MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chmatval Structured version   Visualization version   GIF version

Theorem chmatval 20843
Description: The entries of the characteristic matrix of a matrix. (Contributed by AV, 2-Aug-2019.) (Proof shortened by AV, 10-Dec-2019.)
Hypotheses
Ref Expression
chmatcl.a 𝐴 = (𝑁 Mat 𝑅)
chmatcl.b 𝐵 = (Base‘𝐴)
chmatcl.p 𝑃 = (Poly1𝑅)
chmatcl.y 𝑌 = (𝑁 Mat 𝑃)
chmatcl.x 𝑋 = (var1𝑅)
chmatcl.t 𝑇 = (𝑁 matToPolyMat 𝑅)
chmatcl.s = (-g𝑌)
chmatcl.m · = ( ·𝑠𝑌)
chmatcl.1 1 = (1r𝑌)
chmatcl.h 𝐻 = ((𝑋 · 1 ) (𝑇𝑀))
chmatval.s = (-g𝑃)
chmatval.0 0 = (0g𝑃)
Assertion
Ref Expression
chmatval (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝐼𝑁𝐽𝑁)) → (𝐼𝐻𝐽) = if(𝐼 = 𝐽, (𝑋 (𝐼(𝑇𝑀)𝐽)), ( 0 (𝐼(𝑇𝑀)𝐽))))

Proof of Theorem chmatval
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 chmatcl.h . . . 4 𝐻 = ((𝑋 · 1 ) (𝑇𝑀))
21oveqi 6884 . . 3 (𝐼𝐻𝐽) = (𝐼((𝑋 · 1 ) (𝑇𝑀))𝐽)
3 chmatcl.p . . . . . . 7 𝑃 = (Poly1𝑅)
43ply1ring 19822 . . . . . 6 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
543ad2ant2 1157 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → 𝑃 ∈ Ring)
65adantr 468 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝐼𝑁𝐽𝑁)) → 𝑃 ∈ Ring)
74anim2i 605 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑁 ∈ Fin ∧ 𝑃 ∈ Ring))
873adant3 1155 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑁 ∈ Fin ∧ 𝑃 ∈ Ring))
9 chmatcl.x . . . . . . . 8 𝑋 = (var1𝑅)
10 eqid 2805 . . . . . . . 8 (Base‘𝑃) = (Base‘𝑃)
119, 3, 10vr1cl 19791 . . . . . . 7 (𝑅 ∈ Ring → 𝑋 ∈ (Base‘𝑃))
12113ad2ant2 1157 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → 𝑋 ∈ (Base‘𝑃))
13 chmatcl.y . . . . . . . . 9 𝑌 = (𝑁 Mat 𝑃)
143, 13pmatring 20707 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑌 ∈ Ring)
15143adant3 1155 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → 𝑌 ∈ Ring)
16 eqid 2805 . . . . . . . 8 (Base‘𝑌) = (Base‘𝑌)
17 chmatcl.1 . . . . . . . 8 1 = (1r𝑌)
1816, 17ringidcl 18766 . . . . . . 7 (𝑌 ∈ Ring → 1 ∈ (Base‘𝑌))
1915, 18syl 17 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → 1 ∈ (Base‘𝑌))
20 chmatcl.m . . . . . . 7 · = ( ·𝑠𝑌)
2110, 13, 16, 20matvscl 20443 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑃 ∈ Ring) ∧ (𝑋 ∈ (Base‘𝑃) ∧ 1 ∈ (Base‘𝑌))) → (𝑋 · 1 ) ∈ (Base‘𝑌))
228, 12, 19, 21syl12anc 856 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑋 · 1 ) ∈ (Base‘𝑌))
2322adantr 468 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝐼𝑁𝐽𝑁)) → (𝑋 · 1 ) ∈ (Base‘𝑌))
24 chmatcl.t . . . . . 6 𝑇 = (𝑁 matToPolyMat 𝑅)
25 chmatcl.a . . . . . 6 𝐴 = (𝑁 Mat 𝑅)
26 chmatcl.b . . . . . 6 𝐵 = (Base‘𝐴)
2724, 25, 26, 3, 13mat2pmatbas 20740 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑇𝑀) ∈ (Base‘𝑌))
2827adantr 468 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝐼𝑁𝐽𝑁)) → (𝑇𝑀) ∈ (Base‘𝑌))
29 simpr 473 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝐼𝑁𝐽𝑁)) → (𝐼𝑁𝐽𝑁))
30 chmatcl.s . . . . 5 = (-g𝑌)
31 chmatval.s . . . . 5 = (-g𝑃)
3213, 16, 30, 31matsubgcell 20446 . . . 4 ((𝑃 ∈ Ring ∧ ((𝑋 · 1 ) ∈ (Base‘𝑌) ∧ (𝑇𝑀) ∈ (Base‘𝑌)) ∧ (𝐼𝑁𝐽𝑁)) → (𝐼((𝑋 · 1 ) (𝑇𝑀))𝐽) = ((𝐼(𝑋 · 1 )𝐽) (𝐼(𝑇𝑀)𝐽)))
336, 23, 28, 29, 32syl121anc 1487 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝐼𝑁𝐽𝑁)) → (𝐼((𝑋 · 1 ) (𝑇𝑀))𝐽) = ((𝐼(𝑋 · 1 )𝐽) (𝐼(𝑇𝑀)𝐽)))
342, 33syl5eq 2851 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝐼𝑁𝐽𝑁)) → (𝐼𝐻𝐽) = ((𝐼(𝑋 · 1 )𝐽) (𝐼(𝑇𝑀)𝐽)))
3517a1i 11 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝐼𝑁𝐽𝑁)) → 1 = (1r𝑌))
3635oveq2d 6887 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝐼𝑁𝐽𝑁)) → (𝑋 · 1 ) = (𝑋 · (1r𝑌)))
37 simpl 470 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑁 ∈ Fin)
384adantl 469 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑃 ∈ Ring)
3911adantl 469 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑋 ∈ (Base‘𝑃))
4037, 38, 393jca 1151 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑁 ∈ Fin ∧ 𝑃 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑃)))
41403adant3 1155 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑁 ∈ Fin ∧ 𝑃 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑃)))
4241adantr 468 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝐼𝑁𝐽𝑁)) → (𝑁 ∈ Fin ∧ 𝑃 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑃)))
43 chmatval.0 . . . . . . . 8 0 = (0g𝑃)
4413, 10, 20, 43matsc 20463 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑃 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑃)) → (𝑋 · (1r𝑌)) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, 𝑋, 0 )))
4542, 44syl 17 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝐼𝑁𝐽𝑁)) → (𝑋 · (1r𝑌)) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, 𝑋, 0 )))
4636, 45eqtrd 2839 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝐼𝑁𝐽𝑁)) → (𝑋 · 1 ) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, 𝑋, 0 )))
47 eqeq12 2818 . . . . . . 7 ((𝑖 = 𝐼𝑗 = 𝐽) → (𝑖 = 𝑗𝐼 = 𝐽))
4847ifbid 4298 . . . . . 6 ((𝑖 = 𝐼𝑗 = 𝐽) → if(𝑖 = 𝑗, 𝑋, 0 ) = if(𝐼 = 𝐽, 𝑋, 0 ))
4948adantl 469 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝐼𝑁𝐽𝑁)) ∧ (𝑖 = 𝐼𝑗 = 𝐽)) → if(𝑖 = 𝑗, 𝑋, 0 ) = if(𝐼 = 𝐽, 𝑋, 0 ))
50 simprl 778 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝐼𝑁𝐽𝑁)) → 𝐼𝑁)
51 simpr 473 . . . . . 6 ((𝐼𝑁𝐽𝑁) → 𝐽𝑁)
5251adantl 469 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝐼𝑁𝐽𝑁)) → 𝐽𝑁)
539fvexi 6419 . . . . . . 7 𝑋 ∈ V
5443fvexi 6419 . . . . . . 7 0 ∈ V
5553, 54ifex 4324 . . . . . 6 if(𝐼 = 𝐽, 𝑋, 0 ) ∈ V
5655a1i 11 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝐼𝑁𝐽𝑁)) → if(𝐼 = 𝐽, 𝑋, 0 ) ∈ V)
5746, 49, 50, 52, 56ovmpt2d 7015 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝐼𝑁𝐽𝑁)) → (𝐼(𝑋 · 1 )𝐽) = if(𝐼 = 𝐽, 𝑋, 0 ))
5857oveq1d 6886 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝐼𝑁𝐽𝑁)) → ((𝐼(𝑋 · 1 )𝐽) (𝐼(𝑇𝑀)𝐽)) = (if(𝐼 = 𝐽, 𝑋, 0 ) (𝐼(𝑇𝑀)𝐽)))
59 ovif 6964 . . 3 (if(𝐼 = 𝐽, 𝑋, 0 ) (𝐼(𝑇𝑀)𝐽)) = if(𝐼 = 𝐽, (𝑋 (𝐼(𝑇𝑀)𝐽)), ( 0 (𝐼(𝑇𝑀)𝐽)))
6058, 59syl6eq 2855 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝐼𝑁𝐽𝑁)) → ((𝐼(𝑋 · 1 )𝐽) (𝐼(𝑇𝑀)𝐽)) = if(𝐼 = 𝐽, (𝑋 (𝐼(𝑇𝑀)𝐽)), ( 0 (𝐼(𝑇𝑀)𝐽))))
6134, 60eqtrd 2839 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝐼𝑁𝐽𝑁)) → (𝐼𝐻𝐽) = if(𝐼 = 𝐽, (𝑋 (𝐼(𝑇𝑀)𝐽)), ( 0 (𝐼(𝑇𝑀)𝐽))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1100   = wceq 1637  wcel 2158  Vcvv 3390  ifcif 4276  cfv 6098  (class class class)co 6871  cmpt2 6873  Fincfn 8189  Basecbs 16064   ·𝑠 cvsca 16153  0gc0g 16301  -gcsg 17625  1rcur 18699  Ringcrg 18745  var1cv1 19750  Poly1cpl1 19751   Mat cmat 20419   matToPolyMat cmat2pmat 20718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1880  ax-4 1897  ax-5 2004  ax-6 2070  ax-7 2106  ax-8 2160  ax-9 2167  ax-10 2187  ax-11 2203  ax-12 2216  ax-13 2422  ax-ext 2784  ax-rep 4960  ax-sep 4971  ax-nul 4980  ax-pow 5032  ax-pr 5093  ax-un 7176  ax-inf2 8782  ax-cnex 10274  ax-resscn 10275  ax-1cn 10276  ax-icn 10277  ax-addcl 10278  ax-addrcl 10279  ax-mulcl 10280  ax-mulrcl 10281  ax-mulcom 10282  ax-addass 10283  ax-mulass 10284  ax-distr 10285  ax-i2m1 10286  ax-1ne0 10287  ax-1rid 10288  ax-rnegex 10289  ax-rrecex 10290  ax-cnre 10291  ax-pre-lttri 10292  ax-pre-lttrn 10293  ax-pre-ltadd 10294  ax-pre-mulgt0 10295
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-fal 1651  df-ex 1860  df-nf 1865  df-sb 2063  df-eu 2636  df-mo 2637  df-clab 2792  df-cleq 2798  df-clel 2801  df-nfc 2936  df-ne 2978  df-nel 3081  df-ral 3100  df-rex 3101  df-reu 3102  df-rmo 3103  df-rab 3104  df-v 3392  df-sbc 3631  df-csb 3726  df-dif 3769  df-un 3771  df-in 3773  df-ss 3780  df-pss 3782  df-nul 4114  df-if 4277  df-pw 4350  df-sn 4368  df-pr 4370  df-tp 4372  df-op 4374  df-ot 4376  df-uni 4627  df-int 4666  df-iun 4710  df-iin 4711  df-br 4841  df-opab 4903  df-mpt 4920  df-tr 4943  df-id 5216  df-eprel 5221  df-po 5229  df-so 5230  df-fr 5267  df-se 5268  df-we 5269  df-xp 5314  df-rel 5315  df-cnv 5316  df-co 5317  df-dm 5318  df-rn 5319  df-res 5320  df-ima 5321  df-pred 5890  df-ord 5936  df-on 5937  df-lim 5938  df-suc 5939  df-iota 6061  df-fun 6100  df-fn 6101  df-f 6102  df-f1 6103  df-fo 6104  df-f1o 6105  df-fv 6106  df-isom 6107  df-riota 6832  df-ov 6874  df-oprab 6875  df-mpt2 6876  df-of 7124  df-ofr 7125  df-om 7293  df-1st 7395  df-2nd 7396  df-supp 7527  df-wrecs 7639  df-recs 7701  df-rdg 7739  df-1o 7793  df-2o 7794  df-oadd 7797  df-er 7976  df-map 8091  df-pm 8092  df-ixp 8143  df-en 8190  df-dom 8191  df-sdom 8192  df-fin 8193  df-fsupp 8512  df-sup 8584  df-oi 8651  df-card 9045  df-pnf 10358  df-mnf 10359  df-xr 10360  df-ltxr 10361  df-le 10362  df-sub 10550  df-neg 10551  df-nn 11303  df-2 11360  df-3 11361  df-4 11362  df-5 11363  df-6 11364  df-7 11365  df-8 11366  df-9 11367  df-n0 11556  df-z 11640  df-dec 11756  df-uz 11901  df-fz 12546  df-fzo 12686  df-seq 13021  df-hash 13334  df-struct 16066  df-ndx 16067  df-slot 16068  df-base 16070  df-sets 16071  df-ress 16072  df-plusg 16162  df-mulr 16163  df-sca 16165  df-vsca 16166  df-ip 16167  df-tset 16168  df-ple 16169  df-ds 16171  df-hom 16173  df-cco 16174  df-0g 16303  df-gsum 16304  df-prds 16309  df-pws 16311  df-mre 16447  df-mrc 16448  df-acs 16450  df-mgm 17443  df-sgrp 17485  df-mnd 17496  df-mhm 17536  df-submnd 17537  df-grp 17626  df-minusg 17627  df-sbg 17628  df-mulg 17742  df-subg 17789  df-ghm 17856  df-cntz 17947  df-cmn 18392  df-abl 18393  df-mgp 18688  df-ur 18700  df-ring 18747  df-subrg 18978  df-lmod 19065  df-lss 19133  df-sra 19377  df-rgmod 19378  df-ascl 19519  df-psr 19561  df-mvr 19562  df-mpl 19563  df-opsr 19565  df-psr1 19754  df-vr1 19755  df-ply1 19756  df-dsmm 20282  df-frlm 20297  df-mamu 20396  df-mat 20420  df-mat2pmat 20721
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator