Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pnfneige0 Structured version   Visualization version   GIF version

Theorem pnfneige0 33924
Description: A neighborhood of +∞ contains an unbounded interval based at a real number. See pnfnei 23105. (Contributed by Thierry Arnoux, 31-Jul-2017.)
Hypothesis
Ref Expression
pnfneige0.j 𝐽 = (TopOpen‘(ℝ*𝑠s (0[,]+∞)))
Assertion
Ref Expression
pnfneige0 ((𝐴𝐽 ∧ +∞ ∈ 𝐴) → ∃𝑥 ∈ ℝ (𝑥(,]+∞) ⊆ 𝐴)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐽(𝑥)

Proof of Theorem pnfneige0
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 0red 11118 . . . 4 (((((𝐴𝐽 ∧ +∞ ∈ 𝐴) ∧ 𝑦 ∈ ℝ) ∧ (𝑦(,]+∞) ⊆ (𝐴 ∩ (0(,]+∞))) ∧ 𝑦 < 0) → 0 ∈ ℝ)
2 simpllr 775 . . . 4 (((((𝐴𝐽 ∧ +∞ ∈ 𝐴) ∧ 𝑦 ∈ ℝ) ∧ (𝑦(,]+∞) ⊆ (𝐴 ∩ (0(,]+∞))) ∧ ¬ 𝑦 < 0) → 𝑦 ∈ ℝ)
31, 2ifclda 4512 . . 3 ((((𝐴𝐽 ∧ +∞ ∈ 𝐴) ∧ 𝑦 ∈ ℝ) ∧ (𝑦(,]+∞) ⊆ (𝐴 ∩ (0(,]+∞))) → if(𝑦 < 0, 0, 𝑦) ∈ ℝ)
4 ovif 7447 . . . . . 6 (if(𝑦 < 0, 0, 𝑦)(,]+∞) = if(𝑦 < 0, (0(,]+∞), (𝑦(,]+∞))
5 rexr 11161 . . . . . . 7 (𝑦 ∈ ℝ → 𝑦 ∈ ℝ*)
6 0xr 11162 . . . . . . . 8 0 ∈ ℝ*
76a1i 11 . . . . . . 7 (𝑦 ∈ ℝ → 0 ∈ ℝ*)
8 pnfxr 11169 . . . . . . . 8 +∞ ∈ ℝ*
98a1i 11 . . . . . . 7 (𝑦 ∈ ℝ → +∞ ∈ ℝ*)
10 iocinif 32725 . . . . . . 7 ((𝑦 ∈ ℝ* ∧ 0 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((𝑦(,]+∞) ∩ (0(,]+∞)) = if(𝑦 < 0, (0(,]+∞), (𝑦(,]+∞)))
115, 7, 9, 10syl3anc 1373 . . . . . 6 (𝑦 ∈ ℝ → ((𝑦(,]+∞) ∩ (0(,]+∞)) = if(𝑦 < 0, (0(,]+∞), (𝑦(,]+∞)))
124, 11eqtr4id 2783 . . . . 5 (𝑦 ∈ ℝ → (if(𝑦 < 0, 0, 𝑦)(,]+∞) = ((𝑦(,]+∞) ∩ (0(,]+∞)))
1312ad2antlr 727 . . . 4 ((((𝐴𝐽 ∧ +∞ ∈ 𝐴) ∧ 𝑦 ∈ ℝ) ∧ (𝑦(,]+∞) ⊆ (𝐴 ∩ (0(,]+∞))) → (if(𝑦 < 0, 0, 𝑦)(,]+∞) = ((𝑦(,]+∞) ∩ (0(,]+∞)))
14 iocssicc 13340 . . . . . 6 (0(,]+∞) ⊆ (0[,]+∞)
15 sslin 4194 . . . . . 6 ((0(,]+∞) ⊆ (0[,]+∞) → ((𝑦(,]+∞) ∩ (0(,]+∞)) ⊆ ((𝑦(,]+∞) ∩ (0[,]+∞)))
1614, 15mp1i 13 . . . . 5 ((((𝐴𝐽 ∧ +∞ ∈ 𝐴) ∧ 𝑦 ∈ ℝ) ∧ (𝑦(,]+∞) ⊆ (𝐴 ∩ (0(,]+∞))) → ((𝑦(,]+∞) ∩ (0(,]+∞)) ⊆ ((𝑦(,]+∞) ∩ (0[,]+∞)))
17 simpr 484 . . . . . 6 ((((𝐴𝐽 ∧ +∞ ∈ 𝐴) ∧ 𝑦 ∈ ℝ) ∧ (𝑦(,]+∞) ⊆ (𝐴 ∩ (0(,]+∞))) → (𝑦(,]+∞) ⊆ (𝐴 ∩ (0(,]+∞)))
18 ssin 4190 . . . . . . . 8 (((𝑦(,]+∞) ⊆ 𝐴 ∧ (𝑦(,]+∞) ⊆ (0(,]+∞)) ↔ (𝑦(,]+∞) ⊆ (𝐴 ∩ (0(,]+∞)))
1918biimpri 228 . . . . . . 7 ((𝑦(,]+∞) ⊆ (𝐴 ∩ (0(,]+∞)) → ((𝑦(,]+∞) ⊆ 𝐴 ∧ (𝑦(,]+∞) ⊆ (0(,]+∞)))
2019simpld 494 . . . . . 6 ((𝑦(,]+∞) ⊆ (𝐴 ∩ (0(,]+∞)) → (𝑦(,]+∞) ⊆ 𝐴)
21 ssinss1 4197 . . . . . 6 ((𝑦(,]+∞) ⊆ 𝐴 → ((𝑦(,]+∞) ∩ (0[,]+∞)) ⊆ 𝐴)
2217, 20, 213syl 18 . . . . 5 ((((𝐴𝐽 ∧ +∞ ∈ 𝐴) ∧ 𝑦 ∈ ℝ) ∧ (𝑦(,]+∞) ⊆ (𝐴 ∩ (0(,]+∞))) → ((𝑦(,]+∞) ∩ (0[,]+∞)) ⊆ 𝐴)
2316, 22sstrd 3946 . . . 4 ((((𝐴𝐽 ∧ +∞ ∈ 𝐴) ∧ 𝑦 ∈ ℝ) ∧ (𝑦(,]+∞) ⊆ (𝐴 ∩ (0(,]+∞))) → ((𝑦(,]+∞) ∩ (0(,]+∞)) ⊆ 𝐴)
2413, 23eqsstrd 3970 . . 3 ((((𝐴𝐽 ∧ +∞ ∈ 𝐴) ∧ 𝑦 ∈ ℝ) ∧ (𝑦(,]+∞) ⊆ (𝐴 ∩ (0(,]+∞))) → (if(𝑦 < 0, 0, 𝑦)(,]+∞) ⊆ 𝐴)
25 oveq1 7356 . . . . 5 (𝑥 = if(𝑦 < 0, 0, 𝑦) → (𝑥(,]+∞) = (if(𝑦 < 0, 0, 𝑦)(,]+∞))
2625sseq1d 3967 . . . 4 (𝑥 = if(𝑦 < 0, 0, 𝑦) → ((𝑥(,]+∞) ⊆ 𝐴 ↔ (if(𝑦 < 0, 0, 𝑦)(,]+∞) ⊆ 𝐴))
2726rspcev 3577 . . 3 ((if(𝑦 < 0, 0, 𝑦) ∈ ℝ ∧ (if(𝑦 < 0, 0, 𝑦)(,]+∞) ⊆ 𝐴) → ∃𝑥 ∈ ℝ (𝑥(,]+∞) ⊆ 𝐴)
283, 24, 27syl2anc 584 . 2 ((((𝐴𝐽 ∧ +∞ ∈ 𝐴) ∧ 𝑦 ∈ ℝ) ∧ (𝑦(,]+∞) ⊆ (𝐴 ∩ (0(,]+∞))) → ∃𝑥 ∈ ℝ (𝑥(,]+∞) ⊆ 𝐴)
29 letopon 23090 . . . . . . . . . 10 (ordTop‘ ≤ ) ∈ (TopOn‘ℝ*)
30 iccssxr 13333 . . . . . . . . . 10 (0[,]+∞) ⊆ ℝ*
31 resttopon 23046 . . . . . . . . . 10 (((ordTop‘ ≤ ) ∈ (TopOn‘ℝ*) ∧ (0[,]+∞) ⊆ ℝ*) → ((ordTop‘ ≤ ) ↾t (0[,]+∞)) ∈ (TopOn‘(0[,]+∞)))
3229, 30, 31mp2an 692 . . . . . . . . 9 ((ordTop‘ ≤ ) ↾t (0[,]+∞)) ∈ (TopOn‘(0[,]+∞))
3332topontopi 22800 . . . . . . . 8 ((ordTop‘ ≤ ) ↾t (0[,]+∞)) ∈ Top
3433a1i 11 . . . . . . 7 (𝐴𝐽 → ((ordTop‘ ≤ ) ↾t (0[,]+∞)) ∈ Top)
35 ovex 7382 . . . . . . . 8 (0(,]+∞) ∈ V
3635a1i 11 . . . . . . 7 (𝐴𝐽 → (0(,]+∞) ∈ V)
37 pnfneige0.j . . . . . . . . . 10 𝐽 = (TopOpen‘(ℝ*𝑠s (0[,]+∞)))
38 xrge0topn 33916 . . . . . . . . . 10 (TopOpen‘(ℝ*𝑠s (0[,]+∞))) = ((ordTop‘ ≤ ) ↾t (0[,]+∞))
3937, 38eqtri 2752 . . . . . . . . 9 𝐽 = ((ordTop‘ ≤ ) ↾t (0[,]+∞))
4039eleq2i 2820 . . . . . . . 8 (𝐴𝐽𝐴 ∈ ((ordTop‘ ≤ ) ↾t (0[,]+∞)))
4140biimpi 216 . . . . . . 7 (𝐴𝐽𝐴 ∈ ((ordTop‘ ≤ ) ↾t (0[,]+∞)))
42 elrestr 17332 . . . . . . 7 ((((ordTop‘ ≤ ) ↾t (0[,]+∞)) ∈ Top ∧ (0(,]+∞) ∈ V ∧ 𝐴 ∈ ((ordTop‘ ≤ ) ↾t (0[,]+∞))) → (𝐴 ∩ (0(,]+∞)) ∈ (((ordTop‘ ≤ ) ↾t (0[,]+∞)) ↾t (0(,]+∞)))
4334, 36, 41, 42syl3anc 1373 . . . . . 6 (𝐴𝐽 → (𝐴 ∩ (0(,]+∞)) ∈ (((ordTop‘ ≤ ) ↾t (0[,]+∞)) ↾t (0(,]+∞)))
44 letop 23091 . . . . . . 7 (ordTop‘ ≤ ) ∈ Top
45 ovex 7382 . . . . . . 7 (0[,]+∞) ∈ V
46 restabs 23050 . . . . . . 7 (((ordTop‘ ≤ ) ∈ Top ∧ (0(,]+∞) ⊆ (0[,]+∞) ∧ (0[,]+∞) ∈ V) → (((ordTop‘ ≤ ) ↾t (0[,]+∞)) ↾t (0(,]+∞)) = ((ordTop‘ ≤ ) ↾t (0(,]+∞)))
4744, 14, 45, 46mp3an 1463 . . . . . 6 (((ordTop‘ ≤ ) ↾t (0[,]+∞)) ↾t (0(,]+∞)) = ((ordTop‘ ≤ ) ↾t (0(,]+∞))
4843, 47eleqtrdi 2838 . . . . 5 (𝐴𝐽 → (𝐴 ∩ (0(,]+∞)) ∈ ((ordTop‘ ≤ ) ↾t (0(,]+∞)))
4944a1i 11 . . . . . 6 (𝐴𝐽 → (ordTop‘ ≤ ) ∈ Top)
50 iocpnfordt 23100 . . . . . . 7 (0(,]+∞) ∈ (ordTop‘ ≤ )
5150a1i 11 . . . . . 6 (𝐴𝐽 → (0(,]+∞) ∈ (ordTop‘ ≤ ))
52 ssidd 3959 . . . . . 6 (𝐴𝐽 → (0(,]+∞) ⊆ (0(,]+∞))
53 inss2 4189 . . . . . . 7 (𝐴 ∩ (0(,]+∞)) ⊆ (0(,]+∞)
5453a1i 11 . . . . . 6 (𝐴𝐽 → (𝐴 ∩ (0(,]+∞)) ⊆ (0(,]+∞))
55 restopnb 23060 . . . . . 6 ((((ordTop‘ ≤ ) ∈ Top ∧ (0(,]+∞) ∈ V) ∧ ((0(,]+∞) ∈ (ordTop‘ ≤ ) ∧ (0(,]+∞) ⊆ (0(,]+∞) ∧ (𝐴 ∩ (0(,]+∞)) ⊆ (0(,]+∞))) → ((𝐴 ∩ (0(,]+∞)) ∈ (ordTop‘ ≤ ) ↔ (𝐴 ∩ (0(,]+∞)) ∈ ((ordTop‘ ≤ ) ↾t (0(,]+∞))))
5649, 36, 51, 52, 54, 55syl23anc 1379 . . . . 5 (𝐴𝐽 → ((𝐴 ∩ (0(,]+∞)) ∈ (ordTop‘ ≤ ) ↔ (𝐴 ∩ (0(,]+∞)) ∈ ((ordTop‘ ≤ ) ↾t (0(,]+∞))))
5748, 56mpbird 257 . . . 4 (𝐴𝐽 → (𝐴 ∩ (0(,]+∞)) ∈ (ordTop‘ ≤ ))
5857adantr 480 . . 3 ((𝐴𝐽 ∧ +∞ ∈ 𝐴) → (𝐴 ∩ (0(,]+∞)) ∈ (ordTop‘ ≤ ))
59 simpr 484 . . . 4 ((𝐴𝐽 ∧ +∞ ∈ 𝐴) → +∞ ∈ 𝐴)
60 0ltpnf 13024 . . . . . 6 0 < +∞
61 ubioc1 13302 . . . . . 6 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 0 < +∞) → +∞ ∈ (0(,]+∞))
626, 8, 60, 61mp3an 1463 . . . . 5 +∞ ∈ (0(,]+∞)
6362a1i 11 . . . 4 ((𝐴𝐽 ∧ +∞ ∈ 𝐴) → +∞ ∈ (0(,]+∞))
6459, 63elind 4151 . . 3 ((𝐴𝐽 ∧ +∞ ∈ 𝐴) → +∞ ∈ (𝐴 ∩ (0(,]+∞)))
65 pnfnei 23105 . . 3 (((𝐴 ∩ (0(,]+∞)) ∈ (ordTop‘ ≤ ) ∧ +∞ ∈ (𝐴 ∩ (0(,]+∞))) → ∃𝑦 ∈ ℝ (𝑦(,]+∞) ⊆ (𝐴 ∩ (0(,]+∞)))
6658, 64, 65syl2anc 584 . 2 ((𝐴𝐽 ∧ +∞ ∈ 𝐴) → ∃𝑦 ∈ ℝ (𝑦(,]+∞) ⊆ (𝐴 ∩ (0(,]+∞)))
6728, 66r19.29a 3137 1 ((𝐴𝐽 ∧ +∞ ∈ 𝐴) → ∃𝑥 ∈ ℝ (𝑥(,]+∞) ⊆ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wrex 3053  Vcvv 3436  cin 3902  wss 3903  ifcif 4476   class class class wbr 5092  cfv 6482  (class class class)co 7349  cr 11008  0cc0 11009  +∞cpnf 11146  *cxr 11148   < clt 11149  cle 11150  (,]cioc 13249  [,]cicc 13251  s cress 17141  t crest 17324  TopOpenctopn 17325  ordTopcordt 17403  *𝑠cxrs 17404  Topctop 22778  TopOnctopon 22795
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fi 9301  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-ioo 13252  df-ioc 13253  df-ico 13254  df-icc 13255  df-fz 13411  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-tset 17180  df-ple 17181  df-ds 17183  df-rest 17326  df-topn 17327  df-topgen 17347  df-ordt 17405  df-xrs 17406  df-ps 18472  df-tsr 18473  df-top 22779  df-topon 22796  df-bases 22831
This theorem is referenced by:  lmxrge0  33925
  Copyright terms: Public domain W3C validator