Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  plymulx0 Structured version   Visualization version   GIF version

Theorem plymulx0 34525
Description: Coefficients of a polynomial multiplied by Xp. (Contributed by Thierry Arnoux, 25-Sep-2018.)
Assertion
Ref Expression
plymulx0 (𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) → (coeff‘(𝐹f · Xp)) = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, 0, ((coeff‘𝐹)‘(𝑛 − 1)))))
Distinct variable group:   𝑛,𝐹

Proof of Theorem plymulx0
Dummy variables 𝑖 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eldifi 4106 . . . . 5 (𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) → 𝐹 ∈ (Poly‘ℝ))
2 ax-resscn 11184 . . . . . . 7 ℝ ⊆ ℂ
3 1re 11233 . . . . . . 7 1 ∈ ℝ
4 plyid 26164 . . . . . . 7 ((ℝ ⊆ ℂ ∧ 1 ∈ ℝ) → Xp ∈ (Poly‘ℝ))
52, 3, 4mp2an 692 . . . . . 6 Xp ∈ (Poly‘ℝ)
65a1i 11 . . . . 5 (𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) → Xp ∈ (Poly‘ℝ))
7 simprl 770 . . . . . 6 ((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝑥 ∈ ℝ)
8 simprr 772 . . . . . 6 ((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝑦 ∈ ℝ)
97, 8readdcld 11262 . . . . 5 ((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 + 𝑦) ∈ ℝ)
107, 8remulcld 11263 . . . . 5 ((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 · 𝑦) ∈ ℝ)
111, 6, 9, 10plymul 26173 . . . 4 (𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) → (𝐹f · Xp) ∈ (Poly‘ℝ))
12 0re 11235 . . . 4 0 ∈ ℝ
13 eqid 2735 . . . . 5 (coeff‘(𝐹f · Xp)) = (coeff‘(𝐹f · Xp))
1413coef2 26186 . . . 4 (((𝐹f · Xp) ∈ (Poly‘ℝ) ∧ 0 ∈ ℝ) → (coeff‘(𝐹f · Xp)):ℕ0⟶ℝ)
1511, 12, 14sylancl 586 . . 3 (𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) → (coeff‘(𝐹f · Xp)):ℕ0⟶ℝ)
1615feqmptd 6946 . 2 (𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) → (coeff‘(𝐹f · Xp)) = (𝑛 ∈ ℕ0 ↦ ((coeff‘(𝐹f · Xp))‘𝑛)))
17 cnex 11208 . . . . . . . . 9 ℂ ∈ V
1817a1i 11 . . . . . . . 8 (𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) → ℂ ∈ V)
19 plyf 26153 . . . . . . . . 9 (𝐹 ∈ (Poly‘ℝ) → 𝐹:ℂ⟶ℂ)
201, 19syl 17 . . . . . . . 8 (𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) → 𝐹:ℂ⟶ℂ)
21 plyf 26153 . . . . . . . . . 10 (Xp ∈ (Poly‘ℝ) → Xp:ℂ⟶ℂ)
225, 21ax-mp 5 . . . . . . . . 9 Xp:ℂ⟶ℂ
2322a1i 11 . . . . . . . 8 (𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) → Xp:ℂ⟶ℂ)
24 simprl 770 . . . . . . . . 9 ((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → 𝑥 ∈ ℂ)
25 simprr 772 . . . . . . . . 9 ((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → 𝑦 ∈ ℂ)
2624, 25mulcomd 11254 . . . . . . . 8 ((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 · 𝑦) = (𝑦 · 𝑥))
2718, 20, 23, 26caofcom 7706 . . . . . . 7 (𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) → (𝐹f · Xp) = (Xpf · 𝐹))
2827fveq2d 6879 . . . . . 6 (𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) → (coeff‘(𝐹f · Xp)) = (coeff‘(Xpf · 𝐹)))
2928fveq1d 6877 . . . . 5 (𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) → ((coeff‘(𝐹f · Xp))‘𝑛) = ((coeff‘(Xpf · 𝐹))‘𝑛))
3029adantr 480 . . . 4 ((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) → ((coeff‘(𝐹f · Xp))‘𝑛) = ((coeff‘(Xpf · 𝐹))‘𝑛))
315a1i 11 . . . . . 6 ((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) → Xp ∈ (Poly‘ℝ))
321adantr 480 . . . . . 6 ((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) → 𝐹 ∈ (Poly‘ℝ))
33 simpr 484 . . . . . 6 ((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈ ℕ0)
34 eqid 2735 . . . . . . 7 (coeff‘Xp) = (coeff‘Xp)
35 eqid 2735 . . . . . . 7 (coeff‘𝐹) = (coeff‘𝐹)
3634, 35coemul 26207 . . . . . 6 ((Xp ∈ (Poly‘ℝ) ∧ 𝐹 ∈ (Poly‘ℝ) ∧ 𝑛 ∈ ℕ0) → ((coeff‘(Xpf · 𝐹))‘𝑛) = Σ𝑖 ∈ (0...𝑛)(((coeff‘Xp)‘𝑖) · ((coeff‘𝐹)‘(𝑛𝑖))))
3731, 32, 33, 36syl3anc 1373 . . . . 5 ((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) → ((coeff‘(Xpf · 𝐹))‘𝑛) = Σ𝑖 ∈ (0...𝑛)(((coeff‘Xp)‘𝑖) · ((coeff‘𝐹)‘(𝑛𝑖))))
38 elfznn0 13635 . . . . . . . . . 10 (𝑖 ∈ (0...𝑛) → 𝑖 ∈ ℕ0)
39 coeidp 26219 . . . . . . . . . 10 (𝑖 ∈ ℕ0 → ((coeff‘Xp)‘𝑖) = if(𝑖 = 1, 1, 0))
4038, 39syl 17 . . . . . . . . 9 (𝑖 ∈ (0...𝑛) → ((coeff‘Xp)‘𝑖) = if(𝑖 = 1, 1, 0))
4140oveq1d 7418 . . . . . . . 8 (𝑖 ∈ (0...𝑛) → (((coeff‘Xp)‘𝑖) · ((coeff‘𝐹)‘(𝑛𝑖))) = (if(𝑖 = 1, 1, 0) · ((coeff‘𝐹)‘(𝑛𝑖))))
42 ovif 7503 . . . . . . . 8 (if(𝑖 = 1, 1, 0) · ((coeff‘𝐹)‘(𝑛𝑖))) = if(𝑖 = 1, (1 · ((coeff‘𝐹)‘(𝑛𝑖))), (0 · ((coeff‘𝐹)‘(𝑛𝑖))))
4341, 42eqtrdi 2786 . . . . . . 7 (𝑖 ∈ (0...𝑛) → (((coeff‘Xp)‘𝑖) · ((coeff‘𝐹)‘(𝑛𝑖))) = if(𝑖 = 1, (1 · ((coeff‘𝐹)‘(𝑛𝑖))), (0 · ((coeff‘𝐹)‘(𝑛𝑖)))))
4443adantl 481 . . . . . 6 (((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑛)) → (((coeff‘Xp)‘𝑖) · ((coeff‘𝐹)‘(𝑛𝑖))) = if(𝑖 = 1, (1 · ((coeff‘𝐹)‘(𝑛𝑖))), (0 · ((coeff‘𝐹)‘(𝑛𝑖)))))
4544sumeq2dv 15716 . . . . 5 ((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) → Σ𝑖 ∈ (0...𝑛)(((coeff‘Xp)‘𝑖) · ((coeff‘𝐹)‘(𝑛𝑖))) = Σ𝑖 ∈ (0...𝑛)if(𝑖 = 1, (1 · ((coeff‘𝐹)‘(𝑛𝑖))), (0 · ((coeff‘𝐹)‘(𝑛𝑖)))))
46 velsn 4617 . . . . . . . . . 10 (𝑖 ∈ {1} ↔ 𝑖 = 1)
4746bicomi 224 . . . . . . . . 9 (𝑖 = 1 ↔ 𝑖 ∈ {1})
4847a1i 11 . . . . . . . 8 (((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑛)) → (𝑖 = 1 ↔ 𝑖 ∈ {1}))
4935coef2 26186 . . . . . . . . . . . . 13 ((𝐹 ∈ (Poly‘ℝ) ∧ 0 ∈ ℝ) → (coeff‘𝐹):ℕ0⟶ℝ)
501, 12, 49sylancl 586 . . . . . . . . . . . 12 (𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) → (coeff‘𝐹):ℕ0⟶ℝ)
5150ad2antrr 726 . . . . . . . . . . 11 (((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑛)) → (coeff‘𝐹):ℕ0⟶ℝ)
52 fznn0sub 13571 . . . . . . . . . . . 12 (𝑖 ∈ (0...𝑛) → (𝑛𝑖) ∈ ℕ0)
5352adantl 481 . . . . . . . . . . 11 (((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑛)) → (𝑛𝑖) ∈ ℕ0)
5451, 53ffvelcdmd 7074 . . . . . . . . . 10 (((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑛)) → ((coeff‘𝐹)‘(𝑛𝑖)) ∈ ℝ)
5554recnd 11261 . . . . . . . . 9 (((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑛)) → ((coeff‘𝐹)‘(𝑛𝑖)) ∈ ℂ)
5655mullidd 11251 . . . . . . . 8 (((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑛)) → (1 · ((coeff‘𝐹)‘(𝑛𝑖))) = ((coeff‘𝐹)‘(𝑛𝑖)))
5755mul02d 11431 . . . . . . . 8 (((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑛)) → (0 · ((coeff‘𝐹)‘(𝑛𝑖))) = 0)
5848, 56, 57ifbieq12d 4529 . . . . . . 7 (((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑛)) → if(𝑖 = 1, (1 · ((coeff‘𝐹)‘(𝑛𝑖))), (0 · ((coeff‘𝐹)‘(𝑛𝑖)))) = if(𝑖 ∈ {1}, ((coeff‘𝐹)‘(𝑛𝑖)), 0))
5958sumeq2dv 15716 . . . . . 6 ((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) → Σ𝑖 ∈ (0...𝑛)if(𝑖 = 1, (1 · ((coeff‘𝐹)‘(𝑛𝑖))), (0 · ((coeff‘𝐹)‘(𝑛𝑖)))) = Σ𝑖 ∈ (0...𝑛)if(𝑖 ∈ {1}, ((coeff‘𝐹)‘(𝑛𝑖)), 0))
60 eqeq2 2747 . . . . . . 7 (0 = if(𝑛 = 0, 0, ((coeff‘𝐹)‘(𝑛 − 1))) → (Σ𝑖 ∈ (0...𝑛)if(𝑖 ∈ {1}, ((coeff‘𝐹)‘(𝑛𝑖)), 0) = 0 ↔ Σ𝑖 ∈ (0...𝑛)if(𝑖 ∈ {1}, ((coeff‘𝐹)‘(𝑛𝑖)), 0) = if(𝑛 = 0, 0, ((coeff‘𝐹)‘(𝑛 − 1)))))
61 eqeq2 2747 . . . . . . 7 (((coeff‘𝐹)‘(𝑛 − 1)) = if(𝑛 = 0, 0, ((coeff‘𝐹)‘(𝑛 − 1))) → (Σ𝑖 ∈ (0...𝑛)if(𝑖 ∈ {1}, ((coeff‘𝐹)‘(𝑛𝑖)), 0) = ((coeff‘𝐹)‘(𝑛 − 1)) ↔ Σ𝑖 ∈ (0...𝑛)if(𝑖 ∈ {1}, ((coeff‘𝐹)‘(𝑛𝑖)), 0) = if(𝑛 = 0, 0, ((coeff‘𝐹)‘(𝑛 − 1)))))
62 oveq2 7411 . . . . . . . . . . 11 (𝑛 = 0 → (0...𝑛) = (0...0))
63 0z 12597 . . . . . . . . . . . 12 0 ∈ ℤ
64 fzsn 13581 . . . . . . . . . . . 12 (0 ∈ ℤ → (0...0) = {0})
6563, 64ax-mp 5 . . . . . . . . . . 11 (0...0) = {0}
6662, 65eqtrdi 2786 . . . . . . . . . 10 (𝑛 = 0 → (0...𝑛) = {0})
67 elsni 4618 . . . . . . . . . . . 12 (𝑖 ∈ {0} → 𝑖 = 0)
6867adantl 481 . . . . . . . . . . 11 ((𝑛 = 0 ∧ 𝑖 ∈ {0}) → 𝑖 = 0)
69 ax-1ne0 11196 . . . . . . . . . . . . 13 1 ≠ 0
7069nesymi 2989 . . . . . . . . . . . 12 ¬ 0 = 1
71 eqeq1 2739 . . . . . . . . . . . 12 (𝑖 = 0 → (𝑖 = 1 ↔ 0 = 1))
7270, 71mtbiri 327 . . . . . . . . . . 11 (𝑖 = 0 → ¬ 𝑖 = 1)
7347notbii 320 . . . . . . . . . . . 12 𝑖 = 1 ↔ ¬ 𝑖 ∈ {1})
7473biimpi 216 . . . . . . . . . . 11 𝑖 = 1 → ¬ 𝑖 ∈ {1})
75 iffalse 4509 . . . . . . . . . . 11 𝑖 ∈ {1} → if(𝑖 ∈ {1}, ((coeff‘𝐹)‘(𝑛𝑖)), 0) = 0)
7668, 72, 74, 754syl 19 . . . . . . . . . 10 ((𝑛 = 0 ∧ 𝑖 ∈ {0}) → if(𝑖 ∈ {1}, ((coeff‘𝐹)‘(𝑛𝑖)), 0) = 0)
7766, 76sumeq12rdv 15721 . . . . . . . . 9 (𝑛 = 0 → Σ𝑖 ∈ (0...𝑛)if(𝑖 ∈ {1}, ((coeff‘𝐹)‘(𝑛𝑖)), 0) = Σ𝑖 ∈ {0}0)
78 snfi 9055 . . . . . . . . . . 11 {0} ∈ Fin
7978olci 866 . . . . . . . . . 10 ({0} ⊆ (ℤ‘0) ∨ {0} ∈ Fin)
80 sumz 15736 . . . . . . . . . 10 (({0} ⊆ (ℤ‘0) ∨ {0} ∈ Fin) → Σ𝑖 ∈ {0}0 = 0)
8179, 80ax-mp 5 . . . . . . . . 9 Σ𝑖 ∈ {0}0 = 0
8277, 81eqtrdi 2786 . . . . . . . 8 (𝑛 = 0 → Σ𝑖 ∈ (0...𝑛)if(𝑖 ∈ {1}, ((coeff‘𝐹)‘(𝑛𝑖)), 0) = 0)
8382adantl 481 . . . . . . 7 (((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 = 0) → Σ𝑖 ∈ (0...𝑛)if(𝑖 ∈ {1}, ((coeff‘𝐹)‘(𝑛𝑖)), 0) = 0)
84 simpll 766 . . . . . . . 8 (((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) ∧ ¬ 𝑛 = 0) → 𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}))
8533adantr 480 . . . . . . . . 9 (((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) ∧ ¬ 𝑛 = 0) → 𝑛 ∈ ℕ0)
86 simpr 484 . . . . . . . . . 10 (((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) ∧ ¬ 𝑛 = 0) → ¬ 𝑛 = 0)
8786neqned 2939 . . . . . . . . 9 (((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) ∧ ¬ 𝑛 = 0) → 𝑛 ≠ 0)
88 elnnne0 12513 . . . . . . . . 9 (𝑛 ∈ ℕ ↔ (𝑛 ∈ ℕ0𝑛 ≠ 0))
8985, 87, 88sylanbrc 583 . . . . . . . 8 (((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) ∧ ¬ 𝑛 = 0) → 𝑛 ∈ ℕ)
90 1nn0 12515 . . . . . . . . . . . . 13 1 ∈ ℕ0
9190a1i 11 . . . . . . . . . . . 12 ((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ) → 1 ∈ ℕ0)
92 simpr 484 . . . . . . . . . . . . 13 ((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
9392nnnn0d 12560 . . . . . . . . . . . 12 ((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ0)
9492nnge1d 12286 . . . . . . . . . . . 12 ((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ) → 1 ≤ 𝑛)
95 elfz2nn0 13633 . . . . . . . . . . . 12 (1 ∈ (0...𝑛) ↔ (1 ∈ ℕ0𝑛 ∈ ℕ0 ∧ 1 ≤ 𝑛))
9691, 93, 94, 95syl3anbrc 1344 . . . . . . . . . . 11 ((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ) → 1 ∈ (0...𝑛))
9796snssd 4785 . . . . . . . . . 10 ((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ) → {1} ⊆ (0...𝑛))
9850ad2antrr 726 . . . . . . . . . . . . 13 (((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ {1}) → (coeff‘𝐹):ℕ0⟶ℝ)
99 oveq2 7411 . . . . . . . . . . . . . . . 16 (𝑖 = 1 → (𝑛𝑖) = (𝑛 − 1))
10046, 99sylbi 217 . . . . . . . . . . . . . . 15 (𝑖 ∈ {1} → (𝑛𝑖) = (𝑛 − 1))
101100adantl 481 . . . . . . . . . . . . . 14 (((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ {1}) → (𝑛𝑖) = (𝑛 − 1))
102 nnm1nn0 12540 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → (𝑛 − 1) ∈ ℕ0)
103102ad2antlr 727 . . . . . . . . . . . . . 14 (((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ {1}) → (𝑛 − 1) ∈ ℕ0)
104101, 103eqeltrd 2834 . . . . . . . . . . . . 13 (((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ {1}) → (𝑛𝑖) ∈ ℕ0)
10598, 104ffvelcdmd 7074 . . . . . . . . . . . 12 (((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ {1}) → ((coeff‘𝐹)‘(𝑛𝑖)) ∈ ℝ)
106105recnd 11261 . . . . . . . . . . 11 (((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ {1}) → ((coeff‘𝐹)‘(𝑛𝑖)) ∈ ℂ)
107106ralrimiva 3132 . . . . . . . . . 10 ((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ) → ∀𝑖 ∈ {1} ((coeff‘𝐹)‘(𝑛𝑖)) ∈ ℂ)
108 fzfi 13988 . . . . . . . . . . . 12 (0...𝑛) ∈ Fin
109108olci 866 . . . . . . . . . . 11 ((0...𝑛) ⊆ (ℤ‘0) ∨ (0...𝑛) ∈ Fin)
110109a1i 11 . . . . . . . . . 10 ((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ) → ((0...𝑛) ⊆ (ℤ‘0) ∨ (0...𝑛) ∈ Fin))
111 sumss2 15740 . . . . . . . . . 10 ((({1} ⊆ (0...𝑛) ∧ ∀𝑖 ∈ {1} ((coeff‘𝐹)‘(𝑛𝑖)) ∈ ℂ) ∧ ((0...𝑛) ⊆ (ℤ‘0) ∨ (0...𝑛) ∈ Fin)) → Σ𝑖 ∈ {1} ((coeff‘𝐹)‘(𝑛𝑖)) = Σ𝑖 ∈ (0...𝑛)if(𝑖 ∈ {1}, ((coeff‘𝐹)‘(𝑛𝑖)), 0))
11297, 107, 110, 111syl21anc 837 . . . . . . . . 9 ((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ) → Σ𝑖 ∈ {1} ((coeff‘𝐹)‘(𝑛𝑖)) = Σ𝑖 ∈ (0...𝑛)if(𝑖 ∈ {1}, ((coeff‘𝐹)‘(𝑛𝑖)), 0))
11350adantr 480 . . . . . . . . . . . 12 ((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ) → (coeff‘𝐹):ℕ0⟶ℝ)
114102adantl 481 . . . . . . . . . . . 12 ((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ) → (𝑛 − 1) ∈ ℕ0)
115113, 114ffvelcdmd 7074 . . . . . . . . . . 11 ((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ) → ((coeff‘𝐹)‘(𝑛 − 1)) ∈ ℝ)
116115recnd 11261 . . . . . . . . . 10 ((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ) → ((coeff‘𝐹)‘(𝑛 − 1)) ∈ ℂ)
11799fveq2d 6879 . . . . . . . . . . 11 (𝑖 = 1 → ((coeff‘𝐹)‘(𝑛𝑖)) = ((coeff‘𝐹)‘(𝑛 − 1)))
118117sumsn 15760 . . . . . . . . . 10 ((1 ∈ ℝ ∧ ((coeff‘𝐹)‘(𝑛 − 1)) ∈ ℂ) → Σ𝑖 ∈ {1} ((coeff‘𝐹)‘(𝑛𝑖)) = ((coeff‘𝐹)‘(𝑛 − 1)))
1193, 116, 118sylancr 587 . . . . . . . . 9 ((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ) → Σ𝑖 ∈ {1} ((coeff‘𝐹)‘(𝑛𝑖)) = ((coeff‘𝐹)‘(𝑛 − 1)))
120112, 119eqtr3d 2772 . . . . . . . 8 ((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ) → Σ𝑖 ∈ (0...𝑛)if(𝑖 ∈ {1}, ((coeff‘𝐹)‘(𝑛𝑖)), 0) = ((coeff‘𝐹)‘(𝑛 − 1)))
12184, 89, 120syl2anc 584 . . . . . . 7 (((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) ∧ ¬ 𝑛 = 0) → Σ𝑖 ∈ (0...𝑛)if(𝑖 ∈ {1}, ((coeff‘𝐹)‘(𝑛𝑖)), 0) = ((coeff‘𝐹)‘(𝑛 − 1)))
12260, 61, 83, 121ifbothda 4539 . . . . . 6 ((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) → Σ𝑖 ∈ (0...𝑛)if(𝑖 ∈ {1}, ((coeff‘𝐹)‘(𝑛𝑖)), 0) = if(𝑛 = 0, 0, ((coeff‘𝐹)‘(𝑛 − 1))))
12359, 122eqtrd 2770 . . . . 5 ((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) → Σ𝑖 ∈ (0...𝑛)if(𝑖 = 1, (1 · ((coeff‘𝐹)‘(𝑛𝑖))), (0 · ((coeff‘𝐹)‘(𝑛𝑖)))) = if(𝑛 = 0, 0, ((coeff‘𝐹)‘(𝑛 − 1))))
12437, 45, 1233eqtrd 2774 . . . 4 ((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) → ((coeff‘(Xpf · 𝐹))‘𝑛) = if(𝑛 = 0, 0, ((coeff‘𝐹)‘(𝑛 − 1))))
12530, 124eqtrd 2770 . . 3 ((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) → ((coeff‘(𝐹f · Xp))‘𝑛) = if(𝑛 = 0, 0, ((coeff‘𝐹)‘(𝑛 − 1))))
126125mpteq2dva 5214 . 2 (𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) → (𝑛 ∈ ℕ0 ↦ ((coeff‘(𝐹f · Xp))‘𝑛)) = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, 0, ((coeff‘𝐹)‘(𝑛 − 1)))))
12716, 126eqtrd 2770 1 (𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) → (coeff‘(𝐹f · Xp)) = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, 0, ((coeff‘𝐹)‘(𝑛 − 1)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2108  wne 2932  wral 3051  Vcvv 3459  cdif 3923  wss 3926  ifcif 4500  {csn 4601   class class class wbr 5119  cmpt 5201  wf 6526  cfv 6530  (class class class)co 7403  f cof 7667  Fincfn 8957  cc 11125  cr 11126  0cc0 11127  1c1 11128   · cmul 11132  cle 11268  cmin 11464  cn 12238  0cn0 12499  cz 12586  cuz 12850  ...cfz 13522  Σcsu 15700  0𝑝c0p 25620  Polycply 26139  Xpcidp 26140  coeffccoe 26141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-inf2 9653  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204  ax-pre-sup 11205
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-isom 6539  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-of 7669  df-om 7860  df-1st 7986  df-2nd 7987  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-er 8717  df-map 8840  df-pm 8841  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-sup 9452  df-inf 9453  df-oi 9522  df-card 9951  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-div 11893  df-nn 12239  df-2 12301  df-3 12302  df-n0 12500  df-z 12587  df-uz 12851  df-rp 13007  df-fz 13523  df-fzo 13670  df-fl 13807  df-seq 14018  df-exp 14078  df-hash 14347  df-cj 15116  df-re 15117  df-im 15118  df-sqrt 15252  df-abs 15253  df-clim 15502  df-rlim 15503  df-sum 15701  df-0p 25621  df-ply 26143  df-idp 26144  df-coe 26145  df-dgr 26146
This theorem is referenced by:  plymulx  34526
  Copyright terms: Public domain W3C validator