Step | Hyp | Ref
| Expression |
1 | | chmatcl.h |
. . . 4
⊢ 𝐻 = ((𝑋 · 1 ) − (𝑇‘𝑀)) |
2 | 1 | oveqi 7268 |
. . 3
⊢ (𝐼𝐻𝐽) = (𝐼((𝑋 · 1 ) − (𝑇‘𝑀))𝐽) |
3 | | chmatcl.p |
. . . . . . 7
⊢ 𝑃 = (Poly1‘𝑅) |
4 | 3 | ply1ring 21329 |
. . . . . 6
⊢ (𝑅 ∈ Ring → 𝑃 ∈ Ring) |
5 | 4 | 3ad2ant2 1132 |
. . . . 5
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → 𝑃 ∈ Ring) |
6 | 5 | adantr 480 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → 𝑃 ∈ Ring) |
7 | 4 | anim2i 616 |
. . . . . . 7
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑁 ∈ Fin ∧ 𝑃 ∈ Ring)) |
8 | 7 | 3adant3 1130 |
. . . . . 6
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (𝑁 ∈ Fin ∧ 𝑃 ∈ Ring)) |
9 | | chmatcl.x |
. . . . . . . 8
⊢ 𝑋 = (var1‘𝑅) |
10 | | eqid 2738 |
. . . . . . . 8
⊢
(Base‘𝑃) =
(Base‘𝑃) |
11 | 9, 3, 10 | vr1cl 21298 |
. . . . . . 7
⊢ (𝑅 ∈ Ring → 𝑋 ∈ (Base‘𝑃)) |
12 | 11 | 3ad2ant2 1132 |
. . . . . 6
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → 𝑋 ∈ (Base‘𝑃)) |
13 | | chmatcl.y |
. . . . . . . . 9
⊢ 𝑌 = (𝑁 Mat 𝑃) |
14 | 3, 13 | pmatring 21749 |
. . . . . . . 8
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑌 ∈ Ring) |
15 | 14 | 3adant3 1130 |
. . . . . . 7
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → 𝑌 ∈ Ring) |
16 | | eqid 2738 |
. . . . . . . 8
⊢
(Base‘𝑌) =
(Base‘𝑌) |
17 | | chmatcl.1 |
. . . . . . . 8
⊢ 1 =
(1r‘𝑌) |
18 | 16, 17 | ringidcl 19722 |
. . . . . . 7
⊢ (𝑌 ∈ Ring → 1 ∈
(Base‘𝑌)) |
19 | 15, 18 | syl 17 |
. . . . . 6
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → 1 ∈ (Base‘𝑌)) |
20 | | chmatcl.m |
. . . . . . 7
⊢ · = (
·𝑠 ‘𝑌) |
21 | 10, 13, 16, 20 | matvscl 21488 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑃 ∈ Ring) ∧ (𝑋 ∈ (Base‘𝑃) ∧ 1 ∈ (Base‘𝑌))) → (𝑋 · 1 ) ∈ (Base‘𝑌)) |
22 | 8, 12, 19, 21 | syl12anc 833 |
. . . . 5
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (𝑋 · 1 ) ∈ (Base‘𝑌)) |
23 | 22 | adantr 480 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝑋 · 1 ) ∈ (Base‘𝑌)) |
24 | | chmatcl.t |
. . . . . 6
⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) |
25 | | chmatcl.a |
. . . . . 6
⊢ 𝐴 = (𝑁 Mat 𝑅) |
26 | | chmatcl.b |
. . . . . 6
⊢ 𝐵 = (Base‘𝐴) |
27 | 24, 25, 26, 3, 13 | mat2pmatbas 21783 |
. . . . 5
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (𝑇‘𝑀) ∈ (Base‘𝑌)) |
28 | 27 | adantr 480 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝑇‘𝑀) ∈ (Base‘𝑌)) |
29 | | simpr 484 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) |
30 | | chmatcl.s |
. . . . 5
⊢ − =
(-g‘𝑌) |
31 | | chmatval.s |
. . . . 5
⊢ ∼ =
(-g‘𝑃) |
32 | 13, 16, 30, 31 | matsubgcell 21491 |
. . . 4
⊢ ((𝑃 ∈ Ring ∧ ((𝑋 · 1 ) ∈ (Base‘𝑌) ∧ (𝑇‘𝑀) ∈ (Base‘𝑌)) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐼((𝑋 · 1 ) − (𝑇‘𝑀))𝐽) = ((𝐼(𝑋 · 1 )𝐽) ∼ (𝐼(𝑇‘𝑀)𝐽))) |
33 | 6, 23, 28, 29, 32 | syl121anc 1373 |
. . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐼((𝑋 · 1 ) − (𝑇‘𝑀))𝐽) = ((𝐼(𝑋 · 1 )𝐽) ∼ (𝐼(𝑇‘𝑀)𝐽))) |
34 | 2, 33 | eqtrid 2790 |
. 2
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐼𝐻𝐽) = ((𝐼(𝑋 · 1 )𝐽) ∼ (𝐼(𝑇‘𝑀)𝐽))) |
35 | 17 | a1i 11 |
. . . . . . 7
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → 1 =
(1r‘𝑌)) |
36 | 35 | oveq2d 7271 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝑋 · 1 ) = (𝑋 ·
(1r‘𝑌))) |
37 | | simpl 482 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑁 ∈ Fin) |
38 | 4 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑃 ∈ Ring) |
39 | 11 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑋 ∈ (Base‘𝑃)) |
40 | 37, 38, 39 | 3jca 1126 |
. . . . . . . . 9
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑁 ∈ Fin ∧ 𝑃 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑃))) |
41 | 40 | 3adant3 1130 |
. . . . . . . 8
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (𝑁 ∈ Fin ∧ 𝑃 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑃))) |
42 | 41 | adantr 480 |
. . . . . . 7
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝑁 ∈ Fin ∧ 𝑃 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑃))) |
43 | | chmatval.0 |
. . . . . . . 8
⊢ 0 =
(0g‘𝑃) |
44 | 13, 10, 20, 43 | matsc 21507 |
. . . . . . 7
⊢ ((𝑁 ∈ Fin ∧ 𝑃 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑃)) → (𝑋 ·
(1r‘𝑌)) =
(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑗, 𝑋, 0 ))) |
45 | 42, 44 | syl 17 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝑋 ·
(1r‘𝑌)) =
(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑗, 𝑋, 0 ))) |
46 | 36, 45 | eqtrd 2778 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝑋 · 1 ) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑗, 𝑋, 0 ))) |
47 | | eqeq12 2755 |
. . . . . . 7
⊢ ((𝑖 = 𝐼 ∧ 𝑗 = 𝐽) → (𝑖 = 𝑗 ↔ 𝐼 = 𝐽)) |
48 | 47 | ifbid 4479 |
. . . . . 6
⊢ ((𝑖 = 𝐼 ∧ 𝑗 = 𝐽) → if(𝑖 = 𝑗, 𝑋, 0 ) = if(𝐼 = 𝐽, 𝑋, 0 )) |
49 | 48 | adantl 481 |
. . . . 5
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) ∧ (𝑖 = 𝐼 ∧ 𝑗 = 𝐽)) → if(𝑖 = 𝑗, 𝑋, 0 ) = if(𝐼 = 𝐽, 𝑋, 0 )) |
50 | | simprl 767 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → 𝐼 ∈ 𝑁) |
51 | | simpr 484 |
. . . . . 6
⊢ ((𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁) → 𝐽 ∈ 𝑁) |
52 | 51 | adantl 481 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → 𝐽 ∈ 𝑁) |
53 | 9 | fvexi 6770 |
. . . . . . 7
⊢ 𝑋 ∈ V |
54 | 43 | fvexi 6770 |
. . . . . . 7
⊢ 0 ∈
V |
55 | 53, 54 | ifex 4506 |
. . . . . 6
⊢ if(𝐼 = 𝐽, 𝑋, 0 ) ∈
V |
56 | 55 | a1i 11 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → if(𝐼 = 𝐽, 𝑋, 0 ) ∈
V) |
57 | 46, 49, 50, 52, 56 | ovmpod 7403 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐼(𝑋 · 1 )𝐽) = if(𝐼 = 𝐽, 𝑋, 0 )) |
58 | 57 | oveq1d 7270 |
. . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → ((𝐼(𝑋 · 1 )𝐽) ∼ (𝐼(𝑇‘𝑀)𝐽)) = (if(𝐼 = 𝐽, 𝑋, 0 ) ∼ (𝐼(𝑇‘𝑀)𝐽))) |
59 | | ovif 7350 |
. . 3
⊢ (if(𝐼 = 𝐽, 𝑋, 0 ) ∼ (𝐼(𝑇‘𝑀)𝐽)) = if(𝐼 = 𝐽, (𝑋 ∼ (𝐼(𝑇‘𝑀)𝐽)), ( 0 ∼ (𝐼(𝑇‘𝑀)𝐽))) |
60 | 58, 59 | eqtrdi 2795 |
. 2
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → ((𝐼(𝑋 · 1 )𝐽) ∼ (𝐼(𝑇‘𝑀)𝐽)) = if(𝐼 = 𝐽, (𝑋 ∼ (𝐼(𝑇‘𝑀)𝐽)), ( 0 ∼ (𝐼(𝑇‘𝑀)𝐽)))) |
61 | 34, 60 | eqtrd 2778 |
1
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐼𝐻𝐽) = if(𝐼 = 𝐽, (𝑋 ∼ (𝐼(𝑇‘𝑀)𝐽)), ( 0 ∼ (𝐼(𝑇‘𝑀)𝐽)))) |