Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pnfneige0 Structured version   Visualization version   GIF version

Theorem pnfneige0 30505
Description: A neighborhood of +∞ contains an unbounded interval based at a real number. See pnfnei 21350. (Contributed by Thierry Arnoux, 31-Jul-2017.)
Hypothesis
Ref Expression
pnfneige0.j 𝐽 = (TopOpen‘(ℝ*𝑠s (0[,]+∞)))
Assertion
Ref Expression
pnfneige0 ((𝐴𝐽 ∧ +∞ ∈ 𝐴) → ∃𝑥 ∈ ℝ (𝑥(,]+∞) ⊆ 𝐴)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐽(𝑥)

Proof of Theorem pnfneige0
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 0red 10330 . . . 4 (((((𝐴𝐽 ∧ +∞ ∈ 𝐴) ∧ 𝑦 ∈ ℝ) ∧ (𝑦(,]+∞) ⊆ (𝐴 ∩ (0(,]+∞))) ∧ 𝑦 < 0) → 0 ∈ ℝ)
2 simpllr 794 . . . 4 (((((𝐴𝐽 ∧ +∞ ∈ 𝐴) ∧ 𝑦 ∈ ℝ) ∧ (𝑦(,]+∞) ⊆ (𝐴 ∩ (0(,]+∞))) ∧ ¬ 𝑦 < 0) → 𝑦 ∈ ℝ)
31, 2ifclda 4309 . . 3 ((((𝐴𝐽 ∧ +∞ ∈ 𝐴) ∧ 𝑦 ∈ ℝ) ∧ (𝑦(,]+∞) ⊆ (𝐴 ∩ (0(,]+∞))) → if(𝑦 < 0, 0, 𝑦) ∈ ℝ)
4 rexr 10372 . . . . . . 7 (𝑦 ∈ ℝ → 𝑦 ∈ ℝ*)
5 0xr 10373 . . . . . . . 8 0 ∈ ℝ*
65a1i 11 . . . . . . 7 (𝑦 ∈ ℝ → 0 ∈ ℝ*)
7 pnfxr 10380 . . . . . . . 8 +∞ ∈ ℝ*
87a1i 11 . . . . . . 7 (𝑦 ∈ ℝ → +∞ ∈ ℝ*)
9 iocinif 30053 . . . . . . 7 ((𝑦 ∈ ℝ* ∧ 0 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((𝑦(,]+∞) ∩ (0(,]+∞)) = if(𝑦 < 0, (0(,]+∞), (𝑦(,]+∞)))
104, 6, 8, 9syl3anc 1491 . . . . . 6 (𝑦 ∈ ℝ → ((𝑦(,]+∞) ∩ (0(,]+∞)) = if(𝑦 < 0, (0(,]+∞), (𝑦(,]+∞)))
11 ovif 6969 . . . . . 6 (if(𝑦 < 0, 0, 𝑦)(,]+∞) = if(𝑦 < 0, (0(,]+∞), (𝑦(,]+∞))
1210, 11syl6reqr 2850 . . . . 5 (𝑦 ∈ ℝ → (if(𝑦 < 0, 0, 𝑦)(,]+∞) = ((𝑦(,]+∞) ∩ (0(,]+∞)))
1312ad2antlr 719 . . . 4 ((((𝐴𝐽 ∧ +∞ ∈ 𝐴) ∧ 𝑦 ∈ ℝ) ∧ (𝑦(,]+∞) ⊆ (𝐴 ∩ (0(,]+∞))) → (if(𝑦 < 0, 0, 𝑦)(,]+∞) = ((𝑦(,]+∞) ∩ (0(,]+∞)))
14 iocssicc 12507 . . . . . 6 (0(,]+∞) ⊆ (0[,]+∞)
15 sslin 4032 . . . . . 6 ((0(,]+∞) ⊆ (0[,]+∞) → ((𝑦(,]+∞) ∩ (0(,]+∞)) ⊆ ((𝑦(,]+∞) ∩ (0[,]+∞)))
1614, 15mp1i 13 . . . . 5 ((((𝐴𝐽 ∧ +∞ ∈ 𝐴) ∧ 𝑦 ∈ ℝ) ∧ (𝑦(,]+∞) ⊆ (𝐴 ∩ (0(,]+∞))) → ((𝑦(,]+∞) ∩ (0(,]+∞)) ⊆ ((𝑦(,]+∞) ∩ (0[,]+∞)))
17 simpr 478 . . . . . 6 ((((𝐴𝐽 ∧ +∞ ∈ 𝐴) ∧ 𝑦 ∈ ℝ) ∧ (𝑦(,]+∞) ⊆ (𝐴 ∩ (0(,]+∞))) → (𝑦(,]+∞) ⊆ (𝐴 ∩ (0(,]+∞)))
18 ssin 4028 . . . . . . . 8 (((𝑦(,]+∞) ⊆ 𝐴 ∧ (𝑦(,]+∞) ⊆ (0(,]+∞)) ↔ (𝑦(,]+∞) ⊆ (𝐴 ∩ (0(,]+∞)))
1918biimpri 220 . . . . . . 7 ((𝑦(,]+∞) ⊆ (𝐴 ∩ (0(,]+∞)) → ((𝑦(,]+∞) ⊆ 𝐴 ∧ (𝑦(,]+∞) ⊆ (0(,]+∞)))
2019simpld 489 . . . . . 6 ((𝑦(,]+∞) ⊆ (𝐴 ∩ (0(,]+∞)) → (𝑦(,]+∞) ⊆ 𝐴)
21 ssinss1 4035 . . . . . 6 ((𝑦(,]+∞) ⊆ 𝐴 → ((𝑦(,]+∞) ∩ (0[,]+∞)) ⊆ 𝐴)
2217, 20, 213syl 18 . . . . 5 ((((𝐴𝐽 ∧ +∞ ∈ 𝐴) ∧ 𝑦 ∈ ℝ) ∧ (𝑦(,]+∞) ⊆ (𝐴 ∩ (0(,]+∞))) → ((𝑦(,]+∞) ∩ (0[,]+∞)) ⊆ 𝐴)
2316, 22sstrd 3806 . . . 4 ((((𝐴𝐽 ∧ +∞ ∈ 𝐴) ∧ 𝑦 ∈ ℝ) ∧ (𝑦(,]+∞) ⊆ (𝐴 ∩ (0(,]+∞))) → ((𝑦(,]+∞) ∩ (0(,]+∞)) ⊆ 𝐴)
2413, 23eqsstrd 3833 . . 3 ((((𝐴𝐽 ∧ +∞ ∈ 𝐴) ∧ 𝑦 ∈ ℝ) ∧ (𝑦(,]+∞) ⊆ (𝐴 ∩ (0(,]+∞))) → (if(𝑦 < 0, 0, 𝑦)(,]+∞) ⊆ 𝐴)
25 oveq1 6883 . . . . 5 (𝑥 = if(𝑦 < 0, 0, 𝑦) → (𝑥(,]+∞) = (if(𝑦 < 0, 0, 𝑦)(,]+∞))
2625sseq1d 3826 . . . 4 (𝑥 = if(𝑦 < 0, 0, 𝑦) → ((𝑥(,]+∞) ⊆ 𝐴 ↔ (if(𝑦 < 0, 0, 𝑦)(,]+∞) ⊆ 𝐴))
2726rspcev 3495 . . 3 ((if(𝑦 < 0, 0, 𝑦) ∈ ℝ ∧ (if(𝑦 < 0, 0, 𝑦)(,]+∞) ⊆ 𝐴) → ∃𝑥 ∈ ℝ (𝑥(,]+∞) ⊆ 𝐴)
283, 24, 27syl2anc 580 . 2 ((((𝐴𝐽 ∧ +∞ ∈ 𝐴) ∧ 𝑦 ∈ ℝ) ∧ (𝑦(,]+∞) ⊆ (𝐴 ∩ (0(,]+∞))) → ∃𝑥 ∈ ℝ (𝑥(,]+∞) ⊆ 𝐴)
29 letopon 21335 . . . . . . . . . 10 (ordTop‘ ≤ ) ∈ (TopOn‘ℝ*)
30 iccssxr 12501 . . . . . . . . . 10 (0[,]+∞) ⊆ ℝ*
31 resttopon 21291 . . . . . . . . . 10 (((ordTop‘ ≤ ) ∈ (TopOn‘ℝ*) ∧ (0[,]+∞) ⊆ ℝ*) → ((ordTop‘ ≤ ) ↾t (0[,]+∞)) ∈ (TopOn‘(0[,]+∞)))
3229, 30, 31mp2an 684 . . . . . . . . 9 ((ordTop‘ ≤ ) ↾t (0[,]+∞)) ∈ (TopOn‘(0[,]+∞))
3332topontopi 21045 . . . . . . . 8 ((ordTop‘ ≤ ) ↾t (0[,]+∞)) ∈ Top
3433a1i 11 . . . . . . 7 (𝐴𝐽 → ((ordTop‘ ≤ ) ↾t (0[,]+∞)) ∈ Top)
35 ovex 6908 . . . . . . . 8 (0(,]+∞) ∈ V
3635a1i 11 . . . . . . 7 (𝐴𝐽 → (0(,]+∞) ∈ V)
37 pnfneige0.j . . . . . . . . . 10 𝐽 = (TopOpen‘(ℝ*𝑠s (0[,]+∞)))
38 xrge0topn 30497 . . . . . . . . . 10 (TopOpen‘(ℝ*𝑠s (0[,]+∞))) = ((ordTop‘ ≤ ) ↾t (0[,]+∞))
3937, 38eqtri 2819 . . . . . . . . 9 𝐽 = ((ordTop‘ ≤ ) ↾t (0[,]+∞))
4039eleq2i 2868 . . . . . . . 8 (𝐴𝐽𝐴 ∈ ((ordTop‘ ≤ ) ↾t (0[,]+∞)))
4140biimpi 208 . . . . . . 7 (𝐴𝐽𝐴 ∈ ((ordTop‘ ≤ ) ↾t (0[,]+∞)))
42 elrestr 16401 . . . . . . 7 ((((ordTop‘ ≤ ) ↾t (0[,]+∞)) ∈ Top ∧ (0(,]+∞) ∈ V ∧ 𝐴 ∈ ((ordTop‘ ≤ ) ↾t (0[,]+∞))) → (𝐴 ∩ (0(,]+∞)) ∈ (((ordTop‘ ≤ ) ↾t (0[,]+∞)) ↾t (0(,]+∞)))
4334, 36, 41, 42syl3anc 1491 . . . . . 6 (𝐴𝐽 → (𝐴 ∩ (0(,]+∞)) ∈ (((ordTop‘ ≤ ) ↾t (0[,]+∞)) ↾t (0(,]+∞)))
44 letop 21336 . . . . . . 7 (ordTop‘ ≤ ) ∈ Top
45 ovex 6908 . . . . . . 7 (0[,]+∞) ∈ V
46 restabs 21295 . . . . . . 7 (((ordTop‘ ≤ ) ∈ Top ∧ (0(,]+∞) ⊆ (0[,]+∞) ∧ (0[,]+∞) ∈ V) → (((ordTop‘ ≤ ) ↾t (0[,]+∞)) ↾t (0(,]+∞)) = ((ordTop‘ ≤ ) ↾t (0(,]+∞)))
4744, 14, 45, 46mp3an 1586 . . . . . 6 (((ordTop‘ ≤ ) ↾t (0[,]+∞)) ↾t (0(,]+∞)) = ((ordTop‘ ≤ ) ↾t (0(,]+∞))
4843, 47syl6eleq 2886 . . . . 5 (𝐴𝐽 → (𝐴 ∩ (0(,]+∞)) ∈ ((ordTop‘ ≤ ) ↾t (0(,]+∞)))
4944a1i 11 . . . . . 6 (𝐴𝐽 → (ordTop‘ ≤ ) ∈ Top)
50 iocpnfordt 21345 . . . . . . 7 (0(,]+∞) ∈ (ordTop‘ ≤ )
5150a1i 11 . . . . . 6 (𝐴𝐽 → (0(,]+∞) ∈ (ordTop‘ ≤ ))
52 ssidd 3818 . . . . . 6 (𝐴𝐽 → (0(,]+∞) ⊆ (0(,]+∞))
53 inss2 4027 . . . . . . 7 (𝐴 ∩ (0(,]+∞)) ⊆ (0(,]+∞)
5453a1i 11 . . . . . 6 (𝐴𝐽 → (𝐴 ∩ (0(,]+∞)) ⊆ (0(,]+∞))
55 restopnb 21305 . . . . . 6 ((((ordTop‘ ≤ ) ∈ Top ∧ (0(,]+∞) ∈ V) ∧ ((0(,]+∞) ∈ (ordTop‘ ≤ ) ∧ (0(,]+∞) ⊆ (0(,]+∞) ∧ (𝐴 ∩ (0(,]+∞)) ⊆ (0(,]+∞))) → ((𝐴 ∩ (0(,]+∞)) ∈ (ordTop‘ ≤ ) ↔ (𝐴 ∩ (0(,]+∞)) ∈ ((ordTop‘ ≤ ) ↾t (0(,]+∞))))
5649, 36, 51, 52, 54, 55syl23anc 1497 . . . . 5 (𝐴𝐽 → ((𝐴 ∩ (0(,]+∞)) ∈ (ordTop‘ ≤ ) ↔ (𝐴 ∩ (0(,]+∞)) ∈ ((ordTop‘ ≤ ) ↾t (0(,]+∞))))
5748, 56mpbird 249 . . . 4 (𝐴𝐽 → (𝐴 ∩ (0(,]+∞)) ∈ (ordTop‘ ≤ ))
5857adantr 473 . . 3 ((𝐴𝐽 ∧ +∞ ∈ 𝐴) → (𝐴 ∩ (0(,]+∞)) ∈ (ordTop‘ ≤ ))
59 simpr 478 . . . 4 ((𝐴𝐽 ∧ +∞ ∈ 𝐴) → +∞ ∈ 𝐴)
60 0ltpnf 12199 . . . . . 6 0 < +∞
61 ubioc1 12472 . . . . . 6 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 0 < +∞) → +∞ ∈ (0(,]+∞))
625, 7, 60, 61mp3an 1586 . . . . 5 +∞ ∈ (0(,]+∞)
6362a1i 11 . . . 4 ((𝐴𝐽 ∧ +∞ ∈ 𝐴) → +∞ ∈ (0(,]+∞))
6459, 63elind 3994 . . 3 ((𝐴𝐽 ∧ +∞ ∈ 𝐴) → +∞ ∈ (𝐴 ∩ (0(,]+∞)))
65 pnfnei 21350 . . 3 (((𝐴 ∩ (0(,]+∞)) ∈ (ordTop‘ ≤ ) ∧ +∞ ∈ (𝐴 ∩ (0(,]+∞))) → ∃𝑦 ∈ ℝ (𝑦(,]+∞) ⊆ (𝐴 ∩ (0(,]+∞)))
6658, 64, 65syl2anc 580 . 2 ((𝐴𝐽 ∧ +∞ ∈ 𝐴) → ∃𝑦 ∈ ℝ (𝑦(,]+∞) ⊆ (𝐴 ∩ (0(,]+∞)))
6728, 66r19.29a 3257 1 ((𝐴𝐽 ∧ +∞ ∈ 𝐴) → ∃𝑥 ∈ ℝ (𝑥(,]+∞) ⊆ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 385   = wceq 1653  wcel 2157  wrex 3088  Vcvv 3383  cin 3766  wss 3767  ifcif 4275   class class class wbr 4841  cfv 6099  (class class class)co 6876  cr 10221  0cc0 10222  +∞cpnf 10358  *cxr 10360   < clt 10361  cle 10362  (,]cioc 12421  [,]cicc 12423  s cress 16182  t crest 16393  TopOpenctopn 16394  ordTopcordt 16471  *𝑠cxrs 16472  Topctop 21023  TopOnctopon 21040
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2354  ax-ext 2775  ax-rep 4962  ax-sep 4973  ax-nul 4981  ax-pow 5033  ax-pr 5095  ax-un 7181  ax-cnex 10278  ax-resscn 10279  ax-1cn 10280  ax-icn 10281  ax-addcl 10282  ax-addrcl 10283  ax-mulcl 10284  ax-mulrcl 10285  ax-mulcom 10286  ax-addass 10287  ax-mulass 10288  ax-distr 10289  ax-i2m1 10290  ax-1ne0 10291  ax-1rid 10292  ax-rnegex 10293  ax-rrecex 10294  ax-cnre 10295  ax-pre-lttri 10296  ax-pre-lttrn 10297  ax-pre-ltadd 10298  ax-pre-mulgt0 10299
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2590  df-eu 2607  df-clab 2784  df-cleq 2790  df-clel 2793  df-nfc 2928  df-ne 2970  df-nel 3073  df-ral 3092  df-rex 3093  df-reu 3094  df-rab 3096  df-v 3385  df-sbc 3632  df-csb 3727  df-dif 3770  df-un 3772  df-in 3774  df-ss 3781  df-pss 3783  df-nul 4114  df-if 4276  df-pw 4349  df-sn 4367  df-pr 4369  df-tp 4371  df-op 4373  df-uni 4627  df-int 4666  df-iun 4710  df-br 4842  df-opab 4904  df-mpt 4921  df-tr 4944  df-id 5218  df-eprel 5223  df-po 5231  df-so 5232  df-fr 5269  df-we 5271  df-xp 5316  df-rel 5317  df-cnv 5318  df-co 5319  df-dm 5320  df-rn 5321  df-res 5322  df-ima 5323  df-pred 5896  df-ord 5942  df-on 5943  df-lim 5944  df-suc 5945  df-iota 6062  df-fun 6101  df-fn 6102  df-f 6103  df-f1 6104  df-fo 6105  df-f1o 6106  df-fv 6107  df-riota 6837  df-ov 6879  df-oprab 6880  df-mpt2 6881  df-om 7298  df-1st 7399  df-2nd 7400  df-wrecs 7643  df-recs 7705  df-rdg 7743  df-1o 7797  df-oadd 7801  df-er 7980  df-en 8194  df-dom 8195  df-sdom 8196  df-fin 8197  df-fi 8557  df-pnf 10363  df-mnf 10364  df-xr 10365  df-ltxr 10366  df-le 10367  df-sub 10556  df-neg 10557  df-nn 11311  df-2 11372  df-3 11373  df-4 11374  df-5 11375  df-6 11376  df-7 11377  df-8 11378  df-9 11379  df-n0 11577  df-z 11663  df-dec 11780  df-uz 11927  df-ioo 12424  df-ioc 12425  df-ico 12426  df-icc 12427  df-fz 12577  df-struct 16183  df-ndx 16184  df-slot 16185  df-base 16187  df-sets 16188  df-ress 16189  df-plusg 16277  df-mulr 16278  df-tset 16283  df-ple 16284  df-ds 16286  df-rest 16395  df-topn 16396  df-topgen 16416  df-ordt 16473  df-xrs 16474  df-ps 17512  df-tsr 17513  df-top 21024  df-topon 21041  df-bases 21076
This theorem is referenced by:  lmxrge0  30506
  Copyright terms: Public domain W3C validator