Proof of Theorem muinv
Step | Hyp | Ref
| Expression |
1 | | muinv.1 |
. . 3
⊢ (𝜑 → 𝐹:ℕ⟶ℂ) |
2 | 1 | feqmptd 6819 |
. 2
⊢ (𝜑 → 𝐹 = (𝑚 ∈ ℕ ↦ (𝐹‘𝑚))) |
3 | | muinv.2 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐺 = (𝑛 ∈ ℕ ↦ Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛} (𝐹‘𝑘))) |
4 | 3 | ad2antrr 722 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚}) → 𝐺 = (𝑛 ∈ ℕ ↦ Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛} (𝐹‘𝑘))) |
5 | 4 | fveq1d 6758 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚}) → (𝐺‘(𝑚 / 𝑗)) = ((𝑛 ∈ ℕ ↦ Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛} (𝐹‘𝑘))‘(𝑚 / 𝑗))) |
6 | | breq1 5073 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑗 → (𝑥 ∥ 𝑚 ↔ 𝑗 ∥ 𝑚)) |
7 | 6 | elrab 3617 |
. . . . . . . . . . . . 13
⊢ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚} ↔ (𝑗 ∈ ℕ ∧ 𝑗 ∥ 𝑚)) |
8 | 7 | simprbi 496 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚} → 𝑗 ∥ 𝑚) |
9 | 8 | adantl 481 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚}) → 𝑗 ∥ 𝑚) |
10 | | elrabi 3611 |
. . . . . . . . . . . . . 14
⊢ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚} → 𝑗 ∈ ℕ) |
11 | 10 | adantl 481 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚}) → 𝑗 ∈ ℕ) |
12 | 11 | nnzd 12354 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚}) → 𝑗 ∈ ℤ) |
13 | 11 | nnne0d 11953 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚}) → 𝑗 ≠ 0) |
14 | | nnz 12272 |
. . . . . . . . . . . . 13
⊢ (𝑚 ∈ ℕ → 𝑚 ∈
ℤ) |
15 | 14 | ad2antlr 723 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚}) → 𝑚 ∈ ℤ) |
16 | | dvdsval2 15894 |
. . . . . . . . . . . 12
⊢ ((𝑗 ∈ ℤ ∧ 𝑗 ≠ 0 ∧ 𝑚 ∈ ℤ) → (𝑗 ∥ 𝑚 ↔ (𝑚 / 𝑗) ∈ ℤ)) |
17 | 12, 13, 15, 16 | syl3anc 1369 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚}) → (𝑗 ∥ 𝑚 ↔ (𝑚 / 𝑗) ∈ ℤ)) |
18 | 9, 17 | mpbid 231 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚}) → (𝑚 / 𝑗) ∈ ℤ) |
19 | | nnre 11910 |
. . . . . . . . . . . . 13
⊢ (𝑚 ∈ ℕ → 𝑚 ∈
ℝ) |
20 | | nngt0 11934 |
. . . . . . . . . . . . 13
⊢ (𝑚 ∈ ℕ → 0 <
𝑚) |
21 | 19, 20 | jca 511 |
. . . . . . . . . . . 12
⊢ (𝑚 ∈ ℕ → (𝑚 ∈ ℝ ∧ 0 <
𝑚)) |
22 | 21 | ad2antlr 723 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚}) → (𝑚 ∈ ℝ ∧ 0 < 𝑚)) |
23 | | nnre 11910 |
. . . . . . . . . . . . 13
⊢ (𝑗 ∈ ℕ → 𝑗 ∈
ℝ) |
24 | | nngt0 11934 |
. . . . . . . . . . . . 13
⊢ (𝑗 ∈ ℕ → 0 <
𝑗) |
25 | 23, 24 | jca 511 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈ ℕ → (𝑗 ∈ ℝ ∧ 0 <
𝑗)) |
26 | 11, 25 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚}) → (𝑗 ∈ ℝ ∧ 0 < 𝑗)) |
27 | | divgt0 11773 |
. . . . . . . . . . 11
⊢ (((𝑚 ∈ ℝ ∧ 0 <
𝑚) ∧ (𝑗 ∈ ℝ ∧ 0 <
𝑗)) → 0 < (𝑚 / 𝑗)) |
28 | 22, 26, 27 | syl2anc 583 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚}) → 0 < (𝑚 / 𝑗)) |
29 | | elnnz 12259 |
. . . . . . . . . 10
⊢ ((𝑚 / 𝑗) ∈ ℕ ↔ ((𝑚 / 𝑗) ∈ ℤ ∧ 0 < (𝑚 / 𝑗))) |
30 | 18, 28, 29 | sylanbrc 582 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚}) → (𝑚 / 𝑗) ∈ ℕ) |
31 | | breq2 5074 |
. . . . . . . . . . . 12
⊢ (𝑛 = (𝑚 / 𝑗) → (𝑥 ∥ 𝑛 ↔ 𝑥 ∥ (𝑚 / 𝑗))) |
32 | 31 | rabbidv 3404 |
. . . . . . . . . . 11
⊢ (𝑛 = (𝑚 / 𝑗) → {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛} = {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑚 / 𝑗)}) |
33 | 32 | sumeq1d 15341 |
. . . . . . . . . 10
⊢ (𝑛 = (𝑚 / 𝑗) → Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛} (𝐹‘𝑘) = Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑚 / 𝑗)} (𝐹‘𝑘)) |
34 | | eqid 2738 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ℕ ↦
Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛} (𝐹‘𝑘)) = (𝑛 ∈ ℕ ↦ Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛} (𝐹‘𝑘)) |
35 | | sumex 15327 |
. . . . . . . . . 10
⊢
Σ𝑘 ∈
{𝑥 ∈ ℕ ∣
𝑥 ∥ (𝑚 / 𝑗)} (𝐹‘𝑘) ∈ V |
36 | 33, 34, 35 | fvmpt 6857 |
. . . . . . . . 9
⊢ ((𝑚 / 𝑗) ∈ ℕ → ((𝑛 ∈ ℕ ↦ Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛} (𝐹‘𝑘))‘(𝑚 / 𝑗)) = Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑚 / 𝑗)} (𝐹‘𝑘)) |
37 | 30, 36 | syl 17 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚}) → ((𝑛 ∈ ℕ ↦ Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛} (𝐹‘𝑘))‘(𝑚 / 𝑗)) = Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑚 / 𝑗)} (𝐹‘𝑘)) |
38 | 5, 37 | eqtrd 2778 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚}) → (𝐺‘(𝑚 / 𝑗)) = Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑚 / 𝑗)} (𝐹‘𝑘)) |
39 | 38 | oveq2d 7271 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚}) → ((μ‘𝑗) · (𝐺‘(𝑚 / 𝑗))) = ((μ‘𝑗) · Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑚 / 𝑗)} (𝐹‘𝑘))) |
40 | | fzfid 13621 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚}) → (1...(𝑚 / 𝑗)) ∈ Fin) |
41 | | dvdsssfz1 15955 |
. . . . . . . . 9
⊢ ((𝑚 / 𝑗) ∈ ℕ → {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑚 / 𝑗)} ⊆ (1...(𝑚 / 𝑗))) |
42 | 30, 41 | syl 17 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚}) → {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑚 / 𝑗)} ⊆ (1...(𝑚 / 𝑗))) |
43 | 40, 42 | ssfid 8971 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚}) → {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑚 / 𝑗)} ∈ Fin) |
44 | | mucl 26195 |
. . . . . . . . 9
⊢ (𝑗 ∈ ℕ →
(μ‘𝑗) ∈
ℤ) |
45 | 11, 44 | syl 17 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚}) → (μ‘𝑗) ∈ ℤ) |
46 | 45 | zcnd 12356 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚}) → (μ‘𝑗) ∈ ℂ) |
47 | 1 | ad2antrr 722 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚}) → 𝐹:ℕ⟶ℂ) |
48 | | elrabi 3611 |
. . . . . . . 8
⊢ (𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑚 / 𝑗)} → 𝑘 ∈ ℕ) |
49 | | ffvelrn 6941 |
. . . . . . . 8
⊢ ((𝐹:ℕ⟶ℂ ∧
𝑘 ∈ ℕ) →
(𝐹‘𝑘) ∈ ℂ) |
50 | 47, 48, 49 | syl2an 595 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚}) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑚 / 𝑗)}) → (𝐹‘𝑘) ∈ ℂ) |
51 | 43, 46, 50 | fsummulc2 15424 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚}) → ((μ‘𝑗) · Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑚 / 𝑗)} (𝐹‘𝑘)) = Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑚 / 𝑗)} ((μ‘𝑗) · (𝐹‘𝑘))) |
52 | 39, 51 | eqtrd 2778 |
. . . . 5
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚}) → ((μ‘𝑗) · (𝐺‘(𝑚 / 𝑗))) = Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑚 / 𝑗)} ((μ‘𝑗) · (𝐹‘𝑘))) |
53 | 52 | sumeq2dv 15343 |
. . . 4
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → Σ𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚} ((μ‘𝑗) · (𝐺‘(𝑚 / 𝑗))) = Σ𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚}Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑚 / 𝑗)} ((μ‘𝑗) · (𝐹‘𝑘))) |
54 | | simpr 484 |
. . . . 5
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → 𝑚 ∈ ℕ) |
55 | 46 | adantrr 713 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑚 / 𝑗)})) → (μ‘𝑗) ∈ ℂ) |
56 | 50 | anasss 466 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑚 / 𝑗)})) → (𝐹‘𝑘) ∈ ℂ) |
57 | 55, 56 | mulcld 10926 |
. . . . 5
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑚 / 𝑗)})) → ((μ‘𝑗) · (𝐹‘𝑘)) ∈ ℂ) |
58 | 54, 57 | fsumdvdsdiag 26238 |
. . . 4
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → Σ𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚}Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑚 / 𝑗)} ((μ‘𝑗) · (𝐹‘𝑘)) = Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚}Σ𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑚 / 𝑘)} ((μ‘𝑗) · (𝐹‘𝑘))) |
59 | | ssrab2 4009 |
. . . . . . . . . 10
⊢ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚} ⊆ ℕ |
60 | | dvdsdivcl 15953 |
. . . . . . . . . . 11
⊢ ((𝑚 ∈ ℕ ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚}) → (𝑚 / 𝑘) ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚}) |
61 | 60 | adantll 710 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚}) → (𝑚 / 𝑘) ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚}) |
62 | 59, 61 | sselid 3915 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚}) → (𝑚 / 𝑘) ∈ ℕ) |
63 | | musum 26245 |
. . . . . . . . 9
⊢ ((𝑚 / 𝑘) ∈ ℕ → Σ𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑚 / 𝑘)} (μ‘𝑗) = if((𝑚 / 𝑘) = 1, 1, 0)) |
64 | 62, 63 | syl 17 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚}) → Σ𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑚 / 𝑘)} (μ‘𝑗) = if((𝑚 / 𝑘) = 1, 1, 0)) |
65 | 64 | oveq1d 7270 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚}) → (Σ𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑚 / 𝑘)} (μ‘𝑗) · (𝐹‘𝑘)) = (if((𝑚 / 𝑘) = 1, 1, 0) · (𝐹‘𝑘))) |
66 | | fzfid 13621 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚}) → (1...(𝑚 / 𝑘)) ∈ Fin) |
67 | | dvdsssfz1 15955 |
. . . . . . . . . 10
⊢ ((𝑚 / 𝑘) ∈ ℕ → {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑚 / 𝑘)} ⊆ (1...(𝑚 / 𝑘))) |
68 | 62, 67 | syl 17 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚}) → {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑚 / 𝑘)} ⊆ (1...(𝑚 / 𝑘))) |
69 | 66, 68 | ssfid 8971 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚}) → {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑚 / 𝑘)} ∈ Fin) |
70 | 1 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → 𝐹:ℕ⟶ℂ) |
71 | | elrabi 3611 |
. . . . . . . . 9
⊢ (𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚} → 𝑘 ∈ ℕ) |
72 | 70, 71, 49 | syl2an 595 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚}) → (𝐹‘𝑘) ∈ ℂ) |
73 | | ssrab2 4009 |
. . . . . . . . . . 11
⊢ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑚 / 𝑘)} ⊆ ℕ |
74 | | simpr 484 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚}) ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑚 / 𝑘)}) → 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑚 / 𝑘)}) |
75 | 73, 74 | sselid 3915 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚}) ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑚 / 𝑘)}) → 𝑗 ∈ ℕ) |
76 | 75, 44 | syl 17 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚}) ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑚 / 𝑘)}) → (μ‘𝑗) ∈ ℤ) |
77 | 76 | zcnd 12356 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚}) ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑚 / 𝑘)}) → (μ‘𝑗) ∈ ℂ) |
78 | 69, 72, 77 | fsummulc1 15425 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚}) → (Σ𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑚 / 𝑘)} (μ‘𝑗) · (𝐹‘𝑘)) = Σ𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑚 / 𝑘)} ((μ‘𝑗) · (𝐹‘𝑘))) |
79 | | ovif 7350 |
. . . . . . . 8
⊢
(if((𝑚 / 𝑘) = 1, 1, 0) · (𝐹‘𝑘)) = if((𝑚 / 𝑘) = 1, (1 · (𝐹‘𝑘)), (0 · (𝐹‘𝑘))) |
80 | | nncn 11911 |
. . . . . . . . . . . 12
⊢ (𝑚 ∈ ℕ → 𝑚 ∈
ℂ) |
81 | 80 | ad2antlr 723 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚}) → 𝑚 ∈ ℂ) |
82 | 71 | adantl 481 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚}) → 𝑘 ∈ ℕ) |
83 | 82 | nncnd 11919 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚}) → 𝑘 ∈ ℂ) |
84 | | 1cnd 10901 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚}) → 1 ∈ ℂ) |
85 | 82 | nnne0d 11953 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚}) → 𝑘 ≠ 0) |
86 | 81, 83, 84, 85 | divmuld 11703 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚}) → ((𝑚 / 𝑘) = 1 ↔ (𝑘 · 1) = 𝑚)) |
87 | 83 | mulid1d 10923 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚}) → (𝑘 · 1) = 𝑘) |
88 | 87 | eqeq1d 2740 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚}) → ((𝑘 · 1) = 𝑚 ↔ 𝑘 = 𝑚)) |
89 | 86, 88 | bitrd 278 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚}) → ((𝑚 / 𝑘) = 1 ↔ 𝑘 = 𝑚)) |
90 | 72 | mulid2d 10924 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚}) → (1 · (𝐹‘𝑘)) = (𝐹‘𝑘)) |
91 | 72 | mul02d 11103 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚}) → (0 · (𝐹‘𝑘)) = 0) |
92 | 89, 90, 91 | ifbieq12d 4484 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚}) → if((𝑚 / 𝑘) = 1, (1 · (𝐹‘𝑘)), (0 · (𝐹‘𝑘))) = if(𝑘 = 𝑚, (𝐹‘𝑘), 0)) |
93 | 79, 92 | syl5eq 2791 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚}) → (if((𝑚 / 𝑘) = 1, 1, 0) · (𝐹‘𝑘)) = if(𝑘 = 𝑚, (𝐹‘𝑘), 0)) |
94 | 65, 78, 93 | 3eqtr3d 2786 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚}) → Σ𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑚 / 𝑘)} ((μ‘𝑗) · (𝐹‘𝑘)) = if(𝑘 = 𝑚, (𝐹‘𝑘), 0)) |
95 | 94 | sumeq2dv 15343 |
. . . . 5
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚}Σ𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑚 / 𝑘)} ((μ‘𝑗) · (𝐹‘𝑘)) = Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚}if(𝑘 = 𝑚, (𝐹‘𝑘), 0)) |
96 | | breq1 5073 |
. . . . . . . 8
⊢ (𝑥 = 𝑚 → (𝑥 ∥ 𝑚 ↔ 𝑚 ∥ 𝑚)) |
97 | 54 | nnzd 12354 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → 𝑚 ∈ ℤ) |
98 | | iddvds 15907 |
. . . . . . . . 9
⊢ (𝑚 ∈ ℤ → 𝑚 ∥ 𝑚) |
99 | 97, 98 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → 𝑚 ∥ 𝑚) |
100 | 96, 54, 99 | elrabd 3619 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚}) |
101 | 100 | snssd 4739 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → {𝑚} ⊆ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚}) |
102 | 101 | sselda 3917 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ {𝑚}) → 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚}) |
103 | 102, 72 | syldan 590 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ {𝑚}) → (𝐹‘𝑘) ∈ ℂ) |
104 | | 0cn 10898 |
. . . . . . 7
⊢ 0 ∈
ℂ |
105 | | ifcl 4501 |
. . . . . . 7
⊢ (((𝐹‘𝑘) ∈ ℂ ∧ 0 ∈ ℂ)
→ if(𝑘 = 𝑚, (𝐹‘𝑘), 0) ∈ ℂ) |
106 | 103, 104,
105 | sylancl 585 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ {𝑚}) → if(𝑘 = 𝑚, (𝐹‘𝑘), 0) ∈ ℂ) |
107 | | eldifsni 4720 |
. . . . . . . . 9
⊢ (𝑘 ∈ ({𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚} ∖ {𝑚}) → 𝑘 ≠ 𝑚) |
108 | 107 | adantl 481 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ ({𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚} ∖ {𝑚})) → 𝑘 ≠ 𝑚) |
109 | 108 | neneqd 2947 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ ({𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚} ∖ {𝑚})) → ¬ 𝑘 = 𝑚) |
110 | 109 | iffalsed 4467 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ ({𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚} ∖ {𝑚})) → if(𝑘 = 𝑚, (𝐹‘𝑘), 0) = 0) |
111 | | fzfid 13621 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (1...𝑚) ∈ Fin) |
112 | | dvdsssfz1 15955 |
. . . . . . . 8
⊢ (𝑚 ∈ ℕ → {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚} ⊆ (1...𝑚)) |
113 | 112 | adantl 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚} ⊆ (1...𝑚)) |
114 | 111, 113 | ssfid 8971 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚} ∈ Fin) |
115 | 101, 106,
110, 114 | fsumss 15365 |
. . . . 5
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → Σ𝑘 ∈ {𝑚}if(𝑘 = 𝑚, (𝐹‘𝑘), 0) = Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚}if(𝑘 = 𝑚, (𝐹‘𝑘), 0)) |
116 | 1 | ffvelrnda 6943 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝐹‘𝑚) ∈ ℂ) |
117 | | iftrue 4462 |
. . . . . . . 8
⊢ (𝑘 = 𝑚 → if(𝑘 = 𝑚, (𝐹‘𝑘), 0) = (𝐹‘𝑘)) |
118 | | fveq2 6756 |
. . . . . . . 8
⊢ (𝑘 = 𝑚 → (𝐹‘𝑘) = (𝐹‘𝑚)) |
119 | 117, 118 | eqtrd 2778 |
. . . . . . 7
⊢ (𝑘 = 𝑚 → if(𝑘 = 𝑚, (𝐹‘𝑘), 0) = (𝐹‘𝑚)) |
120 | 119 | sumsn 15386 |
. . . . . 6
⊢ ((𝑚 ∈ ℕ ∧ (𝐹‘𝑚) ∈ ℂ) → Σ𝑘 ∈ {𝑚}if(𝑘 = 𝑚, (𝐹‘𝑘), 0) = (𝐹‘𝑚)) |
121 | 54, 116, 120 | syl2anc 583 |
. . . . 5
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → Σ𝑘 ∈ {𝑚}if(𝑘 = 𝑚, (𝐹‘𝑘), 0) = (𝐹‘𝑚)) |
122 | 95, 115, 121 | 3eqtr2d 2784 |
. . . 4
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚}Σ𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑚 / 𝑘)} ((μ‘𝑗) · (𝐹‘𝑘)) = (𝐹‘𝑚)) |
123 | 53, 58, 122 | 3eqtrd 2782 |
. . 3
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → Σ𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚} ((μ‘𝑗) · (𝐺‘(𝑚 / 𝑗))) = (𝐹‘𝑚)) |
124 | 123 | mpteq2dva 5170 |
. 2
⊢ (𝜑 → (𝑚 ∈ ℕ ↦ Σ𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚} ((μ‘𝑗) · (𝐺‘(𝑚 / 𝑗)))) = (𝑚 ∈ ℕ ↦ (𝐹‘𝑚))) |
125 | 2, 124 | eqtr4d 2781 |
1
⊢ (𝜑 → 𝐹 = (𝑚 ∈ ℕ ↦ Σ𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚} ((μ‘𝑗) · (𝐺‘(𝑚 / 𝑗))))) |