Step | Hyp | Ref
| Expression |
1 | | 0red 10909 |
. . . 4
⊢
(((((𝐴 ∈ 𝐽 ∧ +∞ ∈ 𝐴) ∧ 𝑦 ∈ ℝ) ∧ (𝑦(,]+∞) ⊆ (𝐴 ∩ (0(,]+∞))) ∧ 𝑦 < 0) → 0 ∈
ℝ) |
2 | | simpllr 772 |
. . . 4
⊢
(((((𝐴 ∈ 𝐽 ∧ +∞ ∈ 𝐴) ∧ 𝑦 ∈ ℝ) ∧ (𝑦(,]+∞) ⊆ (𝐴 ∩ (0(,]+∞))) ∧ ¬ 𝑦 < 0) → 𝑦 ∈
ℝ) |
3 | 1, 2 | ifclda 4491 |
. . 3
⊢ ((((𝐴 ∈ 𝐽 ∧ +∞ ∈ 𝐴) ∧ 𝑦 ∈ ℝ) ∧ (𝑦(,]+∞) ⊆ (𝐴 ∩ (0(,]+∞))) → if(𝑦 < 0, 0, 𝑦) ∈ ℝ) |
4 | | ovif 7350 |
. . . . . 6
⊢ (if(𝑦 < 0, 0, 𝑦)(,]+∞) = if(𝑦 < 0, (0(,]+∞), (𝑦(,]+∞)) |
5 | | rexr 10952 |
. . . . . . 7
⊢ (𝑦 ∈ ℝ → 𝑦 ∈
ℝ*) |
6 | | 0xr 10953 |
. . . . . . . 8
⊢ 0 ∈
ℝ* |
7 | 6 | a1i 11 |
. . . . . . 7
⊢ (𝑦 ∈ ℝ → 0 ∈
ℝ*) |
8 | | pnfxr 10960 |
. . . . . . . 8
⊢ +∞
∈ ℝ* |
9 | 8 | a1i 11 |
. . . . . . 7
⊢ (𝑦 ∈ ℝ → +∞
∈ ℝ*) |
10 | | iocinif 31004 |
. . . . . . 7
⊢ ((𝑦 ∈ ℝ*
∧ 0 ∈ ℝ* ∧ +∞ ∈ ℝ*)
→ ((𝑦(,]+∞)
∩ (0(,]+∞)) = if(𝑦 < 0, (0(,]+∞), (𝑦(,]+∞))) |
11 | 5, 7, 9, 10 | syl3anc 1369 |
. . . . . 6
⊢ (𝑦 ∈ ℝ → ((𝑦(,]+∞) ∩
(0(,]+∞)) = if(𝑦 <
0, (0(,]+∞), (𝑦(,]+∞))) |
12 | 4, 11 | eqtr4id 2798 |
. . . . 5
⊢ (𝑦 ∈ ℝ → (if(𝑦 < 0, 0, 𝑦)(,]+∞) = ((𝑦(,]+∞) ∩
(0(,]+∞))) |
13 | 12 | ad2antlr 723 |
. . . 4
⊢ ((((𝐴 ∈ 𝐽 ∧ +∞ ∈ 𝐴) ∧ 𝑦 ∈ ℝ) ∧ (𝑦(,]+∞) ⊆ (𝐴 ∩ (0(,]+∞))) → (if(𝑦 < 0, 0, 𝑦)(,]+∞) = ((𝑦(,]+∞) ∩
(0(,]+∞))) |
14 | | iocssicc 13098 |
. . . . . 6
⊢
(0(,]+∞) ⊆ (0[,]+∞) |
15 | | sslin 4165 |
. . . . . 6
⊢
((0(,]+∞) ⊆ (0[,]+∞) → ((𝑦(,]+∞) ∩ (0(,]+∞)) ⊆
((𝑦(,]+∞) ∩
(0[,]+∞))) |
16 | 14, 15 | mp1i 13 |
. . . . 5
⊢ ((((𝐴 ∈ 𝐽 ∧ +∞ ∈ 𝐴) ∧ 𝑦 ∈ ℝ) ∧ (𝑦(,]+∞) ⊆ (𝐴 ∩ (0(,]+∞))) → ((𝑦(,]+∞) ∩
(0(,]+∞)) ⊆ ((𝑦(,]+∞) ∩
(0[,]+∞))) |
17 | | simpr 484 |
. . . . . 6
⊢ ((((𝐴 ∈ 𝐽 ∧ +∞ ∈ 𝐴) ∧ 𝑦 ∈ ℝ) ∧ (𝑦(,]+∞) ⊆ (𝐴 ∩ (0(,]+∞))) → (𝑦(,]+∞) ⊆ (𝐴 ∩
(0(,]+∞))) |
18 | | ssin 4161 |
. . . . . . . 8
⊢ (((𝑦(,]+∞) ⊆ 𝐴 ∧ (𝑦(,]+∞) ⊆ (0(,]+∞)) ↔
(𝑦(,]+∞) ⊆
(𝐴 ∩
(0(,]+∞))) |
19 | 18 | biimpri 227 |
. . . . . . 7
⊢ ((𝑦(,]+∞) ⊆ (𝐴 ∩ (0(,]+∞)) →
((𝑦(,]+∞) ⊆
𝐴 ∧ (𝑦(,]+∞) ⊆
(0(,]+∞))) |
20 | 19 | simpld 494 |
. . . . . 6
⊢ ((𝑦(,]+∞) ⊆ (𝐴 ∩ (0(,]+∞)) →
(𝑦(,]+∞) ⊆
𝐴) |
21 | | ssinss1 4168 |
. . . . . 6
⊢ ((𝑦(,]+∞) ⊆ 𝐴 → ((𝑦(,]+∞) ∩ (0[,]+∞)) ⊆
𝐴) |
22 | 17, 20, 21 | 3syl 18 |
. . . . 5
⊢ ((((𝐴 ∈ 𝐽 ∧ +∞ ∈ 𝐴) ∧ 𝑦 ∈ ℝ) ∧ (𝑦(,]+∞) ⊆ (𝐴 ∩ (0(,]+∞))) → ((𝑦(,]+∞) ∩
(0[,]+∞)) ⊆ 𝐴) |
23 | 16, 22 | sstrd 3927 |
. . . 4
⊢ ((((𝐴 ∈ 𝐽 ∧ +∞ ∈ 𝐴) ∧ 𝑦 ∈ ℝ) ∧ (𝑦(,]+∞) ⊆ (𝐴 ∩ (0(,]+∞))) → ((𝑦(,]+∞) ∩
(0(,]+∞)) ⊆ 𝐴) |
24 | 13, 23 | eqsstrd 3955 |
. . 3
⊢ ((((𝐴 ∈ 𝐽 ∧ +∞ ∈ 𝐴) ∧ 𝑦 ∈ ℝ) ∧ (𝑦(,]+∞) ⊆ (𝐴 ∩ (0(,]+∞))) → (if(𝑦 < 0, 0, 𝑦)(,]+∞) ⊆ 𝐴) |
25 | | oveq1 7262 |
. . . . 5
⊢ (𝑥 = if(𝑦 < 0, 0, 𝑦) → (𝑥(,]+∞) = (if(𝑦 < 0, 0, 𝑦)(,]+∞)) |
26 | 25 | sseq1d 3948 |
. . . 4
⊢ (𝑥 = if(𝑦 < 0, 0, 𝑦) → ((𝑥(,]+∞) ⊆ 𝐴 ↔ (if(𝑦 < 0, 0, 𝑦)(,]+∞) ⊆ 𝐴)) |
27 | 26 | rspcev 3552 |
. . 3
⊢
((if(𝑦 < 0, 0,
𝑦) ∈ ℝ ∧
(if(𝑦 < 0, 0, 𝑦)(,]+∞) ⊆ 𝐴) → ∃𝑥 ∈ ℝ (𝑥(,]+∞) ⊆ 𝐴) |
28 | 3, 24, 27 | syl2anc 583 |
. 2
⊢ ((((𝐴 ∈ 𝐽 ∧ +∞ ∈ 𝐴) ∧ 𝑦 ∈ ℝ) ∧ (𝑦(,]+∞) ⊆ (𝐴 ∩ (0(,]+∞))) → ∃𝑥 ∈ ℝ (𝑥(,]+∞) ⊆ 𝐴) |
29 | | letopon 22264 |
. . . . . . . . . 10
⊢
(ordTop‘ ≤ ) ∈
(TopOn‘ℝ*) |
30 | | iccssxr 13091 |
. . . . . . . . . 10
⊢
(0[,]+∞) ⊆ ℝ* |
31 | | resttopon 22220 |
. . . . . . . . . 10
⊢
(((ordTop‘ ≤ ) ∈ (TopOn‘ℝ*) ∧
(0[,]+∞) ⊆ ℝ*) → ((ordTop‘ ≤ )
↾t (0[,]+∞)) ∈
(TopOn‘(0[,]+∞))) |
32 | 29, 30, 31 | mp2an 688 |
. . . . . . . . 9
⊢
((ordTop‘ ≤ ) ↾t (0[,]+∞)) ∈
(TopOn‘(0[,]+∞)) |
33 | 32 | topontopi 21972 |
. . . . . . . 8
⊢
((ordTop‘ ≤ ) ↾t (0[,]+∞)) ∈
Top |
34 | 33 | a1i 11 |
. . . . . . 7
⊢ (𝐴 ∈ 𝐽 → ((ordTop‘ ≤ )
↾t (0[,]+∞)) ∈ Top) |
35 | | ovex 7288 |
. . . . . . . 8
⊢
(0(,]+∞) ∈ V |
36 | 35 | a1i 11 |
. . . . . . 7
⊢ (𝐴 ∈ 𝐽 → (0(,]+∞) ∈
V) |
37 | | pnfneige0.j |
. . . . . . . . . 10
⊢ 𝐽 =
(TopOpen‘(ℝ*𝑠 ↾s
(0[,]+∞))) |
38 | | xrge0topn 31795 |
. . . . . . . . . 10
⊢
(TopOpen‘(ℝ*𝑠
↾s (0[,]+∞))) = ((ordTop‘ ≤ )
↾t (0[,]+∞)) |
39 | 37, 38 | eqtri 2766 |
. . . . . . . . 9
⊢ 𝐽 = ((ordTop‘ ≤ )
↾t (0[,]+∞)) |
40 | 39 | eleq2i 2830 |
. . . . . . . 8
⊢ (𝐴 ∈ 𝐽 ↔ 𝐴 ∈ ((ordTop‘ ≤ )
↾t (0[,]+∞))) |
41 | 40 | biimpi 215 |
. . . . . . 7
⊢ (𝐴 ∈ 𝐽 → 𝐴 ∈ ((ordTop‘ ≤ )
↾t (0[,]+∞))) |
42 | | elrestr 17056 |
. . . . . . 7
⊢
((((ordTop‘ ≤ ) ↾t (0[,]+∞)) ∈ Top
∧ (0(,]+∞) ∈ V ∧ 𝐴 ∈ ((ordTop‘ ≤ )
↾t (0[,]+∞))) → (𝐴 ∩ (0(,]+∞)) ∈
(((ordTop‘ ≤ ) ↾t (0[,]+∞)) ↾t
(0(,]+∞))) |
43 | 34, 36, 41, 42 | syl3anc 1369 |
. . . . . 6
⊢ (𝐴 ∈ 𝐽 → (𝐴 ∩ (0(,]+∞)) ∈
(((ordTop‘ ≤ ) ↾t (0[,]+∞)) ↾t
(0(,]+∞))) |
44 | | letop 22265 |
. . . . . . 7
⊢
(ordTop‘ ≤ ) ∈ Top |
45 | | ovex 7288 |
. . . . . . 7
⊢
(0[,]+∞) ∈ V |
46 | | restabs 22224 |
. . . . . . 7
⊢
(((ordTop‘ ≤ ) ∈ Top ∧ (0(,]+∞) ⊆
(0[,]+∞) ∧ (0[,]+∞) ∈ V) → (((ordTop‘ ≤ )
↾t (0[,]+∞)) ↾t (0(,]+∞)) =
((ordTop‘ ≤ ) ↾t (0(,]+∞))) |
47 | 44, 14, 45, 46 | mp3an 1459 |
. . . . . 6
⊢
(((ordTop‘ ≤ ) ↾t (0[,]+∞))
↾t (0(,]+∞)) = ((ordTop‘ ≤ )
↾t (0(,]+∞)) |
48 | 43, 47 | eleqtrdi 2849 |
. . . . 5
⊢ (𝐴 ∈ 𝐽 → (𝐴 ∩ (0(,]+∞)) ∈
((ordTop‘ ≤ ) ↾t (0(,]+∞))) |
49 | 44 | a1i 11 |
. . . . . 6
⊢ (𝐴 ∈ 𝐽 → (ordTop‘ ≤ ) ∈
Top) |
50 | | iocpnfordt 22274 |
. . . . . . 7
⊢
(0(,]+∞) ∈ (ordTop‘ ≤ ) |
51 | 50 | a1i 11 |
. . . . . 6
⊢ (𝐴 ∈ 𝐽 → (0(,]+∞) ∈ (ordTop‘
≤ )) |
52 | | ssidd 3940 |
. . . . . 6
⊢ (𝐴 ∈ 𝐽 → (0(,]+∞) ⊆
(0(,]+∞)) |
53 | | inss2 4160 |
. . . . . . 7
⊢ (𝐴 ∩ (0(,]+∞)) ⊆
(0(,]+∞) |
54 | 53 | a1i 11 |
. . . . . 6
⊢ (𝐴 ∈ 𝐽 → (𝐴 ∩ (0(,]+∞)) ⊆
(0(,]+∞)) |
55 | | restopnb 22234 |
. . . . . 6
⊢
((((ordTop‘ ≤ ) ∈ Top ∧ (0(,]+∞) ∈ V) ∧
((0(,]+∞) ∈ (ordTop‘ ≤ ) ∧ (0(,]+∞) ⊆
(0(,]+∞) ∧ (𝐴
∩ (0(,]+∞)) ⊆ (0(,]+∞))) → ((𝐴 ∩ (0(,]+∞)) ∈ (ordTop‘
≤ ) ↔ (𝐴 ∩
(0(,]+∞)) ∈ ((ordTop‘ ≤ ) ↾t
(0(,]+∞)))) |
56 | 49, 36, 51, 52, 54, 55 | syl23anc 1375 |
. . . . 5
⊢ (𝐴 ∈ 𝐽 → ((𝐴 ∩ (0(,]+∞)) ∈ (ordTop‘
≤ ) ↔ (𝐴 ∩
(0(,]+∞)) ∈ ((ordTop‘ ≤ ) ↾t
(0(,]+∞)))) |
57 | 48, 56 | mpbird 256 |
. . . 4
⊢ (𝐴 ∈ 𝐽 → (𝐴 ∩ (0(,]+∞)) ∈ (ordTop‘
≤ )) |
58 | 57 | adantr 480 |
. . 3
⊢ ((𝐴 ∈ 𝐽 ∧ +∞ ∈ 𝐴) → (𝐴 ∩ (0(,]+∞)) ∈ (ordTop‘
≤ )) |
59 | | simpr 484 |
. . . 4
⊢ ((𝐴 ∈ 𝐽 ∧ +∞ ∈ 𝐴) → +∞ ∈ 𝐴) |
60 | | 0ltpnf 12787 |
. . . . . 6
⊢ 0 <
+∞ |
61 | | ubioc1 13061 |
. . . . . 6
⊢ ((0
∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 0
< +∞) → +∞ ∈ (0(,]+∞)) |
62 | 6, 8, 60, 61 | mp3an 1459 |
. . . . 5
⊢ +∞
∈ (0(,]+∞) |
63 | 62 | a1i 11 |
. . . 4
⊢ ((𝐴 ∈ 𝐽 ∧ +∞ ∈ 𝐴) → +∞ ∈
(0(,]+∞)) |
64 | 59, 63 | elind 4124 |
. . 3
⊢ ((𝐴 ∈ 𝐽 ∧ +∞ ∈ 𝐴) → +∞ ∈ (𝐴 ∩ (0(,]+∞))) |
65 | | pnfnei 22279 |
. . 3
⊢ (((𝐴 ∩ (0(,]+∞)) ∈
(ordTop‘ ≤ ) ∧ +∞ ∈ (𝐴 ∩ (0(,]+∞))) → ∃𝑦 ∈ ℝ (𝑦(,]+∞) ⊆ (𝐴 ∩
(0(,]+∞))) |
66 | 58, 64, 65 | syl2anc 583 |
. 2
⊢ ((𝐴 ∈ 𝐽 ∧ +∞ ∈ 𝐴) → ∃𝑦 ∈ ℝ (𝑦(,]+∞) ⊆ (𝐴 ∩ (0(,]+∞))) |
67 | 28, 66 | r19.29a 3217 |
1
⊢ ((𝐴 ∈ 𝐽 ∧ +∞ ∈ 𝐴) → ∃𝑥 ∈ ℝ (𝑥(,]+∞) ⊆ 𝐴) |