MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  muinv Structured version   Visualization version   GIF version

Theorem muinv 26247
Description: The Möbius inversion formula. If 𝐺(𝑛) = Σ𝑘𝑛𝐹(𝑘) for every 𝑛 ∈ ℕ, then 𝐹(𝑛) = Σ𝑘𝑛 μ(𝑘)𝐺(𝑛 / 𝑘) = Σ𝑘𝑛μ(𝑛 / 𝑘)𝐺(𝑘), i.e. the Möbius function is the Dirichlet convolution inverse of the constant function 1. Theorem 2.9 in [ApostolNT] p. 32. (Contributed by Mario Carneiro, 2-Jul-2015.)
Hypotheses
Ref Expression
muinv.1 (𝜑𝐹:ℕ⟶ℂ)
muinv.2 (𝜑𝐺 = (𝑛 ∈ ℕ ↦ Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} (𝐹𝑘)))
Assertion
Ref Expression
muinv (𝜑𝐹 = (𝑚 ∈ ℕ ↦ Σ𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚} ((μ‘𝑗) · (𝐺‘(𝑚 / 𝑗)))))
Distinct variable groups:   𝑘,𝑚,𝑗,𝑛,𝐹   𝑥,𝑗,𝑘,𝑚,𝑛   𝜑,𝑗,𝑘,𝑚
Allowed substitution hints:   𝜑(𝑥,𝑛)   𝐹(𝑥)   𝐺(𝑥,𝑗,𝑘,𝑚,𝑛)

Proof of Theorem muinv
StepHypRef Expression
1 muinv.1 . . 3 (𝜑𝐹:ℕ⟶ℂ)
21feqmptd 6819 . 2 (𝜑𝐹 = (𝑚 ∈ ℕ ↦ (𝐹𝑚)))
3 muinv.2 . . . . . . . . . 10 (𝜑𝐺 = (𝑛 ∈ ℕ ↦ Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} (𝐹𝑘)))
43ad2antrr 722 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ) ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) → 𝐺 = (𝑛 ∈ ℕ ↦ Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} (𝐹𝑘)))
54fveq1d 6758 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ) ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) → (𝐺‘(𝑚 / 𝑗)) = ((𝑛 ∈ ℕ ↦ Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} (𝐹𝑘))‘(𝑚 / 𝑗)))
6 breq1 5073 . . . . . . . . . . . . . 14 (𝑥 = 𝑗 → (𝑥𝑚𝑗𝑚))
76elrab 3617 . . . . . . . . . . . . 13 (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚} ↔ (𝑗 ∈ ℕ ∧ 𝑗𝑚))
87simprbi 496 . . . . . . . . . . . 12 (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚} → 𝑗𝑚)
98adantl 481 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ) ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) → 𝑗𝑚)
10 elrabi 3611 . . . . . . . . . . . . . 14 (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚} → 𝑗 ∈ ℕ)
1110adantl 481 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ ℕ) ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) → 𝑗 ∈ ℕ)
1211nnzd 12354 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ ℕ) ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) → 𝑗 ∈ ℤ)
1311nnne0d 11953 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ ℕ) ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) → 𝑗 ≠ 0)
14 nnz 12272 . . . . . . . . . . . . 13 (𝑚 ∈ ℕ → 𝑚 ∈ ℤ)
1514ad2antlr 723 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ ℕ) ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) → 𝑚 ∈ ℤ)
16 dvdsval2 15894 . . . . . . . . . . . 12 ((𝑗 ∈ ℤ ∧ 𝑗 ≠ 0 ∧ 𝑚 ∈ ℤ) → (𝑗𝑚 ↔ (𝑚 / 𝑗) ∈ ℤ))
1712, 13, 15, 16syl3anc 1369 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ) ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) → (𝑗𝑚 ↔ (𝑚 / 𝑗) ∈ ℤ))
189, 17mpbid 231 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℕ) ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) → (𝑚 / 𝑗) ∈ ℤ)
19 nnre 11910 . . . . . . . . . . . . 13 (𝑚 ∈ ℕ → 𝑚 ∈ ℝ)
20 nngt0 11934 . . . . . . . . . . . . 13 (𝑚 ∈ ℕ → 0 < 𝑚)
2119, 20jca 511 . . . . . . . . . . . 12 (𝑚 ∈ ℕ → (𝑚 ∈ ℝ ∧ 0 < 𝑚))
2221ad2antlr 723 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ) ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) → (𝑚 ∈ ℝ ∧ 0 < 𝑚))
23 nnre 11910 . . . . . . . . . . . . 13 (𝑗 ∈ ℕ → 𝑗 ∈ ℝ)
24 nngt0 11934 . . . . . . . . . . . . 13 (𝑗 ∈ ℕ → 0 < 𝑗)
2523, 24jca 511 . . . . . . . . . . . 12 (𝑗 ∈ ℕ → (𝑗 ∈ ℝ ∧ 0 < 𝑗))
2611, 25syl 17 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ) ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) → (𝑗 ∈ ℝ ∧ 0 < 𝑗))
27 divgt0 11773 . . . . . . . . . . 11 (((𝑚 ∈ ℝ ∧ 0 < 𝑚) ∧ (𝑗 ∈ ℝ ∧ 0 < 𝑗)) → 0 < (𝑚 / 𝑗))
2822, 26, 27syl2anc 583 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℕ) ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) → 0 < (𝑚 / 𝑗))
29 elnnz 12259 . . . . . . . . . 10 ((𝑚 / 𝑗) ∈ ℕ ↔ ((𝑚 / 𝑗) ∈ ℤ ∧ 0 < (𝑚 / 𝑗)))
3018, 28, 29sylanbrc 582 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ) ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) → (𝑚 / 𝑗) ∈ ℕ)
31 breq2 5074 . . . . . . . . . . . 12 (𝑛 = (𝑚 / 𝑗) → (𝑥𝑛𝑥 ∥ (𝑚 / 𝑗)))
3231rabbidv 3404 . . . . . . . . . . 11 (𝑛 = (𝑚 / 𝑗) → {𝑥 ∈ ℕ ∣ 𝑥𝑛} = {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑚 / 𝑗)})
3332sumeq1d 15341 . . . . . . . . . 10 (𝑛 = (𝑚 / 𝑗) → Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} (𝐹𝑘) = Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑚 / 𝑗)} (𝐹𝑘))
34 eqid 2738 . . . . . . . . . 10 (𝑛 ∈ ℕ ↦ Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} (𝐹𝑘)) = (𝑛 ∈ ℕ ↦ Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} (𝐹𝑘))
35 sumex 15327 . . . . . . . . . 10 Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑚 / 𝑗)} (𝐹𝑘) ∈ V
3633, 34, 35fvmpt 6857 . . . . . . . . 9 ((𝑚 / 𝑗) ∈ ℕ → ((𝑛 ∈ ℕ ↦ Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} (𝐹𝑘))‘(𝑚 / 𝑗)) = Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑚 / 𝑗)} (𝐹𝑘))
3730, 36syl 17 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ) ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) → ((𝑛 ∈ ℕ ↦ Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} (𝐹𝑘))‘(𝑚 / 𝑗)) = Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑚 / 𝑗)} (𝐹𝑘))
385, 37eqtrd 2778 . . . . . . 7 (((𝜑𝑚 ∈ ℕ) ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) → (𝐺‘(𝑚 / 𝑗)) = Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑚 / 𝑗)} (𝐹𝑘))
3938oveq2d 7271 . . . . . 6 (((𝜑𝑚 ∈ ℕ) ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) → ((μ‘𝑗) · (𝐺‘(𝑚 / 𝑗))) = ((μ‘𝑗) · Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑚 / 𝑗)} (𝐹𝑘)))
40 fzfid 13621 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ) ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) → (1...(𝑚 / 𝑗)) ∈ Fin)
41 dvdsssfz1 15955 . . . . . . . . 9 ((𝑚 / 𝑗) ∈ ℕ → {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑚 / 𝑗)} ⊆ (1...(𝑚 / 𝑗)))
4230, 41syl 17 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ) ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) → {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑚 / 𝑗)} ⊆ (1...(𝑚 / 𝑗)))
4340, 42ssfid 8971 . . . . . . 7 (((𝜑𝑚 ∈ ℕ) ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) → {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑚 / 𝑗)} ∈ Fin)
44 mucl 26195 . . . . . . . . 9 (𝑗 ∈ ℕ → (μ‘𝑗) ∈ ℤ)
4511, 44syl 17 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ) ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) → (μ‘𝑗) ∈ ℤ)
4645zcnd 12356 . . . . . . 7 (((𝜑𝑚 ∈ ℕ) ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) → (μ‘𝑗) ∈ ℂ)
471ad2antrr 722 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ) ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) → 𝐹:ℕ⟶ℂ)
48 elrabi 3611 . . . . . . . 8 (𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑚 / 𝑗)} → 𝑘 ∈ ℕ)
49 ffvelrn 6941 . . . . . . . 8 ((𝐹:ℕ⟶ℂ ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℂ)
5047, 48, 49syl2an 595 . . . . . . 7 ((((𝜑𝑚 ∈ ℕ) ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑚 / 𝑗)}) → (𝐹𝑘) ∈ ℂ)
5143, 46, 50fsummulc2 15424 . . . . . 6 (((𝜑𝑚 ∈ ℕ) ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) → ((μ‘𝑗) · Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑚 / 𝑗)} (𝐹𝑘)) = Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑚 / 𝑗)} ((μ‘𝑗) · (𝐹𝑘)))
5239, 51eqtrd 2778 . . . . 5 (((𝜑𝑚 ∈ ℕ) ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) → ((μ‘𝑗) · (𝐺‘(𝑚 / 𝑗))) = Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑚 / 𝑗)} ((μ‘𝑗) · (𝐹𝑘)))
5352sumeq2dv 15343 . . . 4 ((𝜑𝑚 ∈ ℕ) → Σ𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚} ((μ‘𝑗) · (𝐺‘(𝑚 / 𝑗))) = Σ𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑚 / 𝑗)} ((μ‘𝑗) · (𝐹𝑘)))
54 simpr 484 . . . . 5 ((𝜑𝑚 ∈ ℕ) → 𝑚 ∈ ℕ)
5546adantrr 713 . . . . . 6 (((𝜑𝑚 ∈ ℕ) ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑚 / 𝑗)})) → (μ‘𝑗) ∈ ℂ)
5650anasss 466 . . . . . 6 (((𝜑𝑚 ∈ ℕ) ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑚 / 𝑗)})) → (𝐹𝑘) ∈ ℂ)
5755, 56mulcld 10926 . . . . 5 (((𝜑𝑚 ∈ ℕ) ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑚 / 𝑗)})) → ((μ‘𝑗) · (𝐹𝑘)) ∈ ℂ)
5854, 57fsumdvdsdiag 26238 . . . 4 ((𝜑𝑚 ∈ ℕ) → Σ𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑚 / 𝑗)} ((μ‘𝑗) · (𝐹𝑘)) = Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑚 / 𝑘)} ((μ‘𝑗) · (𝐹𝑘)))
59 ssrab2 4009 . . . . . . . . . 10 {𝑥 ∈ ℕ ∣ 𝑥𝑚} ⊆ ℕ
60 dvdsdivcl 15953 . . . . . . . . . . 11 ((𝑚 ∈ ℕ ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) → (𝑚 / 𝑘) ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚})
6160adantll 710 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) → (𝑚 / 𝑘) ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚})
6259, 61sselid 3915 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) → (𝑚 / 𝑘) ∈ ℕ)
63 musum 26245 . . . . . . . . 9 ((𝑚 / 𝑘) ∈ ℕ → Σ𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑚 / 𝑘)} (μ‘𝑗) = if((𝑚 / 𝑘) = 1, 1, 0))
6462, 63syl 17 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) → Σ𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑚 / 𝑘)} (μ‘𝑗) = if((𝑚 / 𝑘) = 1, 1, 0))
6564oveq1d 7270 . . . . . . 7 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) → (Σ𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑚 / 𝑘)} (μ‘𝑗) · (𝐹𝑘)) = (if((𝑚 / 𝑘) = 1, 1, 0) · (𝐹𝑘)))
66 fzfid 13621 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) → (1...(𝑚 / 𝑘)) ∈ Fin)
67 dvdsssfz1 15955 . . . . . . . . . 10 ((𝑚 / 𝑘) ∈ ℕ → {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑚 / 𝑘)} ⊆ (1...(𝑚 / 𝑘)))
6862, 67syl 17 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) → {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑚 / 𝑘)} ⊆ (1...(𝑚 / 𝑘)))
6966, 68ssfid 8971 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) → {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑚 / 𝑘)} ∈ Fin)
701adantr 480 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ) → 𝐹:ℕ⟶ℂ)
71 elrabi 3611 . . . . . . . . 9 (𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚} → 𝑘 ∈ ℕ)
7270, 71, 49syl2an 595 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) → (𝐹𝑘) ∈ ℂ)
73 ssrab2 4009 . . . . . . . . . . 11 {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑚 / 𝑘)} ⊆ ℕ
74 simpr 484 . . . . . . . . . . 11 ((((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑚 / 𝑘)}) → 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑚 / 𝑘)})
7573, 74sselid 3915 . . . . . . . . . 10 ((((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑚 / 𝑘)}) → 𝑗 ∈ ℕ)
7675, 44syl 17 . . . . . . . . 9 ((((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑚 / 𝑘)}) → (μ‘𝑗) ∈ ℤ)
7776zcnd 12356 . . . . . . . 8 ((((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑚 / 𝑘)}) → (μ‘𝑗) ∈ ℂ)
7869, 72, 77fsummulc1 15425 . . . . . . 7 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) → (Σ𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑚 / 𝑘)} (μ‘𝑗) · (𝐹𝑘)) = Σ𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑚 / 𝑘)} ((μ‘𝑗) · (𝐹𝑘)))
79 ovif 7350 . . . . . . . 8 (if((𝑚 / 𝑘) = 1, 1, 0) · (𝐹𝑘)) = if((𝑚 / 𝑘) = 1, (1 · (𝐹𝑘)), (0 · (𝐹𝑘)))
80 nncn 11911 . . . . . . . . . . . 12 (𝑚 ∈ ℕ → 𝑚 ∈ ℂ)
8180ad2antlr 723 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) → 𝑚 ∈ ℂ)
8271adantl 481 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) → 𝑘 ∈ ℕ)
8382nncnd 11919 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) → 𝑘 ∈ ℂ)
84 1cnd 10901 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) → 1 ∈ ℂ)
8582nnne0d 11953 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) → 𝑘 ≠ 0)
8681, 83, 84, 85divmuld 11703 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) → ((𝑚 / 𝑘) = 1 ↔ (𝑘 · 1) = 𝑚))
8783mulid1d 10923 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) → (𝑘 · 1) = 𝑘)
8887eqeq1d 2740 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) → ((𝑘 · 1) = 𝑚𝑘 = 𝑚))
8986, 88bitrd 278 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) → ((𝑚 / 𝑘) = 1 ↔ 𝑘 = 𝑚))
9072mulid2d 10924 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) → (1 · (𝐹𝑘)) = (𝐹𝑘))
9172mul02d 11103 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) → (0 · (𝐹𝑘)) = 0)
9289, 90, 91ifbieq12d 4484 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) → if((𝑚 / 𝑘) = 1, (1 · (𝐹𝑘)), (0 · (𝐹𝑘))) = if(𝑘 = 𝑚, (𝐹𝑘), 0))
9379, 92syl5eq 2791 . . . . . . 7 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) → (if((𝑚 / 𝑘) = 1, 1, 0) · (𝐹𝑘)) = if(𝑘 = 𝑚, (𝐹𝑘), 0))
9465, 78, 933eqtr3d 2786 . . . . . 6 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) → Σ𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑚 / 𝑘)} ((μ‘𝑗) · (𝐹𝑘)) = if(𝑘 = 𝑚, (𝐹𝑘), 0))
9594sumeq2dv 15343 . . . . 5 ((𝜑𝑚 ∈ ℕ) → Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑚 / 𝑘)} ((μ‘𝑗) · (𝐹𝑘)) = Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}if(𝑘 = 𝑚, (𝐹𝑘), 0))
96 breq1 5073 . . . . . . . 8 (𝑥 = 𝑚 → (𝑥𝑚𝑚𝑚))
9754nnzd 12354 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ) → 𝑚 ∈ ℤ)
98 iddvds 15907 . . . . . . . . 9 (𝑚 ∈ ℤ → 𝑚𝑚)
9997, 98syl 17 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ) → 𝑚𝑚)
10096, 54, 99elrabd 3619 . . . . . . 7 ((𝜑𝑚 ∈ ℕ) → 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚})
101100snssd 4739 . . . . . 6 ((𝜑𝑚 ∈ ℕ) → {𝑚} ⊆ {𝑥 ∈ ℕ ∣ 𝑥𝑚})
102101sselda 3917 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ {𝑚}) → 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚})
103102, 72syldan 590 . . . . . . 7 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ {𝑚}) → (𝐹𝑘) ∈ ℂ)
104 0cn 10898 . . . . . . 7 0 ∈ ℂ
105 ifcl 4501 . . . . . . 7 (((𝐹𝑘) ∈ ℂ ∧ 0 ∈ ℂ) → if(𝑘 = 𝑚, (𝐹𝑘), 0) ∈ ℂ)
106103, 104, 105sylancl 585 . . . . . 6 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ {𝑚}) → if(𝑘 = 𝑚, (𝐹𝑘), 0) ∈ ℂ)
107 eldifsni 4720 . . . . . . . . 9 (𝑘 ∈ ({𝑥 ∈ ℕ ∣ 𝑥𝑚} ∖ {𝑚}) → 𝑘𝑚)
108107adantl 481 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ ({𝑥 ∈ ℕ ∣ 𝑥𝑚} ∖ {𝑚})) → 𝑘𝑚)
109108neneqd 2947 . . . . . . 7 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ ({𝑥 ∈ ℕ ∣ 𝑥𝑚} ∖ {𝑚})) → ¬ 𝑘 = 𝑚)
110109iffalsed 4467 . . . . . 6 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ ({𝑥 ∈ ℕ ∣ 𝑥𝑚} ∖ {𝑚})) → if(𝑘 = 𝑚, (𝐹𝑘), 0) = 0)
111 fzfid 13621 . . . . . . 7 ((𝜑𝑚 ∈ ℕ) → (1...𝑚) ∈ Fin)
112 dvdsssfz1 15955 . . . . . . . 8 (𝑚 ∈ ℕ → {𝑥 ∈ ℕ ∣ 𝑥𝑚} ⊆ (1...𝑚))
113112adantl 481 . . . . . . 7 ((𝜑𝑚 ∈ ℕ) → {𝑥 ∈ ℕ ∣ 𝑥𝑚} ⊆ (1...𝑚))
114111, 113ssfid 8971 . . . . . 6 ((𝜑𝑚 ∈ ℕ) → {𝑥 ∈ ℕ ∣ 𝑥𝑚} ∈ Fin)
115101, 106, 110, 114fsumss 15365 . . . . 5 ((𝜑𝑚 ∈ ℕ) → Σ𝑘 ∈ {𝑚}if(𝑘 = 𝑚, (𝐹𝑘), 0) = Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}if(𝑘 = 𝑚, (𝐹𝑘), 0))
1161ffvelrnda 6943 . . . . . 6 ((𝜑𝑚 ∈ ℕ) → (𝐹𝑚) ∈ ℂ)
117 iftrue 4462 . . . . . . . 8 (𝑘 = 𝑚 → if(𝑘 = 𝑚, (𝐹𝑘), 0) = (𝐹𝑘))
118 fveq2 6756 . . . . . . . 8 (𝑘 = 𝑚 → (𝐹𝑘) = (𝐹𝑚))
119117, 118eqtrd 2778 . . . . . . 7 (𝑘 = 𝑚 → if(𝑘 = 𝑚, (𝐹𝑘), 0) = (𝐹𝑚))
120119sumsn 15386 . . . . . 6 ((𝑚 ∈ ℕ ∧ (𝐹𝑚) ∈ ℂ) → Σ𝑘 ∈ {𝑚}if(𝑘 = 𝑚, (𝐹𝑘), 0) = (𝐹𝑚))
12154, 116, 120syl2anc 583 . . . . 5 ((𝜑𝑚 ∈ ℕ) → Σ𝑘 ∈ {𝑚}if(𝑘 = 𝑚, (𝐹𝑘), 0) = (𝐹𝑚))
12295, 115, 1213eqtr2d 2784 . . . 4 ((𝜑𝑚 ∈ ℕ) → Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑚 / 𝑘)} ((μ‘𝑗) · (𝐹𝑘)) = (𝐹𝑚))
12353, 58, 1223eqtrd 2782 . . 3 ((𝜑𝑚 ∈ ℕ) → Σ𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚} ((μ‘𝑗) · (𝐺‘(𝑚 / 𝑗))) = (𝐹𝑚))
124123mpteq2dva 5170 . 2 (𝜑 → (𝑚 ∈ ℕ ↦ Σ𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚} ((μ‘𝑗) · (𝐺‘(𝑚 / 𝑗)))) = (𝑚 ∈ ℕ ↦ (𝐹𝑚)))
1252, 124eqtr4d 2781 1 (𝜑𝐹 = (𝑚 ∈ ℕ ↦ Σ𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚} ((μ‘𝑗) · (𝐺‘(𝑚 / 𝑗)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wne 2942  {crab 3067  cdif 3880  wss 3883  ifcif 4456  {csn 4558   class class class wbr 5070  cmpt 5153  wf 6414  cfv 6418  (class class class)co 7255  cc 10800  cr 10801  0cc0 10802  1c1 10803   · cmul 10807   < clt 10940   / cdiv 11562  cn 11903  cz 12249  ...cfz 13168  Σcsu 15325  cdvds 15891  μcmu 26149
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-disj 5036  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-oadd 8271  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-oi 9199  df-dju 9590  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-xnn0 12236  df-z 12250  df-uz 12512  df-q 12618  df-rp 12660  df-fz 13169  df-fzo 13312  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-fac 13916  df-bc 13945  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-sum 15326  df-dvds 15892  df-gcd 16130  df-prm 16305  df-pc 16466  df-mu 26155
This theorem is referenced by:  dchrvmasumlem1  26548  logsqvma2  26596
  Copyright terms: Public domain W3C validator