| Step | Hyp | Ref
| Expression |
| 1 | | chmatcl.h |
. . . 4
⊢ 𝐻 = ((𝑋 · 1 ) − (𝑇‘𝑀)) |
| 2 | 1 | oveqi 7423 |
. . 3
⊢ (𝐼𝐻𝐽) = (𝐼((𝑋 · 1 ) − (𝑇‘𝑀))𝐽) |
| 3 | | chmatcl.p |
. . . . . . 7
⊢ 𝑃 = (Poly1‘𝑅) |
| 4 | 3 | ply1ring 22188 |
. . . . . 6
⊢ (𝑅 ∈ Ring → 𝑃 ∈ Ring) |
| 5 | 4 | 3ad2ant2 1134 |
. . . . 5
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → 𝑃 ∈ Ring) |
| 6 | 5 | adantr 480 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → 𝑃 ∈ Ring) |
| 7 | 4 | anim2i 617 |
. . . . . . 7
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑁 ∈ Fin ∧ 𝑃 ∈ Ring)) |
| 8 | 7 | 3adant3 1132 |
. . . . . 6
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (𝑁 ∈ Fin ∧ 𝑃 ∈ Ring)) |
| 9 | | chmatcl.x |
. . . . . . . 8
⊢ 𝑋 = (var1‘𝑅) |
| 10 | | eqid 2736 |
. . . . . . . 8
⊢
(Base‘𝑃) =
(Base‘𝑃) |
| 11 | 9, 3, 10 | vr1cl 22158 |
. . . . . . 7
⊢ (𝑅 ∈ Ring → 𝑋 ∈ (Base‘𝑃)) |
| 12 | 11 | 3ad2ant2 1134 |
. . . . . 6
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → 𝑋 ∈ (Base‘𝑃)) |
| 13 | | chmatcl.y |
. . . . . . . . 9
⊢ 𝑌 = (𝑁 Mat 𝑃) |
| 14 | 3, 13 | pmatring 22635 |
. . . . . . . 8
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑌 ∈ Ring) |
| 15 | 14 | 3adant3 1132 |
. . . . . . 7
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → 𝑌 ∈ Ring) |
| 16 | | eqid 2736 |
. . . . . . . 8
⊢
(Base‘𝑌) =
(Base‘𝑌) |
| 17 | | chmatcl.1 |
. . . . . . . 8
⊢ 1 =
(1r‘𝑌) |
| 18 | 16, 17 | ringidcl 20230 |
. . . . . . 7
⊢ (𝑌 ∈ Ring → 1 ∈
(Base‘𝑌)) |
| 19 | 15, 18 | syl 17 |
. . . . . 6
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → 1 ∈ (Base‘𝑌)) |
| 20 | | chmatcl.m |
. . . . . . 7
⊢ · = (
·𝑠 ‘𝑌) |
| 21 | 10, 13, 16, 20 | matvscl 22374 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑃 ∈ Ring) ∧ (𝑋 ∈ (Base‘𝑃) ∧ 1 ∈ (Base‘𝑌))) → (𝑋 · 1 ) ∈ (Base‘𝑌)) |
| 22 | 8, 12, 19, 21 | syl12anc 836 |
. . . . 5
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (𝑋 · 1 ) ∈ (Base‘𝑌)) |
| 23 | 22 | adantr 480 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝑋 · 1 ) ∈ (Base‘𝑌)) |
| 24 | | chmatcl.t |
. . . . . 6
⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) |
| 25 | | chmatcl.a |
. . . . . 6
⊢ 𝐴 = (𝑁 Mat 𝑅) |
| 26 | | chmatcl.b |
. . . . . 6
⊢ 𝐵 = (Base‘𝐴) |
| 27 | 24, 25, 26, 3, 13 | mat2pmatbas 22669 |
. . . . 5
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (𝑇‘𝑀) ∈ (Base‘𝑌)) |
| 28 | 27 | adantr 480 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝑇‘𝑀) ∈ (Base‘𝑌)) |
| 29 | | simpr 484 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) |
| 30 | | chmatcl.s |
. . . . 5
⊢ − =
(-g‘𝑌) |
| 31 | | chmatval.s |
. . . . 5
⊢ ∼ =
(-g‘𝑃) |
| 32 | 13, 16, 30, 31 | matsubgcell 22377 |
. . . 4
⊢ ((𝑃 ∈ Ring ∧ ((𝑋 · 1 ) ∈ (Base‘𝑌) ∧ (𝑇‘𝑀) ∈ (Base‘𝑌)) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐼((𝑋 · 1 ) − (𝑇‘𝑀))𝐽) = ((𝐼(𝑋 · 1 )𝐽) ∼ (𝐼(𝑇‘𝑀)𝐽))) |
| 33 | 6, 23, 28, 29, 32 | syl121anc 1377 |
. . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐼((𝑋 · 1 ) − (𝑇‘𝑀))𝐽) = ((𝐼(𝑋 · 1 )𝐽) ∼ (𝐼(𝑇‘𝑀)𝐽))) |
| 34 | 2, 33 | eqtrid 2783 |
. 2
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐼𝐻𝐽) = ((𝐼(𝑋 · 1 )𝐽) ∼ (𝐼(𝑇‘𝑀)𝐽))) |
| 35 | 17 | a1i 11 |
. . . . . . 7
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → 1 =
(1r‘𝑌)) |
| 36 | 35 | oveq2d 7426 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝑋 · 1 ) = (𝑋 ·
(1r‘𝑌))) |
| 37 | | simpl 482 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑁 ∈ Fin) |
| 38 | 4 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑃 ∈ Ring) |
| 39 | 11 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑋 ∈ (Base‘𝑃)) |
| 40 | 37, 38, 39 | 3jca 1128 |
. . . . . . . . 9
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑁 ∈ Fin ∧ 𝑃 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑃))) |
| 41 | 40 | 3adant3 1132 |
. . . . . . . 8
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (𝑁 ∈ Fin ∧ 𝑃 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑃))) |
| 42 | 41 | adantr 480 |
. . . . . . 7
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝑁 ∈ Fin ∧ 𝑃 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑃))) |
| 43 | | chmatval.0 |
. . . . . . . 8
⊢ 0 =
(0g‘𝑃) |
| 44 | 13, 10, 20, 43 | matsc 22393 |
. . . . . . 7
⊢ ((𝑁 ∈ Fin ∧ 𝑃 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑃)) → (𝑋 ·
(1r‘𝑌)) =
(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑗, 𝑋, 0 ))) |
| 45 | 42, 44 | syl 17 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝑋 ·
(1r‘𝑌)) =
(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑗, 𝑋, 0 ))) |
| 46 | 36, 45 | eqtrd 2771 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝑋 · 1 ) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑗, 𝑋, 0 ))) |
| 47 | | eqeq12 2753 |
. . . . . . 7
⊢ ((𝑖 = 𝐼 ∧ 𝑗 = 𝐽) → (𝑖 = 𝑗 ↔ 𝐼 = 𝐽)) |
| 48 | 47 | ifbid 4529 |
. . . . . 6
⊢ ((𝑖 = 𝐼 ∧ 𝑗 = 𝐽) → if(𝑖 = 𝑗, 𝑋, 0 ) = if(𝐼 = 𝐽, 𝑋, 0 )) |
| 49 | 48 | adantl 481 |
. . . . 5
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) ∧ (𝑖 = 𝐼 ∧ 𝑗 = 𝐽)) → if(𝑖 = 𝑗, 𝑋, 0 ) = if(𝐼 = 𝐽, 𝑋, 0 )) |
| 50 | | simprl 770 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → 𝐼 ∈ 𝑁) |
| 51 | | simpr 484 |
. . . . . 6
⊢ ((𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁) → 𝐽 ∈ 𝑁) |
| 52 | 51 | adantl 481 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → 𝐽 ∈ 𝑁) |
| 53 | 9 | fvexi 6895 |
. . . . . . 7
⊢ 𝑋 ∈ V |
| 54 | 43 | fvexi 6895 |
. . . . . . 7
⊢ 0 ∈
V |
| 55 | 53, 54 | ifex 4556 |
. . . . . 6
⊢ if(𝐼 = 𝐽, 𝑋, 0 ) ∈
V |
| 56 | 55 | a1i 11 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → if(𝐼 = 𝐽, 𝑋, 0 ) ∈
V) |
| 57 | 46, 49, 50, 52, 56 | ovmpod 7564 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐼(𝑋 · 1 )𝐽) = if(𝐼 = 𝐽, 𝑋, 0 )) |
| 58 | 57 | oveq1d 7425 |
. . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → ((𝐼(𝑋 · 1 )𝐽) ∼ (𝐼(𝑇‘𝑀)𝐽)) = (if(𝐼 = 𝐽, 𝑋, 0 ) ∼ (𝐼(𝑇‘𝑀)𝐽))) |
| 59 | | ovif 7510 |
. . 3
⊢ (if(𝐼 = 𝐽, 𝑋, 0 ) ∼ (𝐼(𝑇‘𝑀)𝐽)) = if(𝐼 = 𝐽, (𝑋 ∼ (𝐼(𝑇‘𝑀)𝐽)), ( 0 ∼ (𝐼(𝑇‘𝑀)𝐽))) |
| 60 | 58, 59 | eqtrdi 2787 |
. 2
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → ((𝐼(𝑋 · 1 )𝐽) ∼ (𝐼(𝑇‘𝑀)𝐽)) = if(𝐼 = 𝐽, (𝑋 ∼ (𝐼(𝑇‘𝑀)𝐽)), ( 0 ∼ (𝐼(𝑇‘𝑀)𝐽)))) |
| 61 | 34, 60 | eqtrd 2771 |
1
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐼𝐻𝐽) = if(𝐼 = 𝐽, (𝑋 ∼ (𝐼(𝑇‘𝑀)𝐽)), ( 0 ∼ (𝐼(𝑇‘𝑀)𝐽)))) |