Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pnfneige0 Structured version   Visualization version   GIF version

Theorem pnfneige0 33948
Description: A neighborhood of +∞ contains an unbounded interval based at a real number. See pnfnei 23114. (Contributed by Thierry Arnoux, 31-Jul-2017.)
Hypothesis
Ref Expression
pnfneige0.j 𝐽 = (TopOpen‘(ℝ*𝑠s (0[,]+∞)))
Assertion
Ref Expression
pnfneige0 ((𝐴𝐽 ∧ +∞ ∈ 𝐴) → ∃𝑥 ∈ ℝ (𝑥(,]+∞) ⊆ 𝐴)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐽(𝑥)

Proof of Theorem pnfneige0
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 0red 11184 . . . 4 (((((𝐴𝐽 ∧ +∞ ∈ 𝐴) ∧ 𝑦 ∈ ℝ) ∧ (𝑦(,]+∞) ⊆ (𝐴 ∩ (0(,]+∞))) ∧ 𝑦 < 0) → 0 ∈ ℝ)
2 simpllr 775 . . . 4 (((((𝐴𝐽 ∧ +∞ ∈ 𝐴) ∧ 𝑦 ∈ ℝ) ∧ (𝑦(,]+∞) ⊆ (𝐴 ∩ (0(,]+∞))) ∧ ¬ 𝑦 < 0) → 𝑦 ∈ ℝ)
31, 2ifclda 4527 . . 3 ((((𝐴𝐽 ∧ +∞ ∈ 𝐴) ∧ 𝑦 ∈ ℝ) ∧ (𝑦(,]+∞) ⊆ (𝐴 ∩ (0(,]+∞))) → if(𝑦 < 0, 0, 𝑦) ∈ ℝ)
4 ovif 7490 . . . . . 6 (if(𝑦 < 0, 0, 𝑦)(,]+∞) = if(𝑦 < 0, (0(,]+∞), (𝑦(,]+∞))
5 rexr 11227 . . . . . . 7 (𝑦 ∈ ℝ → 𝑦 ∈ ℝ*)
6 0xr 11228 . . . . . . . 8 0 ∈ ℝ*
76a1i 11 . . . . . . 7 (𝑦 ∈ ℝ → 0 ∈ ℝ*)
8 pnfxr 11235 . . . . . . . 8 +∞ ∈ ℝ*
98a1i 11 . . . . . . 7 (𝑦 ∈ ℝ → +∞ ∈ ℝ*)
10 iocinif 32711 . . . . . . 7 ((𝑦 ∈ ℝ* ∧ 0 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((𝑦(,]+∞) ∩ (0(,]+∞)) = if(𝑦 < 0, (0(,]+∞), (𝑦(,]+∞)))
115, 7, 9, 10syl3anc 1373 . . . . . 6 (𝑦 ∈ ℝ → ((𝑦(,]+∞) ∩ (0(,]+∞)) = if(𝑦 < 0, (0(,]+∞), (𝑦(,]+∞)))
124, 11eqtr4id 2784 . . . . 5 (𝑦 ∈ ℝ → (if(𝑦 < 0, 0, 𝑦)(,]+∞) = ((𝑦(,]+∞) ∩ (0(,]+∞)))
1312ad2antlr 727 . . . 4 ((((𝐴𝐽 ∧ +∞ ∈ 𝐴) ∧ 𝑦 ∈ ℝ) ∧ (𝑦(,]+∞) ⊆ (𝐴 ∩ (0(,]+∞))) → (if(𝑦 < 0, 0, 𝑦)(,]+∞) = ((𝑦(,]+∞) ∩ (0(,]+∞)))
14 iocssicc 13405 . . . . . 6 (0(,]+∞) ⊆ (0[,]+∞)
15 sslin 4209 . . . . . 6 ((0(,]+∞) ⊆ (0[,]+∞) → ((𝑦(,]+∞) ∩ (0(,]+∞)) ⊆ ((𝑦(,]+∞) ∩ (0[,]+∞)))
1614, 15mp1i 13 . . . . 5 ((((𝐴𝐽 ∧ +∞ ∈ 𝐴) ∧ 𝑦 ∈ ℝ) ∧ (𝑦(,]+∞) ⊆ (𝐴 ∩ (0(,]+∞))) → ((𝑦(,]+∞) ∩ (0(,]+∞)) ⊆ ((𝑦(,]+∞) ∩ (0[,]+∞)))
17 simpr 484 . . . . . 6 ((((𝐴𝐽 ∧ +∞ ∈ 𝐴) ∧ 𝑦 ∈ ℝ) ∧ (𝑦(,]+∞) ⊆ (𝐴 ∩ (0(,]+∞))) → (𝑦(,]+∞) ⊆ (𝐴 ∩ (0(,]+∞)))
18 ssin 4205 . . . . . . . 8 (((𝑦(,]+∞) ⊆ 𝐴 ∧ (𝑦(,]+∞) ⊆ (0(,]+∞)) ↔ (𝑦(,]+∞) ⊆ (𝐴 ∩ (0(,]+∞)))
1918biimpri 228 . . . . . . 7 ((𝑦(,]+∞) ⊆ (𝐴 ∩ (0(,]+∞)) → ((𝑦(,]+∞) ⊆ 𝐴 ∧ (𝑦(,]+∞) ⊆ (0(,]+∞)))
2019simpld 494 . . . . . 6 ((𝑦(,]+∞) ⊆ (𝐴 ∩ (0(,]+∞)) → (𝑦(,]+∞) ⊆ 𝐴)
21 ssinss1 4212 . . . . . 6 ((𝑦(,]+∞) ⊆ 𝐴 → ((𝑦(,]+∞) ∩ (0[,]+∞)) ⊆ 𝐴)
2217, 20, 213syl 18 . . . . 5 ((((𝐴𝐽 ∧ +∞ ∈ 𝐴) ∧ 𝑦 ∈ ℝ) ∧ (𝑦(,]+∞) ⊆ (𝐴 ∩ (0(,]+∞))) → ((𝑦(,]+∞) ∩ (0[,]+∞)) ⊆ 𝐴)
2316, 22sstrd 3960 . . . 4 ((((𝐴𝐽 ∧ +∞ ∈ 𝐴) ∧ 𝑦 ∈ ℝ) ∧ (𝑦(,]+∞) ⊆ (𝐴 ∩ (0(,]+∞))) → ((𝑦(,]+∞) ∩ (0(,]+∞)) ⊆ 𝐴)
2413, 23eqsstrd 3984 . . 3 ((((𝐴𝐽 ∧ +∞ ∈ 𝐴) ∧ 𝑦 ∈ ℝ) ∧ (𝑦(,]+∞) ⊆ (𝐴 ∩ (0(,]+∞))) → (if(𝑦 < 0, 0, 𝑦)(,]+∞) ⊆ 𝐴)
25 oveq1 7397 . . . . 5 (𝑥 = if(𝑦 < 0, 0, 𝑦) → (𝑥(,]+∞) = (if(𝑦 < 0, 0, 𝑦)(,]+∞))
2625sseq1d 3981 . . . 4 (𝑥 = if(𝑦 < 0, 0, 𝑦) → ((𝑥(,]+∞) ⊆ 𝐴 ↔ (if(𝑦 < 0, 0, 𝑦)(,]+∞) ⊆ 𝐴))
2726rspcev 3591 . . 3 ((if(𝑦 < 0, 0, 𝑦) ∈ ℝ ∧ (if(𝑦 < 0, 0, 𝑦)(,]+∞) ⊆ 𝐴) → ∃𝑥 ∈ ℝ (𝑥(,]+∞) ⊆ 𝐴)
283, 24, 27syl2anc 584 . 2 ((((𝐴𝐽 ∧ +∞ ∈ 𝐴) ∧ 𝑦 ∈ ℝ) ∧ (𝑦(,]+∞) ⊆ (𝐴 ∩ (0(,]+∞))) → ∃𝑥 ∈ ℝ (𝑥(,]+∞) ⊆ 𝐴)
29 letopon 23099 . . . . . . . . . 10 (ordTop‘ ≤ ) ∈ (TopOn‘ℝ*)
30 iccssxr 13398 . . . . . . . . . 10 (0[,]+∞) ⊆ ℝ*
31 resttopon 23055 . . . . . . . . . 10 (((ordTop‘ ≤ ) ∈ (TopOn‘ℝ*) ∧ (0[,]+∞) ⊆ ℝ*) → ((ordTop‘ ≤ ) ↾t (0[,]+∞)) ∈ (TopOn‘(0[,]+∞)))
3229, 30, 31mp2an 692 . . . . . . . . 9 ((ordTop‘ ≤ ) ↾t (0[,]+∞)) ∈ (TopOn‘(0[,]+∞))
3332topontopi 22809 . . . . . . . 8 ((ordTop‘ ≤ ) ↾t (0[,]+∞)) ∈ Top
3433a1i 11 . . . . . . 7 (𝐴𝐽 → ((ordTop‘ ≤ ) ↾t (0[,]+∞)) ∈ Top)
35 ovex 7423 . . . . . . . 8 (0(,]+∞) ∈ V
3635a1i 11 . . . . . . 7 (𝐴𝐽 → (0(,]+∞) ∈ V)
37 pnfneige0.j . . . . . . . . . 10 𝐽 = (TopOpen‘(ℝ*𝑠s (0[,]+∞)))
38 xrge0topn 33940 . . . . . . . . . 10 (TopOpen‘(ℝ*𝑠s (0[,]+∞))) = ((ordTop‘ ≤ ) ↾t (0[,]+∞))
3937, 38eqtri 2753 . . . . . . . . 9 𝐽 = ((ordTop‘ ≤ ) ↾t (0[,]+∞))
4039eleq2i 2821 . . . . . . . 8 (𝐴𝐽𝐴 ∈ ((ordTop‘ ≤ ) ↾t (0[,]+∞)))
4140biimpi 216 . . . . . . 7 (𝐴𝐽𝐴 ∈ ((ordTop‘ ≤ ) ↾t (0[,]+∞)))
42 elrestr 17398 . . . . . . 7 ((((ordTop‘ ≤ ) ↾t (0[,]+∞)) ∈ Top ∧ (0(,]+∞) ∈ V ∧ 𝐴 ∈ ((ordTop‘ ≤ ) ↾t (0[,]+∞))) → (𝐴 ∩ (0(,]+∞)) ∈ (((ordTop‘ ≤ ) ↾t (0[,]+∞)) ↾t (0(,]+∞)))
4334, 36, 41, 42syl3anc 1373 . . . . . 6 (𝐴𝐽 → (𝐴 ∩ (0(,]+∞)) ∈ (((ordTop‘ ≤ ) ↾t (0[,]+∞)) ↾t (0(,]+∞)))
44 letop 23100 . . . . . . 7 (ordTop‘ ≤ ) ∈ Top
45 ovex 7423 . . . . . . 7 (0[,]+∞) ∈ V
46 restabs 23059 . . . . . . 7 (((ordTop‘ ≤ ) ∈ Top ∧ (0(,]+∞) ⊆ (0[,]+∞) ∧ (0[,]+∞) ∈ V) → (((ordTop‘ ≤ ) ↾t (0[,]+∞)) ↾t (0(,]+∞)) = ((ordTop‘ ≤ ) ↾t (0(,]+∞)))
4744, 14, 45, 46mp3an 1463 . . . . . 6 (((ordTop‘ ≤ ) ↾t (0[,]+∞)) ↾t (0(,]+∞)) = ((ordTop‘ ≤ ) ↾t (0(,]+∞))
4843, 47eleqtrdi 2839 . . . . 5 (𝐴𝐽 → (𝐴 ∩ (0(,]+∞)) ∈ ((ordTop‘ ≤ ) ↾t (0(,]+∞)))
4944a1i 11 . . . . . 6 (𝐴𝐽 → (ordTop‘ ≤ ) ∈ Top)
50 iocpnfordt 23109 . . . . . . 7 (0(,]+∞) ∈ (ordTop‘ ≤ )
5150a1i 11 . . . . . 6 (𝐴𝐽 → (0(,]+∞) ∈ (ordTop‘ ≤ ))
52 ssidd 3973 . . . . . 6 (𝐴𝐽 → (0(,]+∞) ⊆ (0(,]+∞))
53 inss2 4204 . . . . . . 7 (𝐴 ∩ (0(,]+∞)) ⊆ (0(,]+∞)
5453a1i 11 . . . . . 6 (𝐴𝐽 → (𝐴 ∩ (0(,]+∞)) ⊆ (0(,]+∞))
55 restopnb 23069 . . . . . 6 ((((ordTop‘ ≤ ) ∈ Top ∧ (0(,]+∞) ∈ V) ∧ ((0(,]+∞) ∈ (ordTop‘ ≤ ) ∧ (0(,]+∞) ⊆ (0(,]+∞) ∧ (𝐴 ∩ (0(,]+∞)) ⊆ (0(,]+∞))) → ((𝐴 ∩ (0(,]+∞)) ∈ (ordTop‘ ≤ ) ↔ (𝐴 ∩ (0(,]+∞)) ∈ ((ordTop‘ ≤ ) ↾t (0(,]+∞))))
5649, 36, 51, 52, 54, 55syl23anc 1379 . . . . 5 (𝐴𝐽 → ((𝐴 ∩ (0(,]+∞)) ∈ (ordTop‘ ≤ ) ↔ (𝐴 ∩ (0(,]+∞)) ∈ ((ordTop‘ ≤ ) ↾t (0(,]+∞))))
5748, 56mpbird 257 . . . 4 (𝐴𝐽 → (𝐴 ∩ (0(,]+∞)) ∈ (ordTop‘ ≤ ))
5857adantr 480 . . 3 ((𝐴𝐽 ∧ +∞ ∈ 𝐴) → (𝐴 ∩ (0(,]+∞)) ∈ (ordTop‘ ≤ ))
59 simpr 484 . . . 4 ((𝐴𝐽 ∧ +∞ ∈ 𝐴) → +∞ ∈ 𝐴)
60 0ltpnf 13089 . . . . . 6 0 < +∞
61 ubioc1 13367 . . . . . 6 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 0 < +∞) → +∞ ∈ (0(,]+∞))
626, 8, 60, 61mp3an 1463 . . . . 5 +∞ ∈ (0(,]+∞)
6362a1i 11 . . . 4 ((𝐴𝐽 ∧ +∞ ∈ 𝐴) → +∞ ∈ (0(,]+∞))
6459, 63elind 4166 . . 3 ((𝐴𝐽 ∧ +∞ ∈ 𝐴) → +∞ ∈ (𝐴 ∩ (0(,]+∞)))
65 pnfnei 23114 . . 3 (((𝐴 ∩ (0(,]+∞)) ∈ (ordTop‘ ≤ ) ∧ +∞ ∈ (𝐴 ∩ (0(,]+∞))) → ∃𝑦 ∈ ℝ (𝑦(,]+∞) ⊆ (𝐴 ∩ (0(,]+∞)))
6658, 64, 65syl2anc 584 . 2 ((𝐴𝐽 ∧ +∞ ∈ 𝐴) → ∃𝑦 ∈ ℝ (𝑦(,]+∞) ⊆ (𝐴 ∩ (0(,]+∞)))
6728, 66r19.29a 3142 1 ((𝐴𝐽 ∧ +∞ ∈ 𝐴) → ∃𝑥 ∈ ℝ (𝑥(,]+∞) ⊆ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wrex 3054  Vcvv 3450  cin 3916  wss 3917  ifcif 4491   class class class wbr 5110  cfv 6514  (class class class)co 7390  cr 11074  0cc0 11075  +∞cpnf 11212  *cxr 11214   < clt 11215  cle 11216  (,]cioc 13314  [,]cicc 13316  s cress 17207  t crest 17390  TopOpenctopn 17391  ordTopcordt 17469  *𝑠cxrs 17470  Topctop 22787  TopOnctopon 22804
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fi 9369  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-ioo 13317  df-ioc 13318  df-ico 13319  df-icc 13320  df-fz 13476  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-tset 17246  df-ple 17247  df-ds 17249  df-rest 17392  df-topn 17393  df-topgen 17413  df-ordt 17471  df-xrs 17472  df-ps 18532  df-tsr 18533  df-top 22788  df-topon 22805  df-bases 22840
This theorem is referenced by:  lmxrge0  33949
  Copyright terms: Public domain W3C validator