Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pnfneige0 Structured version   Visualization version   GIF version

Theorem pnfneige0 32532
Description: A neighborhood of +∞ contains an unbounded interval based at a real number. See pnfnei 22571. (Contributed by Thierry Arnoux, 31-Jul-2017.)
Hypothesis
Ref Expression
pnfneige0.j 𝐽 = (TopOpen‘(ℝ*𝑠s (0[,]+∞)))
Assertion
Ref Expression
pnfneige0 ((𝐴𝐽 ∧ +∞ ∈ 𝐴) → ∃𝑥 ∈ ℝ (𝑥(,]+∞) ⊆ 𝐴)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐽(𝑥)

Proof of Theorem pnfneige0
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 0red 11158 . . . 4 (((((𝐴𝐽 ∧ +∞ ∈ 𝐴) ∧ 𝑦 ∈ ℝ) ∧ (𝑦(,]+∞) ⊆ (𝐴 ∩ (0(,]+∞))) ∧ 𝑦 < 0) → 0 ∈ ℝ)
2 simpllr 774 . . . 4 (((((𝐴𝐽 ∧ +∞ ∈ 𝐴) ∧ 𝑦 ∈ ℝ) ∧ (𝑦(,]+∞) ⊆ (𝐴 ∩ (0(,]+∞))) ∧ ¬ 𝑦 < 0) → 𝑦 ∈ ℝ)
31, 2ifclda 4521 . . 3 ((((𝐴𝐽 ∧ +∞ ∈ 𝐴) ∧ 𝑦 ∈ ℝ) ∧ (𝑦(,]+∞) ⊆ (𝐴 ∩ (0(,]+∞))) → if(𝑦 < 0, 0, 𝑦) ∈ ℝ)
4 ovif 7454 . . . . . 6 (if(𝑦 < 0, 0, 𝑦)(,]+∞) = if(𝑦 < 0, (0(,]+∞), (𝑦(,]+∞))
5 rexr 11201 . . . . . . 7 (𝑦 ∈ ℝ → 𝑦 ∈ ℝ*)
6 0xr 11202 . . . . . . . 8 0 ∈ ℝ*
76a1i 11 . . . . . . 7 (𝑦 ∈ ℝ → 0 ∈ ℝ*)
8 pnfxr 11209 . . . . . . . 8 +∞ ∈ ℝ*
98a1i 11 . . . . . . 7 (𝑦 ∈ ℝ → +∞ ∈ ℝ*)
10 iocinif 31684 . . . . . . 7 ((𝑦 ∈ ℝ* ∧ 0 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((𝑦(,]+∞) ∩ (0(,]+∞)) = if(𝑦 < 0, (0(,]+∞), (𝑦(,]+∞)))
115, 7, 9, 10syl3anc 1371 . . . . . 6 (𝑦 ∈ ℝ → ((𝑦(,]+∞) ∩ (0(,]+∞)) = if(𝑦 < 0, (0(,]+∞), (𝑦(,]+∞)))
124, 11eqtr4id 2795 . . . . 5 (𝑦 ∈ ℝ → (if(𝑦 < 0, 0, 𝑦)(,]+∞) = ((𝑦(,]+∞) ∩ (0(,]+∞)))
1312ad2antlr 725 . . . 4 ((((𝐴𝐽 ∧ +∞ ∈ 𝐴) ∧ 𝑦 ∈ ℝ) ∧ (𝑦(,]+∞) ⊆ (𝐴 ∩ (0(,]+∞))) → (if(𝑦 < 0, 0, 𝑦)(,]+∞) = ((𝑦(,]+∞) ∩ (0(,]+∞)))
14 iocssicc 13354 . . . . . 6 (0(,]+∞) ⊆ (0[,]+∞)
15 sslin 4194 . . . . . 6 ((0(,]+∞) ⊆ (0[,]+∞) → ((𝑦(,]+∞) ∩ (0(,]+∞)) ⊆ ((𝑦(,]+∞) ∩ (0[,]+∞)))
1614, 15mp1i 13 . . . . 5 ((((𝐴𝐽 ∧ +∞ ∈ 𝐴) ∧ 𝑦 ∈ ℝ) ∧ (𝑦(,]+∞) ⊆ (𝐴 ∩ (0(,]+∞))) → ((𝑦(,]+∞) ∩ (0(,]+∞)) ⊆ ((𝑦(,]+∞) ∩ (0[,]+∞)))
17 simpr 485 . . . . . 6 ((((𝐴𝐽 ∧ +∞ ∈ 𝐴) ∧ 𝑦 ∈ ℝ) ∧ (𝑦(,]+∞) ⊆ (𝐴 ∩ (0(,]+∞))) → (𝑦(,]+∞) ⊆ (𝐴 ∩ (0(,]+∞)))
18 ssin 4190 . . . . . . . 8 (((𝑦(,]+∞) ⊆ 𝐴 ∧ (𝑦(,]+∞) ⊆ (0(,]+∞)) ↔ (𝑦(,]+∞) ⊆ (𝐴 ∩ (0(,]+∞)))
1918biimpri 227 . . . . . . 7 ((𝑦(,]+∞) ⊆ (𝐴 ∩ (0(,]+∞)) → ((𝑦(,]+∞) ⊆ 𝐴 ∧ (𝑦(,]+∞) ⊆ (0(,]+∞)))
2019simpld 495 . . . . . 6 ((𝑦(,]+∞) ⊆ (𝐴 ∩ (0(,]+∞)) → (𝑦(,]+∞) ⊆ 𝐴)
21 ssinss1 4197 . . . . . 6 ((𝑦(,]+∞) ⊆ 𝐴 → ((𝑦(,]+∞) ∩ (0[,]+∞)) ⊆ 𝐴)
2217, 20, 213syl 18 . . . . 5 ((((𝐴𝐽 ∧ +∞ ∈ 𝐴) ∧ 𝑦 ∈ ℝ) ∧ (𝑦(,]+∞) ⊆ (𝐴 ∩ (0(,]+∞))) → ((𝑦(,]+∞) ∩ (0[,]+∞)) ⊆ 𝐴)
2316, 22sstrd 3954 . . . 4 ((((𝐴𝐽 ∧ +∞ ∈ 𝐴) ∧ 𝑦 ∈ ℝ) ∧ (𝑦(,]+∞) ⊆ (𝐴 ∩ (0(,]+∞))) → ((𝑦(,]+∞) ∩ (0(,]+∞)) ⊆ 𝐴)
2413, 23eqsstrd 3982 . . 3 ((((𝐴𝐽 ∧ +∞ ∈ 𝐴) ∧ 𝑦 ∈ ℝ) ∧ (𝑦(,]+∞) ⊆ (𝐴 ∩ (0(,]+∞))) → (if(𝑦 < 0, 0, 𝑦)(,]+∞) ⊆ 𝐴)
25 oveq1 7364 . . . . 5 (𝑥 = if(𝑦 < 0, 0, 𝑦) → (𝑥(,]+∞) = (if(𝑦 < 0, 0, 𝑦)(,]+∞))
2625sseq1d 3975 . . . 4 (𝑥 = if(𝑦 < 0, 0, 𝑦) → ((𝑥(,]+∞) ⊆ 𝐴 ↔ (if(𝑦 < 0, 0, 𝑦)(,]+∞) ⊆ 𝐴))
2726rspcev 3581 . . 3 ((if(𝑦 < 0, 0, 𝑦) ∈ ℝ ∧ (if(𝑦 < 0, 0, 𝑦)(,]+∞) ⊆ 𝐴) → ∃𝑥 ∈ ℝ (𝑥(,]+∞) ⊆ 𝐴)
283, 24, 27syl2anc 584 . 2 ((((𝐴𝐽 ∧ +∞ ∈ 𝐴) ∧ 𝑦 ∈ ℝ) ∧ (𝑦(,]+∞) ⊆ (𝐴 ∩ (0(,]+∞))) → ∃𝑥 ∈ ℝ (𝑥(,]+∞) ⊆ 𝐴)
29 letopon 22556 . . . . . . . . . 10 (ordTop‘ ≤ ) ∈ (TopOn‘ℝ*)
30 iccssxr 13347 . . . . . . . . . 10 (0[,]+∞) ⊆ ℝ*
31 resttopon 22512 . . . . . . . . . 10 (((ordTop‘ ≤ ) ∈ (TopOn‘ℝ*) ∧ (0[,]+∞) ⊆ ℝ*) → ((ordTop‘ ≤ ) ↾t (0[,]+∞)) ∈ (TopOn‘(0[,]+∞)))
3229, 30, 31mp2an 690 . . . . . . . . 9 ((ordTop‘ ≤ ) ↾t (0[,]+∞)) ∈ (TopOn‘(0[,]+∞))
3332topontopi 22264 . . . . . . . 8 ((ordTop‘ ≤ ) ↾t (0[,]+∞)) ∈ Top
3433a1i 11 . . . . . . 7 (𝐴𝐽 → ((ordTop‘ ≤ ) ↾t (0[,]+∞)) ∈ Top)
35 ovex 7390 . . . . . . . 8 (0(,]+∞) ∈ V
3635a1i 11 . . . . . . 7 (𝐴𝐽 → (0(,]+∞) ∈ V)
37 pnfneige0.j . . . . . . . . . 10 𝐽 = (TopOpen‘(ℝ*𝑠s (0[,]+∞)))
38 xrge0topn 32524 . . . . . . . . . 10 (TopOpen‘(ℝ*𝑠s (0[,]+∞))) = ((ordTop‘ ≤ ) ↾t (0[,]+∞))
3937, 38eqtri 2764 . . . . . . . . 9 𝐽 = ((ordTop‘ ≤ ) ↾t (0[,]+∞))
4039eleq2i 2829 . . . . . . . 8 (𝐴𝐽𝐴 ∈ ((ordTop‘ ≤ ) ↾t (0[,]+∞)))
4140biimpi 215 . . . . . . 7 (𝐴𝐽𝐴 ∈ ((ordTop‘ ≤ ) ↾t (0[,]+∞)))
42 elrestr 17310 . . . . . . 7 ((((ordTop‘ ≤ ) ↾t (0[,]+∞)) ∈ Top ∧ (0(,]+∞) ∈ V ∧ 𝐴 ∈ ((ordTop‘ ≤ ) ↾t (0[,]+∞))) → (𝐴 ∩ (0(,]+∞)) ∈ (((ordTop‘ ≤ ) ↾t (0[,]+∞)) ↾t (0(,]+∞)))
4334, 36, 41, 42syl3anc 1371 . . . . . 6 (𝐴𝐽 → (𝐴 ∩ (0(,]+∞)) ∈ (((ordTop‘ ≤ ) ↾t (0[,]+∞)) ↾t (0(,]+∞)))
44 letop 22557 . . . . . . 7 (ordTop‘ ≤ ) ∈ Top
45 ovex 7390 . . . . . . 7 (0[,]+∞) ∈ V
46 restabs 22516 . . . . . . 7 (((ordTop‘ ≤ ) ∈ Top ∧ (0(,]+∞) ⊆ (0[,]+∞) ∧ (0[,]+∞) ∈ V) → (((ordTop‘ ≤ ) ↾t (0[,]+∞)) ↾t (0(,]+∞)) = ((ordTop‘ ≤ ) ↾t (0(,]+∞)))
4744, 14, 45, 46mp3an 1461 . . . . . 6 (((ordTop‘ ≤ ) ↾t (0[,]+∞)) ↾t (0(,]+∞)) = ((ordTop‘ ≤ ) ↾t (0(,]+∞))
4843, 47eleqtrdi 2848 . . . . 5 (𝐴𝐽 → (𝐴 ∩ (0(,]+∞)) ∈ ((ordTop‘ ≤ ) ↾t (0(,]+∞)))
4944a1i 11 . . . . . 6 (𝐴𝐽 → (ordTop‘ ≤ ) ∈ Top)
50 iocpnfordt 22566 . . . . . . 7 (0(,]+∞) ∈ (ordTop‘ ≤ )
5150a1i 11 . . . . . 6 (𝐴𝐽 → (0(,]+∞) ∈ (ordTop‘ ≤ ))
52 ssidd 3967 . . . . . 6 (𝐴𝐽 → (0(,]+∞) ⊆ (0(,]+∞))
53 inss2 4189 . . . . . . 7 (𝐴 ∩ (0(,]+∞)) ⊆ (0(,]+∞)
5453a1i 11 . . . . . 6 (𝐴𝐽 → (𝐴 ∩ (0(,]+∞)) ⊆ (0(,]+∞))
55 restopnb 22526 . . . . . 6 ((((ordTop‘ ≤ ) ∈ Top ∧ (0(,]+∞) ∈ V) ∧ ((0(,]+∞) ∈ (ordTop‘ ≤ ) ∧ (0(,]+∞) ⊆ (0(,]+∞) ∧ (𝐴 ∩ (0(,]+∞)) ⊆ (0(,]+∞))) → ((𝐴 ∩ (0(,]+∞)) ∈ (ordTop‘ ≤ ) ↔ (𝐴 ∩ (0(,]+∞)) ∈ ((ordTop‘ ≤ ) ↾t (0(,]+∞))))
5649, 36, 51, 52, 54, 55syl23anc 1377 . . . . 5 (𝐴𝐽 → ((𝐴 ∩ (0(,]+∞)) ∈ (ordTop‘ ≤ ) ↔ (𝐴 ∩ (0(,]+∞)) ∈ ((ordTop‘ ≤ ) ↾t (0(,]+∞))))
5748, 56mpbird 256 . . . 4 (𝐴𝐽 → (𝐴 ∩ (0(,]+∞)) ∈ (ordTop‘ ≤ ))
5857adantr 481 . . 3 ((𝐴𝐽 ∧ +∞ ∈ 𝐴) → (𝐴 ∩ (0(,]+∞)) ∈ (ordTop‘ ≤ ))
59 simpr 485 . . . 4 ((𝐴𝐽 ∧ +∞ ∈ 𝐴) → +∞ ∈ 𝐴)
60 0ltpnf 13043 . . . . . 6 0 < +∞
61 ubioc1 13317 . . . . . 6 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 0 < +∞) → +∞ ∈ (0(,]+∞))
626, 8, 60, 61mp3an 1461 . . . . 5 +∞ ∈ (0(,]+∞)
6362a1i 11 . . . 4 ((𝐴𝐽 ∧ +∞ ∈ 𝐴) → +∞ ∈ (0(,]+∞))
6459, 63elind 4154 . . 3 ((𝐴𝐽 ∧ +∞ ∈ 𝐴) → +∞ ∈ (𝐴 ∩ (0(,]+∞)))
65 pnfnei 22571 . . 3 (((𝐴 ∩ (0(,]+∞)) ∈ (ordTop‘ ≤ ) ∧ +∞ ∈ (𝐴 ∩ (0(,]+∞))) → ∃𝑦 ∈ ℝ (𝑦(,]+∞) ⊆ (𝐴 ∩ (0(,]+∞)))
6658, 64, 65syl2anc 584 . 2 ((𝐴𝐽 ∧ +∞ ∈ 𝐴) → ∃𝑦 ∈ ℝ (𝑦(,]+∞) ⊆ (𝐴 ∩ (0(,]+∞)))
6728, 66r19.29a 3159 1 ((𝐴𝐽 ∧ +∞ ∈ 𝐴) → ∃𝑥 ∈ ℝ (𝑥(,]+∞) ⊆ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wrex 3073  Vcvv 3445  cin 3909  wss 3910  ifcif 4486   class class class wbr 5105  cfv 6496  (class class class)co 7357  cr 11050  0cc0 11051  +∞cpnf 11186  *cxr 11188   < clt 11189  cle 11190  (,]cioc 13265  [,]cicc 13267  s cress 17112  t crest 17302  TopOpenctopn 17303  ordTopcordt 17381  *𝑠cxrs 17382  Topctop 22242  TopOnctopon 22259
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fi 9347  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-ioo 13268  df-ioc 13269  df-ico 13270  df-icc 13271  df-fz 13425  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-tset 17152  df-ple 17153  df-ds 17155  df-rest 17304  df-topn 17305  df-topgen 17325  df-ordt 17383  df-xrs 17384  df-ps 18455  df-tsr 18456  df-top 22243  df-topon 22260  df-bases 22296
This theorem is referenced by:  lmxrge0  32533
  Copyright terms: Public domain W3C validator