑚 ∈ ℕ) → Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑚 / 𝑘)} ((μ‘𝑗) · (𝐹𝑘)) = (𝐹𝑚))
12353, 58, 1223eqtrd 2781 . . 3 ((𝜑𝑚 ∈ ℕ) → Σ𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚} ((μ‘𝑗) · (𝐺‘(𝑚 / 𝑗))) = (𝐹𝑚))
124123mpteq2dva 5242 . 2 (𝜑 → (𝑚 ∈ ℕ ↦ Σ𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚} ((μ‘𝑗) · (𝐺‘(𝑚 / 𝑗)))) = (𝑚 ∈ ℕ ↦ (𝐹𝑚)))
1252, 124eqtr4d 2780 1 (𝜑𝐹 = (𝑚 ∈ ℕ ↦ Σ𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚} ((μ‘𝑗) · (𝐺‘(𝑚 / 𝑗)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wne 2940  {crab 3436  cdif 3948  wss 3951  ifcif 4525  {csn 4626   class class class wbr 5143  cmpt 5225  wf 6557  cfv 6561  (class class class)co 7431  cc 11153  cr 11154  0cc0 11155  1c1 11156   · cmul 11160   < clt 11295   / cdiv 11920  cn 12266  cz 12613  ...cfz 13547  Σcsu 15722  cdvds 16290  μcmu 27138
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-disj 5111  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-oadd 8510  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-inf 9483  df-oi 9550  df-dju 9941  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-xnn0 12600  df-z 12614  df-uz 12879  df-q 12991  df-rp 13035  df-fz 13548  df-fzo 13695  df-fl 13832  df-mod 13910  df-seq 14043  df-exp 14103  df-fac 14313  df-bc 14342  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-clim 15524  df-sum 15723  df-dvds 16291  df-gcd 16532  df-prm 16709  df-pc 16875  df-mu 27144
This theorem is referenced by:  dchrvmasumlem1  27539  logsqvma2  27587
  Copyright terms: Public domain W3C validator