Step | Hyp | Ref
| Expression |
1 | | eldifi 4057 |
. . . . 5
⊢ (𝐹 ∈ ((Poly‘ℝ)
∖ {0𝑝}) → 𝐹 ∈
(Poly‘ℝ)) |
2 | | ax-resscn 10859 |
. . . . . . 7
⊢ ℝ
⊆ ℂ |
3 | | 1re 10906 |
. . . . . . 7
⊢ 1 ∈
ℝ |
4 | | plyid 25275 |
. . . . . . 7
⊢ ((ℝ
⊆ ℂ ∧ 1 ∈ ℝ) → Xp ∈
(Poly‘ℝ)) |
5 | 2, 3, 4 | mp2an 688 |
. . . . . 6
⊢
Xp ∈ (Poly‘ℝ) |
6 | 5 | a1i 11 |
. . . . 5
⊢ (𝐹 ∈ ((Poly‘ℝ)
∖ {0𝑝}) → Xp ∈
(Poly‘ℝ)) |
7 | | simprl 767 |
. . . . . 6
⊢ ((𝐹 ∈ ((Poly‘ℝ)
∖ {0𝑝}) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝑥 ∈ ℝ) |
8 | | simprr 769 |
. . . . . 6
⊢ ((𝐹 ∈ ((Poly‘ℝ)
∖ {0𝑝}) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝑦 ∈ ℝ) |
9 | 7, 8 | readdcld 10935 |
. . . . 5
⊢ ((𝐹 ∈ ((Poly‘ℝ)
∖ {0𝑝}) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 + 𝑦) ∈ ℝ) |
10 | 7, 8 | remulcld 10936 |
. . . . 5
⊢ ((𝐹 ∈ ((Poly‘ℝ)
∖ {0𝑝}) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 · 𝑦) ∈ ℝ) |
11 | 1, 6, 9, 10 | plymul 25284 |
. . . 4
⊢ (𝐹 ∈ ((Poly‘ℝ)
∖ {0𝑝}) → (𝐹 ∘f ·
Xp) ∈ (Poly‘ℝ)) |
12 | | 0re 10908 |
. . . 4
⊢ 0 ∈
ℝ |
13 | | eqid 2738 |
. . . . 5
⊢
(coeff‘(𝐹
∘f · Xp)) = (coeff‘(𝐹 ∘f ·
Xp)) |
14 | 13 | coef2 25297 |
. . . 4
⊢ (((𝐹 ∘f ·
Xp) ∈ (Poly‘ℝ) ∧ 0 ∈ ℝ)
→ (coeff‘(𝐹
∘f ·
Xp)):ℕ0⟶ℝ) |
15 | 11, 12, 14 | sylancl 585 |
. . 3
⊢ (𝐹 ∈ ((Poly‘ℝ)
∖ {0𝑝}) → (coeff‘(𝐹 ∘f ·
Xp)):ℕ0⟶ℝ) |
16 | 15 | feqmptd 6819 |
. 2
⊢ (𝐹 ∈ ((Poly‘ℝ)
∖ {0𝑝}) → (coeff‘(𝐹 ∘f ·
Xp)) = (𝑛
∈ ℕ0 ↦ ((coeff‘(𝐹 ∘f ·
Xp))‘𝑛))) |
17 | | cnex 10883 |
. . . . . . . . 9
⊢ ℂ
∈ V |
18 | 17 | a1i 11 |
. . . . . . . 8
⊢ (𝐹 ∈ ((Poly‘ℝ)
∖ {0𝑝}) → ℂ ∈ V) |
19 | | plyf 25264 |
. . . . . . . . 9
⊢ (𝐹 ∈ (Poly‘ℝ)
→ 𝐹:ℂ⟶ℂ) |
20 | 1, 19 | syl 17 |
. . . . . . . 8
⊢ (𝐹 ∈ ((Poly‘ℝ)
∖ {0𝑝}) → 𝐹:ℂ⟶ℂ) |
21 | | plyf 25264 |
. . . . . . . . . 10
⊢
(Xp ∈ (Poly‘ℝ) →
Xp:ℂ⟶ℂ) |
22 | 5, 21 | ax-mp 5 |
. . . . . . . . 9
⊢
Xp:ℂ⟶ℂ |
23 | 22 | a1i 11 |
. . . . . . . 8
⊢ (𝐹 ∈ ((Poly‘ℝ)
∖ {0𝑝}) →
Xp:ℂ⟶ℂ) |
24 | | simprl 767 |
. . . . . . . . 9
⊢ ((𝐹 ∈ ((Poly‘ℝ)
∖ {0𝑝}) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → 𝑥 ∈ ℂ) |
25 | | simprr 769 |
. . . . . . . . 9
⊢ ((𝐹 ∈ ((Poly‘ℝ)
∖ {0𝑝}) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → 𝑦 ∈ ℂ) |
26 | 24, 25 | mulcomd 10927 |
. . . . . . . 8
⊢ ((𝐹 ∈ ((Poly‘ℝ)
∖ {0𝑝}) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 · 𝑦) = (𝑦 · 𝑥)) |
27 | 18, 20, 23, 26 | caofcom 7546 |
. . . . . . 7
⊢ (𝐹 ∈ ((Poly‘ℝ)
∖ {0𝑝}) → (𝐹 ∘f ·
Xp) = (Xp ∘f ·
𝐹)) |
28 | 27 | fveq2d 6760 |
. . . . . 6
⊢ (𝐹 ∈ ((Poly‘ℝ)
∖ {0𝑝}) → (coeff‘(𝐹 ∘f ·
Xp)) = (coeff‘(Xp ∘f
· 𝐹))) |
29 | 28 | fveq1d 6758 |
. . . . 5
⊢ (𝐹 ∈ ((Poly‘ℝ)
∖ {0𝑝}) → ((coeff‘(𝐹 ∘f ·
Xp))‘𝑛) = ((coeff‘(Xp
∘f · 𝐹))‘𝑛)) |
30 | 29 | adantr 480 |
. . . 4
⊢ ((𝐹 ∈ ((Poly‘ℝ)
∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) →
((coeff‘(𝐹
∘f · Xp))‘𝑛) = ((coeff‘(Xp
∘f · 𝐹))‘𝑛)) |
31 | 5 | a1i 11 |
. . . . . 6
⊢ ((𝐹 ∈ ((Poly‘ℝ)
∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) →
Xp ∈ (Poly‘ℝ)) |
32 | 1 | adantr 480 |
. . . . . 6
⊢ ((𝐹 ∈ ((Poly‘ℝ)
∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) → 𝐹 ∈
(Poly‘ℝ)) |
33 | | simpr 484 |
. . . . . 6
⊢ ((𝐹 ∈ ((Poly‘ℝ)
∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈
ℕ0) |
34 | | eqid 2738 |
. . . . . . 7
⊢
(coeff‘Xp) =
(coeff‘Xp) |
35 | | eqid 2738 |
. . . . . . 7
⊢
(coeff‘𝐹) =
(coeff‘𝐹) |
36 | 34, 35 | coemul 25318 |
. . . . . 6
⊢
((Xp ∈ (Poly‘ℝ) ∧ 𝐹 ∈ (Poly‘ℝ)
∧ 𝑛 ∈
ℕ0) → ((coeff‘(Xp
∘f · 𝐹))‘𝑛) = Σ𝑖 ∈ (0...𝑛)(((coeff‘Xp)‘𝑖) · ((coeff‘𝐹)‘(𝑛 − 𝑖)))) |
37 | 31, 32, 33, 36 | syl3anc 1369 |
. . . . 5
⊢ ((𝐹 ∈ ((Poly‘ℝ)
∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) →
((coeff‘(Xp ∘f · 𝐹))‘𝑛) = Σ𝑖 ∈ (0...𝑛)(((coeff‘Xp)‘𝑖) · ((coeff‘𝐹)‘(𝑛 − 𝑖)))) |
38 | | elfznn0 13278 |
. . . . . . . . . 10
⊢ (𝑖 ∈ (0...𝑛) → 𝑖 ∈ ℕ0) |
39 | | coeidp 25329 |
. . . . . . . . . 10
⊢ (𝑖 ∈ ℕ0
→ ((coeff‘Xp)‘𝑖) = if(𝑖 = 1, 1, 0)) |
40 | 38, 39 | syl 17 |
. . . . . . . . 9
⊢ (𝑖 ∈ (0...𝑛) →
((coeff‘Xp)‘𝑖) = if(𝑖 = 1, 1, 0)) |
41 | 40 | oveq1d 7270 |
. . . . . . . 8
⊢ (𝑖 ∈ (0...𝑛) →
(((coeff‘Xp)‘𝑖) · ((coeff‘𝐹)‘(𝑛 − 𝑖))) = (if(𝑖 = 1, 1, 0) · ((coeff‘𝐹)‘(𝑛 − 𝑖)))) |
42 | | ovif 7350 |
. . . . . . . 8
⊢ (if(𝑖 = 1, 1, 0) ·
((coeff‘𝐹)‘(𝑛 − 𝑖))) = if(𝑖 = 1, (1 · ((coeff‘𝐹)‘(𝑛 − 𝑖))), (0 · ((coeff‘𝐹)‘(𝑛 − 𝑖)))) |
43 | 41, 42 | eqtrdi 2795 |
. . . . . . 7
⊢ (𝑖 ∈ (0...𝑛) →
(((coeff‘Xp)‘𝑖) · ((coeff‘𝐹)‘(𝑛 − 𝑖))) = if(𝑖 = 1, (1 · ((coeff‘𝐹)‘(𝑛 − 𝑖))), (0 · ((coeff‘𝐹)‘(𝑛 − 𝑖))))) |
44 | 43 | adantl 481 |
. . . . . 6
⊢ (((𝐹 ∈ ((Poly‘ℝ)
∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑛)) →
(((coeff‘Xp)‘𝑖) · ((coeff‘𝐹)‘(𝑛 − 𝑖))) = if(𝑖 = 1, (1 · ((coeff‘𝐹)‘(𝑛 − 𝑖))), (0 · ((coeff‘𝐹)‘(𝑛 − 𝑖))))) |
45 | 44 | sumeq2dv 15343 |
. . . . 5
⊢ ((𝐹 ∈ ((Poly‘ℝ)
∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) →
Σ𝑖 ∈ (0...𝑛)(((coeff‘Xp)‘𝑖) · ((coeff‘𝐹)‘(𝑛 − 𝑖))) = Σ𝑖 ∈ (0...𝑛)if(𝑖 = 1, (1 · ((coeff‘𝐹)‘(𝑛 − 𝑖))), (0 · ((coeff‘𝐹)‘(𝑛 − 𝑖))))) |
46 | | velsn 4574 |
. . . . . . . . . 10
⊢ (𝑖 ∈ {1} ↔ 𝑖 = 1) |
47 | 46 | bicomi 223 |
. . . . . . . . 9
⊢ (𝑖 = 1 ↔ 𝑖 ∈ {1}) |
48 | 47 | a1i 11 |
. . . . . . . 8
⊢ (((𝐹 ∈ ((Poly‘ℝ)
∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑛)) → (𝑖 = 1 ↔ 𝑖 ∈ {1})) |
49 | 35 | coef2 25297 |
. . . . . . . . . . . . 13
⊢ ((𝐹 ∈ (Poly‘ℝ)
∧ 0 ∈ ℝ) → (coeff‘𝐹):ℕ0⟶ℝ) |
50 | 1, 12, 49 | sylancl 585 |
. . . . . . . . . . . 12
⊢ (𝐹 ∈ ((Poly‘ℝ)
∖ {0𝑝}) → (coeff‘𝐹):ℕ0⟶ℝ) |
51 | 50 | ad2antrr 722 |
. . . . . . . . . . 11
⊢ (((𝐹 ∈ ((Poly‘ℝ)
∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑛)) → (coeff‘𝐹):ℕ0⟶ℝ) |
52 | | fznn0sub 13217 |
. . . . . . . . . . . 12
⊢ (𝑖 ∈ (0...𝑛) → (𝑛 − 𝑖) ∈
ℕ0) |
53 | 52 | adantl 481 |
. . . . . . . . . . 11
⊢ (((𝐹 ∈ ((Poly‘ℝ)
∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑛)) → (𝑛 − 𝑖) ∈
ℕ0) |
54 | 51, 53 | ffvelrnd 6944 |
. . . . . . . . . 10
⊢ (((𝐹 ∈ ((Poly‘ℝ)
∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑛)) → ((coeff‘𝐹)‘(𝑛 − 𝑖)) ∈ ℝ) |
55 | 54 | recnd 10934 |
. . . . . . . . 9
⊢ (((𝐹 ∈ ((Poly‘ℝ)
∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑛)) → ((coeff‘𝐹)‘(𝑛 − 𝑖)) ∈ ℂ) |
56 | 55 | mulid2d 10924 |
. . . . . . . 8
⊢ (((𝐹 ∈ ((Poly‘ℝ)
∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑛)) → (1 · ((coeff‘𝐹)‘(𝑛 − 𝑖))) = ((coeff‘𝐹)‘(𝑛 − 𝑖))) |
57 | 55 | mul02d 11103 |
. . . . . . . 8
⊢ (((𝐹 ∈ ((Poly‘ℝ)
∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑛)) → (0 · ((coeff‘𝐹)‘(𝑛 − 𝑖))) = 0) |
58 | 48, 56, 57 | ifbieq12d 4484 |
. . . . . . 7
⊢ (((𝐹 ∈ ((Poly‘ℝ)
∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑛)) → if(𝑖 = 1, (1 · ((coeff‘𝐹)‘(𝑛 − 𝑖))), (0 · ((coeff‘𝐹)‘(𝑛 − 𝑖)))) = if(𝑖 ∈ {1}, ((coeff‘𝐹)‘(𝑛 − 𝑖)), 0)) |
59 | 58 | sumeq2dv 15343 |
. . . . . 6
⊢ ((𝐹 ∈ ((Poly‘ℝ)
∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) →
Σ𝑖 ∈ (0...𝑛)if(𝑖 = 1, (1 · ((coeff‘𝐹)‘(𝑛 − 𝑖))), (0 · ((coeff‘𝐹)‘(𝑛 − 𝑖)))) = Σ𝑖 ∈ (0...𝑛)if(𝑖 ∈ {1}, ((coeff‘𝐹)‘(𝑛 − 𝑖)), 0)) |
60 | | eqeq2 2750 |
. . . . . . 7
⊢ (0 =
if(𝑛 = 0, 0,
((coeff‘𝐹)‘(𝑛 − 1))) → (Σ𝑖 ∈ (0...𝑛)if(𝑖 ∈ {1}, ((coeff‘𝐹)‘(𝑛 − 𝑖)), 0) = 0 ↔ Σ𝑖 ∈ (0...𝑛)if(𝑖 ∈ {1}, ((coeff‘𝐹)‘(𝑛 − 𝑖)), 0) = if(𝑛 = 0, 0, ((coeff‘𝐹)‘(𝑛 − 1))))) |
61 | | eqeq2 2750 |
. . . . . . 7
⊢
(((coeff‘𝐹)‘(𝑛 − 1)) = if(𝑛 = 0, 0, ((coeff‘𝐹)‘(𝑛 − 1))) → (Σ𝑖 ∈ (0...𝑛)if(𝑖 ∈ {1}, ((coeff‘𝐹)‘(𝑛 − 𝑖)), 0) = ((coeff‘𝐹)‘(𝑛 − 1)) ↔ Σ𝑖 ∈ (0...𝑛)if(𝑖 ∈ {1}, ((coeff‘𝐹)‘(𝑛 − 𝑖)), 0) = if(𝑛 = 0, 0, ((coeff‘𝐹)‘(𝑛 − 1))))) |
62 | | oveq2 7263 |
. . . . . . . . . . 11
⊢ (𝑛 = 0 → (0...𝑛) = (0...0)) |
63 | | 0z 12260 |
. . . . . . . . . . . 12
⊢ 0 ∈
ℤ |
64 | | fzsn 13227 |
. . . . . . . . . . . 12
⊢ (0 ∈
ℤ → (0...0) = {0}) |
65 | 63, 64 | ax-mp 5 |
. . . . . . . . . . 11
⊢ (0...0) =
{0} |
66 | 62, 65 | eqtrdi 2795 |
. . . . . . . . . 10
⊢ (𝑛 = 0 → (0...𝑛) = {0}) |
67 | | elsni 4575 |
. . . . . . . . . . . . 13
⊢ (𝑖 ∈ {0} → 𝑖 = 0) |
68 | 67 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝑛 = 0 ∧ 𝑖 ∈ {0}) → 𝑖 = 0) |
69 | | ax-1ne0 10871 |
. . . . . . . . . . . . . 14
⊢ 1 ≠
0 |
70 | 69 | nesymi 3000 |
. . . . . . . . . . . . 13
⊢ ¬ 0
= 1 |
71 | | eqeq1 2742 |
. . . . . . . . . . . . 13
⊢ (𝑖 = 0 → (𝑖 = 1 ↔ 0 = 1)) |
72 | 70, 71 | mtbiri 326 |
. . . . . . . . . . . 12
⊢ (𝑖 = 0 → ¬ 𝑖 = 1) |
73 | 68, 72 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝑛 = 0 ∧ 𝑖 ∈ {0}) → ¬ 𝑖 = 1) |
74 | 47 | notbii 319 |
. . . . . . . . . . . 12
⊢ (¬
𝑖 = 1 ↔ ¬ 𝑖 ∈ {1}) |
75 | 74 | biimpi 215 |
. . . . . . . . . . 11
⊢ (¬
𝑖 = 1 → ¬ 𝑖 ∈ {1}) |
76 | | iffalse 4465 |
. . . . . . . . . . 11
⊢ (¬
𝑖 ∈ {1} →
if(𝑖 ∈ {1},
((coeff‘𝐹)‘(𝑛 − 𝑖)), 0) = 0) |
77 | 73, 75, 76 | 3syl 18 |
. . . . . . . . . 10
⊢ ((𝑛 = 0 ∧ 𝑖 ∈ {0}) → if(𝑖 ∈ {1}, ((coeff‘𝐹)‘(𝑛 − 𝑖)), 0) = 0) |
78 | 66, 77 | sumeq12rdv 15347 |
. . . . . . . . 9
⊢ (𝑛 = 0 → Σ𝑖 ∈ (0...𝑛)if(𝑖 ∈ {1}, ((coeff‘𝐹)‘(𝑛 − 𝑖)), 0) = Σ𝑖 ∈ {0}0) |
79 | | snfi 8788 |
. . . . . . . . . . 11
⊢ {0}
∈ Fin |
80 | 79 | olci 862 |
. . . . . . . . . 10
⊢ ({0}
⊆ (ℤ≥‘0) ∨ {0} ∈ Fin) |
81 | | sumz 15362 |
. . . . . . . . . 10
⊢ (({0}
⊆ (ℤ≥‘0) ∨ {0} ∈ Fin) →
Σ𝑖 ∈ {0}0 =
0) |
82 | 80, 81 | ax-mp 5 |
. . . . . . . . 9
⊢
Σ𝑖 ∈ {0}0
= 0 |
83 | 78, 82 | eqtrdi 2795 |
. . . . . . . 8
⊢ (𝑛 = 0 → Σ𝑖 ∈ (0...𝑛)if(𝑖 ∈ {1}, ((coeff‘𝐹)‘(𝑛 − 𝑖)), 0) = 0) |
84 | 83 | adantl 481 |
. . . . . . 7
⊢ (((𝐹 ∈ ((Poly‘ℝ)
∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 = 0) → Σ𝑖 ∈ (0...𝑛)if(𝑖 ∈ {1}, ((coeff‘𝐹)‘(𝑛 − 𝑖)), 0) = 0) |
85 | | simpll 763 |
. . . . . . . 8
⊢ (((𝐹 ∈ ((Poly‘ℝ)
∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) ∧ ¬
𝑛 = 0) → 𝐹 ∈ ((Poly‘ℝ)
∖ {0𝑝})) |
86 | 33 | adantr 480 |
. . . . . . . . 9
⊢ (((𝐹 ∈ ((Poly‘ℝ)
∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) ∧ ¬
𝑛 = 0) → 𝑛 ∈
ℕ0) |
87 | | simpr 484 |
. . . . . . . . . 10
⊢ (((𝐹 ∈ ((Poly‘ℝ)
∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) ∧ ¬
𝑛 = 0) → ¬ 𝑛 = 0) |
88 | 87 | neqned 2949 |
. . . . . . . . 9
⊢ (((𝐹 ∈ ((Poly‘ℝ)
∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) ∧ ¬
𝑛 = 0) → 𝑛 ≠ 0) |
89 | | elnnne0 12177 |
. . . . . . . . 9
⊢ (𝑛 ∈ ℕ ↔ (𝑛 ∈ ℕ0
∧ 𝑛 ≠
0)) |
90 | 86, 88, 89 | sylanbrc 582 |
. . . . . . . 8
⊢ (((𝐹 ∈ ((Poly‘ℝ)
∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) ∧ ¬
𝑛 = 0) → 𝑛 ∈
ℕ) |
91 | | 1nn0 12179 |
. . . . . . . . . . . . 13
⊢ 1 ∈
ℕ0 |
92 | 91 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝐹 ∈ ((Poly‘ℝ)
∖ {0𝑝}) ∧ 𝑛 ∈ ℕ) → 1 ∈
ℕ0) |
93 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ ((𝐹 ∈ ((Poly‘ℝ)
∖ {0𝑝}) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ) |
94 | 93 | nnnn0d 12223 |
. . . . . . . . . . . 12
⊢ ((𝐹 ∈ ((Poly‘ℝ)
∖ {0𝑝}) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ0) |
95 | 93 | nnge1d 11951 |
. . . . . . . . . . . 12
⊢ ((𝐹 ∈ ((Poly‘ℝ)
∖ {0𝑝}) ∧ 𝑛 ∈ ℕ) → 1 ≤ 𝑛) |
96 | | elfz2nn0 13276 |
. . . . . . . . . . . 12
⊢ (1 ∈
(0...𝑛) ↔ (1 ∈
ℕ0 ∧ 𝑛
∈ ℕ0 ∧ 1 ≤ 𝑛)) |
97 | 92, 94, 95, 96 | syl3anbrc 1341 |
. . . . . . . . . . 11
⊢ ((𝐹 ∈ ((Poly‘ℝ)
∖ {0𝑝}) ∧ 𝑛 ∈ ℕ) → 1 ∈ (0...𝑛)) |
98 | 97 | snssd 4739 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ ((Poly‘ℝ)
∖ {0𝑝}) ∧ 𝑛 ∈ ℕ) → {1} ⊆
(0...𝑛)) |
99 | 50 | ad2antrr 722 |
. . . . . . . . . . . . 13
⊢ (((𝐹 ∈ ((Poly‘ℝ)
∖ {0𝑝}) ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ {1}) → (coeff‘𝐹):ℕ0⟶ℝ) |
100 | | oveq2 7263 |
. . . . . . . . . . . . . . . 16
⊢ (𝑖 = 1 → (𝑛 − 𝑖) = (𝑛 − 1)) |
101 | 46, 100 | sylbi 216 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 ∈ {1} → (𝑛 − 𝑖) = (𝑛 − 1)) |
102 | 101 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ (((𝐹 ∈ ((Poly‘ℝ)
∖ {0𝑝}) ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ {1}) → (𝑛 − 𝑖) = (𝑛 − 1)) |
103 | | nnm1nn0 12204 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ ℕ → (𝑛 − 1) ∈
ℕ0) |
104 | 103 | ad2antlr 723 |
. . . . . . . . . . . . . 14
⊢ (((𝐹 ∈ ((Poly‘ℝ)
∖ {0𝑝}) ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ {1}) → (𝑛 − 1) ∈
ℕ0) |
105 | 102, 104 | eqeltrd 2839 |
. . . . . . . . . . . . 13
⊢ (((𝐹 ∈ ((Poly‘ℝ)
∖ {0𝑝}) ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ {1}) → (𝑛 − 𝑖) ∈
ℕ0) |
106 | 99, 105 | ffvelrnd 6944 |
. . . . . . . . . . . 12
⊢ (((𝐹 ∈ ((Poly‘ℝ)
∖ {0𝑝}) ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ {1}) → ((coeff‘𝐹)‘(𝑛 − 𝑖)) ∈ ℝ) |
107 | 106 | recnd 10934 |
. . . . . . . . . . 11
⊢ (((𝐹 ∈ ((Poly‘ℝ)
∖ {0𝑝}) ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ {1}) → ((coeff‘𝐹)‘(𝑛 − 𝑖)) ∈ ℂ) |
108 | 107 | ralrimiva 3107 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ ((Poly‘ℝ)
∖ {0𝑝}) ∧ 𝑛 ∈ ℕ) → ∀𝑖 ∈ {1} ((coeff‘𝐹)‘(𝑛 − 𝑖)) ∈ ℂ) |
109 | | fzfi 13620 |
. . . . . . . . . . . 12
⊢
(0...𝑛) ∈
Fin |
110 | 109 | olci 862 |
. . . . . . . . . . 11
⊢
((0...𝑛) ⊆
(ℤ≥‘0) ∨ (0...𝑛) ∈ Fin) |
111 | 110 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ ((Poly‘ℝ)
∖ {0𝑝}) ∧ 𝑛 ∈ ℕ) → ((0...𝑛) ⊆
(ℤ≥‘0) ∨ (0...𝑛) ∈ Fin)) |
112 | | sumss2 15366 |
. . . . . . . . . 10
⊢ ((({1}
⊆ (0...𝑛) ∧
∀𝑖 ∈ {1}
((coeff‘𝐹)‘(𝑛 − 𝑖)) ∈ ℂ) ∧ ((0...𝑛) ⊆
(ℤ≥‘0) ∨ (0...𝑛) ∈ Fin)) → Σ𝑖 ∈ {1} ((coeff‘𝐹)‘(𝑛 − 𝑖)) = Σ𝑖 ∈ (0...𝑛)if(𝑖 ∈ {1}, ((coeff‘𝐹)‘(𝑛 − 𝑖)), 0)) |
113 | 98, 108, 111, 112 | syl21anc 834 |
. . . . . . . . 9
⊢ ((𝐹 ∈ ((Poly‘ℝ)
∖ {0𝑝}) ∧ 𝑛 ∈ ℕ) → Σ𝑖 ∈ {1} ((coeff‘𝐹)‘(𝑛 − 𝑖)) = Σ𝑖 ∈ (0...𝑛)if(𝑖 ∈ {1}, ((coeff‘𝐹)‘(𝑛 − 𝑖)), 0)) |
114 | 50 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝐹 ∈ ((Poly‘ℝ)
∖ {0𝑝}) ∧ 𝑛 ∈ ℕ) → (coeff‘𝐹):ℕ0⟶ℝ) |
115 | 103 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝐹 ∈ ((Poly‘ℝ)
∖ {0𝑝}) ∧ 𝑛 ∈ ℕ) → (𝑛 − 1) ∈
ℕ0) |
116 | 114, 115 | ffvelrnd 6944 |
. . . . . . . . . . 11
⊢ ((𝐹 ∈ ((Poly‘ℝ)
∖ {0𝑝}) ∧ 𝑛 ∈ ℕ) → ((coeff‘𝐹)‘(𝑛 − 1)) ∈ ℝ) |
117 | 116 | recnd 10934 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ ((Poly‘ℝ)
∖ {0𝑝}) ∧ 𝑛 ∈ ℕ) → ((coeff‘𝐹)‘(𝑛 − 1)) ∈ ℂ) |
118 | 100 | fveq2d 6760 |
. . . . . . . . . . 11
⊢ (𝑖 = 1 → ((coeff‘𝐹)‘(𝑛 − 𝑖)) = ((coeff‘𝐹)‘(𝑛 − 1))) |
119 | 118 | sumsn 15386 |
. . . . . . . . . 10
⊢ ((1
∈ ℝ ∧ ((coeff‘𝐹)‘(𝑛 − 1)) ∈ ℂ) →
Σ𝑖 ∈ {1}
((coeff‘𝐹)‘(𝑛 − 𝑖)) = ((coeff‘𝐹)‘(𝑛 − 1))) |
120 | 3, 117, 119 | sylancr 586 |
. . . . . . . . 9
⊢ ((𝐹 ∈ ((Poly‘ℝ)
∖ {0𝑝}) ∧ 𝑛 ∈ ℕ) → Σ𝑖 ∈ {1} ((coeff‘𝐹)‘(𝑛 − 𝑖)) = ((coeff‘𝐹)‘(𝑛 − 1))) |
121 | 113, 120 | eqtr3d 2780 |
. . . . . . . 8
⊢ ((𝐹 ∈ ((Poly‘ℝ)
∖ {0𝑝}) ∧ 𝑛 ∈ ℕ) → Σ𝑖 ∈ (0...𝑛)if(𝑖 ∈ {1}, ((coeff‘𝐹)‘(𝑛 − 𝑖)), 0) = ((coeff‘𝐹)‘(𝑛 − 1))) |
122 | 85, 90, 121 | syl2anc 583 |
. . . . . . 7
⊢ (((𝐹 ∈ ((Poly‘ℝ)
∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) ∧ ¬
𝑛 = 0) → Σ𝑖 ∈ (0...𝑛)if(𝑖 ∈ {1}, ((coeff‘𝐹)‘(𝑛 − 𝑖)), 0) = ((coeff‘𝐹)‘(𝑛 − 1))) |
123 | 60, 61, 84, 122 | ifbothda 4494 |
. . . . . 6
⊢ ((𝐹 ∈ ((Poly‘ℝ)
∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) →
Σ𝑖 ∈ (0...𝑛)if(𝑖 ∈ {1}, ((coeff‘𝐹)‘(𝑛 − 𝑖)), 0) = if(𝑛 = 0, 0, ((coeff‘𝐹)‘(𝑛 − 1)))) |
124 | 59, 123 | eqtrd 2778 |
. . . . 5
⊢ ((𝐹 ∈ ((Poly‘ℝ)
∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) →
Σ𝑖 ∈ (0...𝑛)if(𝑖 = 1, (1 · ((coeff‘𝐹)‘(𝑛 − 𝑖))), (0 · ((coeff‘𝐹)‘(𝑛 − 𝑖)))) = if(𝑛 = 0, 0, ((coeff‘𝐹)‘(𝑛 − 1)))) |
125 | 37, 45, 124 | 3eqtrd 2782 |
. . . 4
⊢ ((𝐹 ∈ ((Poly‘ℝ)
∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) →
((coeff‘(Xp ∘f · 𝐹))‘𝑛) = if(𝑛 = 0, 0, ((coeff‘𝐹)‘(𝑛 − 1)))) |
126 | 30, 125 | eqtrd 2778 |
. . 3
⊢ ((𝐹 ∈ ((Poly‘ℝ)
∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) →
((coeff‘(𝐹
∘f · Xp))‘𝑛) = if(𝑛 = 0, 0, ((coeff‘𝐹)‘(𝑛 − 1)))) |
127 | 126 | mpteq2dva 5170 |
. 2
⊢ (𝐹 ∈ ((Poly‘ℝ)
∖ {0𝑝}) → (𝑛 ∈ ℕ0 ↦
((coeff‘(𝐹
∘f · Xp))‘𝑛)) = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, 0, ((coeff‘𝐹)‘(𝑛 − 1))))) |
128 | 16, 127 | eqtrd 2778 |
1
⊢ (𝐹 ∈ ((Poly‘ℝ)
∖ {0𝑝}) → (coeff‘(𝐹 ∘f ·
Xp)) = (𝑛
∈ ℕ0 ↦ if(𝑛 = 0, 0, ((coeff‘𝐹)‘(𝑛 − 1))))) |