| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | chmatcl.h | . . . 4
⊢ 𝐻 = ((𝑋 · 1 ) − (𝑇‘𝑀)) | 
| 2 | 1 | oveqi 7445 | . . 3
⊢ (𝐼𝐻𝐽) = (𝐼((𝑋 · 1 ) − (𝑇‘𝑀))𝐽) | 
| 3 |  | chmatcl.p | . . . . . . 7
⊢ 𝑃 = (Poly1‘𝑅) | 
| 4 | 3 | ply1ring 22250 | . . . . . 6
⊢ (𝑅 ∈ Ring → 𝑃 ∈ Ring) | 
| 5 | 4 | 3ad2ant2 1134 | . . . . 5
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → 𝑃 ∈ Ring) | 
| 6 | 5 | adantr 480 | . . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → 𝑃 ∈ Ring) | 
| 7 | 4 | anim2i 617 | . . . . . . 7
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑁 ∈ Fin ∧ 𝑃 ∈ Ring)) | 
| 8 | 7 | 3adant3 1132 | . . . . . 6
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (𝑁 ∈ Fin ∧ 𝑃 ∈ Ring)) | 
| 9 |  | chmatcl.x | . . . . . . . 8
⊢ 𝑋 = (var1‘𝑅) | 
| 10 |  | eqid 2736 | . . . . . . . 8
⊢
(Base‘𝑃) =
(Base‘𝑃) | 
| 11 | 9, 3, 10 | vr1cl 22220 | . . . . . . 7
⊢ (𝑅 ∈ Ring → 𝑋 ∈ (Base‘𝑃)) | 
| 12 | 11 | 3ad2ant2 1134 | . . . . . 6
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → 𝑋 ∈ (Base‘𝑃)) | 
| 13 |  | chmatcl.y | . . . . . . . . 9
⊢ 𝑌 = (𝑁 Mat 𝑃) | 
| 14 | 3, 13 | pmatring 22699 | . . . . . . . 8
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑌 ∈ Ring) | 
| 15 | 14 | 3adant3 1132 | . . . . . . 7
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → 𝑌 ∈ Ring) | 
| 16 |  | eqid 2736 | . . . . . . . 8
⊢
(Base‘𝑌) =
(Base‘𝑌) | 
| 17 |  | chmatcl.1 | . . . . . . . 8
⊢  1 =
(1r‘𝑌) | 
| 18 | 16, 17 | ringidcl 20263 | . . . . . . 7
⊢ (𝑌 ∈ Ring → 1 ∈
(Base‘𝑌)) | 
| 19 | 15, 18 | syl 17 | . . . . . 6
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → 1 ∈ (Base‘𝑌)) | 
| 20 |  | chmatcl.m | . . . . . . 7
⊢  · = (
·𝑠 ‘𝑌) | 
| 21 | 10, 13, 16, 20 | matvscl 22438 | . . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑃 ∈ Ring) ∧ (𝑋 ∈ (Base‘𝑃) ∧ 1 ∈ (Base‘𝑌))) → (𝑋 · 1 ) ∈ (Base‘𝑌)) | 
| 22 | 8, 12, 19, 21 | syl12anc 836 | . . . . 5
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (𝑋 · 1 ) ∈ (Base‘𝑌)) | 
| 23 | 22 | adantr 480 | . . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝑋 · 1 ) ∈ (Base‘𝑌)) | 
| 24 |  | chmatcl.t | . . . . . 6
⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) | 
| 25 |  | chmatcl.a | . . . . . 6
⊢ 𝐴 = (𝑁 Mat 𝑅) | 
| 26 |  | chmatcl.b | . . . . . 6
⊢ 𝐵 = (Base‘𝐴) | 
| 27 | 24, 25, 26, 3, 13 | mat2pmatbas 22733 | . . . . 5
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (𝑇‘𝑀) ∈ (Base‘𝑌)) | 
| 28 | 27 | adantr 480 | . . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝑇‘𝑀) ∈ (Base‘𝑌)) | 
| 29 |  | simpr 484 | . . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) | 
| 30 |  | chmatcl.s | . . . . 5
⊢  − =
(-g‘𝑌) | 
| 31 |  | chmatval.s | . . . . 5
⊢  ∼ =
(-g‘𝑃) | 
| 32 | 13, 16, 30, 31 | matsubgcell 22441 | . . . 4
⊢ ((𝑃 ∈ Ring ∧ ((𝑋 · 1 ) ∈ (Base‘𝑌) ∧ (𝑇‘𝑀) ∈ (Base‘𝑌)) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐼((𝑋 · 1 ) − (𝑇‘𝑀))𝐽) = ((𝐼(𝑋 · 1 )𝐽) ∼ (𝐼(𝑇‘𝑀)𝐽))) | 
| 33 | 6, 23, 28, 29, 32 | syl121anc 1376 | . . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐼((𝑋 · 1 ) − (𝑇‘𝑀))𝐽) = ((𝐼(𝑋 · 1 )𝐽) ∼ (𝐼(𝑇‘𝑀)𝐽))) | 
| 34 | 2, 33 | eqtrid 2788 | . 2
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐼𝐻𝐽) = ((𝐼(𝑋 · 1 )𝐽) ∼ (𝐼(𝑇‘𝑀)𝐽))) | 
| 35 | 17 | a1i 11 | . . . . . . 7
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → 1 =
(1r‘𝑌)) | 
| 36 | 35 | oveq2d 7448 | . . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝑋 · 1 ) = (𝑋 ·
(1r‘𝑌))) | 
| 37 |  | simpl 482 | . . . . . . . . . 10
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑁 ∈ Fin) | 
| 38 | 4 | adantl 481 | . . . . . . . . . 10
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑃 ∈ Ring) | 
| 39 | 11 | adantl 481 | . . . . . . . . . 10
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑋 ∈ (Base‘𝑃)) | 
| 40 | 37, 38, 39 | 3jca 1128 | . . . . . . . . 9
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑁 ∈ Fin ∧ 𝑃 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑃))) | 
| 41 | 40 | 3adant3 1132 | . . . . . . . 8
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (𝑁 ∈ Fin ∧ 𝑃 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑃))) | 
| 42 | 41 | adantr 480 | . . . . . . 7
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝑁 ∈ Fin ∧ 𝑃 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑃))) | 
| 43 |  | chmatval.0 | . . . . . . . 8
⊢  0 =
(0g‘𝑃) | 
| 44 | 13, 10, 20, 43 | matsc 22457 | . . . . . . 7
⊢ ((𝑁 ∈ Fin ∧ 𝑃 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑃)) → (𝑋 ·
(1r‘𝑌)) =
(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑗, 𝑋, 0 ))) | 
| 45 | 42, 44 | syl 17 | . . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝑋 ·
(1r‘𝑌)) =
(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑗, 𝑋, 0 ))) | 
| 46 | 36, 45 | eqtrd 2776 | . . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝑋 · 1 ) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑗, 𝑋, 0 ))) | 
| 47 |  | eqeq12 2753 | . . . . . . 7
⊢ ((𝑖 = 𝐼 ∧ 𝑗 = 𝐽) → (𝑖 = 𝑗 ↔ 𝐼 = 𝐽)) | 
| 48 | 47 | ifbid 4548 | . . . . . 6
⊢ ((𝑖 = 𝐼 ∧ 𝑗 = 𝐽) → if(𝑖 = 𝑗, 𝑋, 0 ) = if(𝐼 = 𝐽, 𝑋, 0 )) | 
| 49 | 48 | adantl 481 | . . . . 5
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) ∧ (𝑖 = 𝐼 ∧ 𝑗 = 𝐽)) → if(𝑖 = 𝑗, 𝑋, 0 ) = if(𝐼 = 𝐽, 𝑋, 0 )) | 
| 50 |  | simprl 770 | . . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → 𝐼 ∈ 𝑁) | 
| 51 |  | simpr 484 | . . . . . 6
⊢ ((𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁) → 𝐽 ∈ 𝑁) | 
| 52 | 51 | adantl 481 | . . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → 𝐽 ∈ 𝑁) | 
| 53 | 9 | fvexi 6919 | . . . . . . 7
⊢ 𝑋 ∈ V | 
| 54 | 43 | fvexi 6919 | . . . . . . 7
⊢  0 ∈
V | 
| 55 | 53, 54 | ifex 4575 | . . . . . 6
⊢ if(𝐼 = 𝐽, 𝑋, 0 ) ∈
V | 
| 56 | 55 | a1i 11 | . . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → if(𝐼 = 𝐽, 𝑋, 0 ) ∈
V) | 
| 57 | 46, 49, 50, 52, 56 | ovmpod 7586 | . . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐼(𝑋 · 1 )𝐽) = if(𝐼 = 𝐽, 𝑋, 0 )) | 
| 58 | 57 | oveq1d 7447 | . . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → ((𝐼(𝑋 · 1 )𝐽) ∼ (𝐼(𝑇‘𝑀)𝐽)) = (if(𝐼 = 𝐽, 𝑋, 0 ) ∼ (𝐼(𝑇‘𝑀)𝐽))) | 
| 59 |  | ovif 7532 | . . 3
⊢ (if(𝐼 = 𝐽, 𝑋, 0 ) ∼ (𝐼(𝑇‘𝑀)𝐽)) = if(𝐼 = 𝐽, (𝑋 ∼ (𝐼(𝑇‘𝑀)𝐽)), ( 0 ∼ (𝐼(𝑇‘𝑀)𝐽))) | 
| 60 | 58, 59 | eqtrdi 2792 | . 2
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → ((𝐼(𝑋 · 1 )𝐽) ∼ (𝐼(𝑇‘𝑀)𝐽)) = if(𝐼 = 𝐽, (𝑋 ∼ (𝐼(𝑇‘𝑀)𝐽)), ( 0 ∼ (𝐼(𝑇‘𝑀)𝐽)))) | 
| 61 | 34, 60 | eqtrd 2776 | 1
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐼𝐻𝐽) = if(𝐼 = 𝐽, (𝑋 ∼ (𝐼(𝑇‘𝑀)𝐽)), ( 0 ∼ (𝐼(𝑇‘𝑀)𝐽)))) |