Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  plymulx0 Structured version   Visualization version   GIF version

Theorem plymulx0 34562
Description: Coefficients of a polynomial multiplied by Xp. (Contributed by Thierry Arnoux, 25-Sep-2018.)
Assertion
Ref Expression
plymulx0 (𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) → (coeff‘(𝐹f · Xp)) = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, 0, ((coeff‘𝐹)‘(𝑛 − 1)))))
Distinct variable group:   𝑛,𝐹

Proof of Theorem plymulx0
Dummy variables 𝑖 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eldifi 4131 . . . . 5 (𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) → 𝐹 ∈ (Poly‘ℝ))
2 ax-resscn 11212 . . . . . . 7 ℝ ⊆ ℂ
3 1re 11261 . . . . . . 7 1 ∈ ℝ
4 plyid 26248 . . . . . . 7 ((ℝ ⊆ ℂ ∧ 1 ∈ ℝ) → Xp ∈ (Poly‘ℝ))
52, 3, 4mp2an 692 . . . . . 6 Xp ∈ (Poly‘ℝ)
65a1i 11 . . . . 5 (𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) → Xp ∈ (Poly‘ℝ))
7 simprl 771 . . . . . 6 ((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝑥 ∈ ℝ)
8 simprr 773 . . . . . 6 ((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝑦 ∈ ℝ)
97, 8readdcld 11290 . . . . 5 ((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 + 𝑦) ∈ ℝ)
107, 8remulcld 11291 . . . . 5 ((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 · 𝑦) ∈ ℝ)
111, 6, 9, 10plymul 26257 . . . 4 (𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) → (𝐹f · Xp) ∈ (Poly‘ℝ))
12 0re 11263 . . . 4 0 ∈ ℝ
13 eqid 2737 . . . . 5 (coeff‘(𝐹f · Xp)) = (coeff‘(𝐹f · Xp))
1413coef2 26270 . . . 4 (((𝐹f · Xp) ∈ (Poly‘ℝ) ∧ 0 ∈ ℝ) → (coeff‘(𝐹f · Xp)):ℕ0⟶ℝ)
1511, 12, 14sylancl 586 . . 3 (𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) → (coeff‘(𝐹f · Xp)):ℕ0⟶ℝ)
1615feqmptd 6977 . 2 (𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) → (coeff‘(𝐹f · Xp)) = (𝑛 ∈ ℕ0 ↦ ((coeff‘(𝐹f · Xp))‘𝑛)))
17 cnex 11236 . . . . . . . . 9 ℂ ∈ V
1817a1i 11 . . . . . . . 8 (𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) → ℂ ∈ V)
19 plyf 26237 . . . . . . . . 9 (𝐹 ∈ (Poly‘ℝ) → 𝐹:ℂ⟶ℂ)
201, 19syl 17 . . . . . . . 8 (𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) → 𝐹:ℂ⟶ℂ)
21 plyf 26237 . . . . . . . . . 10 (Xp ∈ (Poly‘ℝ) → Xp:ℂ⟶ℂ)
225, 21ax-mp 5 . . . . . . . . 9 Xp:ℂ⟶ℂ
2322a1i 11 . . . . . . . 8 (𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) → Xp:ℂ⟶ℂ)
24 simprl 771 . . . . . . . . 9 ((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → 𝑥 ∈ ℂ)
25 simprr 773 . . . . . . . . 9 ((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → 𝑦 ∈ ℂ)
2624, 25mulcomd 11282 . . . . . . . 8 ((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 · 𝑦) = (𝑦 · 𝑥))
2718, 20, 23, 26caofcom 7734 . . . . . . 7 (𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) → (𝐹f · Xp) = (Xpf · 𝐹))
2827fveq2d 6910 . . . . . 6 (𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) → (coeff‘(𝐹f · Xp)) = (coeff‘(Xpf · 𝐹)))
2928fveq1d 6908 . . . . 5 (𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) → ((coeff‘(𝐹f · Xp))‘𝑛) = ((coeff‘(Xpf · 𝐹))‘𝑛))
3029adantr 480 . . . 4 ((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) → ((coeff‘(𝐹f · Xp))‘𝑛) = ((coeff‘(Xpf · 𝐹))‘𝑛))
315a1i 11 . . . . . 6 ((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) → Xp ∈ (Poly‘ℝ))
321adantr 480 . . . . . 6 ((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) → 𝐹 ∈ (Poly‘ℝ))
33 simpr 484 . . . . . 6 ((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈ ℕ0)
34 eqid 2737 . . . . . . 7 (coeff‘Xp) = (coeff‘Xp)
35 eqid 2737 . . . . . . 7 (coeff‘𝐹) = (coeff‘𝐹)
3634, 35coemul 26291 . . . . . 6 ((Xp ∈ (Poly‘ℝ) ∧ 𝐹 ∈ (Poly‘ℝ) ∧ 𝑛 ∈ ℕ0) → ((coeff‘(Xpf · 𝐹))‘𝑛) = Σ𝑖 ∈ (0...𝑛)(((coeff‘Xp)‘𝑖) · ((coeff‘𝐹)‘(𝑛𝑖))))
3731, 32, 33, 36syl3anc 1373 . . . . 5 ((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) → ((coeff‘(Xpf · 𝐹))‘𝑛) = Σ𝑖 ∈ (0...𝑛)(((coeff‘Xp)‘𝑖) · ((coeff‘𝐹)‘(𝑛𝑖))))
38 elfznn0 13660 . . . . . . . . . 10 (𝑖 ∈ (0...𝑛) → 𝑖 ∈ ℕ0)
39 coeidp 26303 . . . . . . . . . 10 (𝑖 ∈ ℕ0 → ((coeff‘Xp)‘𝑖) = if(𝑖 = 1, 1, 0))
4038, 39syl 17 . . . . . . . . 9 (𝑖 ∈ (0...𝑛) → ((coeff‘Xp)‘𝑖) = if(𝑖 = 1, 1, 0))
4140oveq1d 7446 . . . . . . . 8 (𝑖 ∈ (0...𝑛) → (((coeff‘Xp)‘𝑖) · ((coeff‘𝐹)‘(𝑛𝑖))) = (if(𝑖 = 1, 1, 0) · ((coeff‘𝐹)‘(𝑛𝑖))))
42 ovif 7531 . . . . . . . 8 (if(𝑖 = 1, 1, 0) · ((coeff‘𝐹)‘(𝑛𝑖))) = if(𝑖 = 1, (1 · ((coeff‘𝐹)‘(𝑛𝑖))), (0 · ((coeff‘𝐹)‘(𝑛𝑖))))
4341, 42eqtrdi 2793 . . . . . . 7 (𝑖 ∈ (0...𝑛) → (((coeff‘Xp)‘𝑖) · ((coeff‘𝐹)‘(𝑛𝑖))) = if(𝑖 = 1, (1 · ((coeff‘𝐹)‘(𝑛𝑖))), (0 · ((coeff‘𝐹)‘(𝑛𝑖)))))
4443adantl 481 . . . . . 6 (((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑛)) → (((coeff‘Xp)‘𝑖) · ((coeff‘𝐹)‘(𝑛𝑖))) = if(𝑖 = 1, (1 · ((coeff‘𝐹)‘(𝑛𝑖))), (0 · ((coeff‘𝐹)‘(𝑛𝑖)))))
4544sumeq2dv 15738 . . . . 5 ((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) → Σ𝑖 ∈ (0...𝑛)(((coeff‘Xp)‘𝑖) · ((coeff‘𝐹)‘(𝑛𝑖))) = Σ𝑖 ∈ (0...𝑛)if(𝑖 = 1, (1 · ((coeff‘𝐹)‘(𝑛𝑖))), (0 · ((coeff‘𝐹)‘(𝑛𝑖)))))
46 velsn 4642 . . . . . . . . . 10 (𝑖 ∈ {1} ↔ 𝑖 = 1)
4746bicomi 224 . . . . . . . . 9 (𝑖 = 1 ↔ 𝑖 ∈ {1})
4847a1i 11 . . . . . . . 8 (((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑛)) → (𝑖 = 1 ↔ 𝑖 ∈ {1}))
4935coef2 26270 . . . . . . . . . . . . 13 ((𝐹 ∈ (Poly‘ℝ) ∧ 0 ∈ ℝ) → (coeff‘𝐹):ℕ0⟶ℝ)
501, 12, 49sylancl 586 . . . . . . . . . . . 12 (𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) → (coeff‘𝐹):ℕ0⟶ℝ)
5150ad2antrr 726 . . . . . . . . . . 11 (((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑛)) → (coeff‘𝐹):ℕ0⟶ℝ)
52 fznn0sub 13596 . . . . . . . . . . . 12 (𝑖 ∈ (0...𝑛) → (𝑛𝑖) ∈ ℕ0)
5352adantl 481 . . . . . . . . . . 11 (((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑛)) → (𝑛𝑖) ∈ ℕ0)
5451, 53ffvelcdmd 7105 . . . . . . . . . 10 (((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑛)) → ((coeff‘𝐹)‘(𝑛𝑖)) ∈ ℝ)
5554recnd 11289 . . . . . . . . 9 (((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑛)) → ((coeff‘𝐹)‘(𝑛𝑖)) ∈ ℂ)
5655mullidd 11279 . . . . . . . 8 (((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑛)) → (1 · ((coeff‘𝐹)‘(𝑛𝑖))) = ((coeff‘𝐹)‘(𝑛𝑖)))
5755mul02d 11459 . . . . . . . 8 (((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑛)) → (0 · ((coeff‘𝐹)‘(𝑛𝑖))) = 0)
5848, 56, 57ifbieq12d 4554 . . . . . . 7 (((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑛)) → if(𝑖 = 1, (1 · ((coeff‘𝐹)‘(𝑛𝑖))), (0 · ((coeff‘𝐹)‘(𝑛𝑖)))) = if(𝑖 ∈ {1}, ((coeff‘𝐹)‘(𝑛𝑖)), 0))
5958sumeq2dv 15738 . . . . . 6 ((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) → Σ𝑖 ∈ (0...𝑛)if(𝑖 = 1, (1 · ((coeff‘𝐹)‘(𝑛𝑖))), (0 · ((coeff‘𝐹)‘(𝑛𝑖)))) = Σ𝑖 ∈ (0...𝑛)if(𝑖 ∈ {1}, ((coeff‘𝐹)‘(𝑛𝑖)), 0))
60 eqeq2 2749 . . . . . . 7 (0 = if(𝑛 = 0, 0, ((coeff‘𝐹)‘(𝑛 − 1))) → (Σ𝑖 ∈ (0...𝑛)if(𝑖 ∈ {1}, ((coeff‘𝐹)‘(𝑛𝑖)), 0) = 0 ↔ Σ𝑖 ∈ (0...𝑛)if(𝑖 ∈ {1}, ((coeff‘𝐹)‘(𝑛𝑖)), 0) = if(𝑛 = 0, 0, ((coeff‘𝐹)‘(𝑛 − 1)))))
61 eqeq2 2749 . . . . . . 7 (((coeff‘𝐹)‘(𝑛 − 1)) = if(𝑛 = 0, 0, ((coeff‘𝐹)‘(𝑛 − 1))) → (Σ𝑖 ∈ (0...𝑛)if(𝑖 ∈ {1}, ((coeff‘𝐹)‘(𝑛𝑖)), 0) = ((coeff‘𝐹)‘(𝑛 − 1)) ↔ Σ𝑖 ∈ (0...𝑛)if(𝑖 ∈ {1}, ((coeff‘𝐹)‘(𝑛𝑖)), 0) = if(𝑛 = 0, 0, ((coeff‘𝐹)‘(𝑛 − 1)))))
62 oveq2 7439 . . . . . . . . . . 11 (𝑛 = 0 → (0...𝑛) = (0...0))
63 0z 12624 . . . . . . . . . . . 12 0 ∈ ℤ
64 fzsn 13606 . . . . . . . . . . . 12 (0 ∈ ℤ → (0...0) = {0})
6563, 64ax-mp 5 . . . . . . . . . . 11 (0...0) = {0}
6662, 65eqtrdi 2793 . . . . . . . . . 10 (𝑛 = 0 → (0...𝑛) = {0})
67 elsni 4643 . . . . . . . . . . . 12 (𝑖 ∈ {0} → 𝑖 = 0)
6867adantl 481 . . . . . . . . . . 11 ((𝑛 = 0 ∧ 𝑖 ∈ {0}) → 𝑖 = 0)
69 ax-1ne0 11224 . . . . . . . . . . . . 13 1 ≠ 0
7069nesymi 2998 . . . . . . . . . . . 12 ¬ 0 = 1
71 eqeq1 2741 . . . . . . . . . . . 12 (𝑖 = 0 → (𝑖 = 1 ↔ 0 = 1))
7270, 71mtbiri 327 . . . . . . . . . . 11 (𝑖 = 0 → ¬ 𝑖 = 1)
7347notbii 320 . . . . . . . . . . . 12 𝑖 = 1 ↔ ¬ 𝑖 ∈ {1})
7473biimpi 216 . . . . . . . . . . 11 𝑖 = 1 → ¬ 𝑖 ∈ {1})
75 iffalse 4534 . . . . . . . . . . 11 𝑖 ∈ {1} → if(𝑖 ∈ {1}, ((coeff‘𝐹)‘(𝑛𝑖)), 0) = 0)
7668, 72, 74, 754syl 19 . . . . . . . . . 10 ((𝑛 = 0 ∧ 𝑖 ∈ {0}) → if(𝑖 ∈ {1}, ((coeff‘𝐹)‘(𝑛𝑖)), 0) = 0)
7766, 76sumeq12rdv 15743 . . . . . . . . 9 (𝑛 = 0 → Σ𝑖 ∈ (0...𝑛)if(𝑖 ∈ {1}, ((coeff‘𝐹)‘(𝑛𝑖)), 0) = Σ𝑖 ∈ {0}0)
78 snfi 9083 . . . . . . . . . . 11 {0} ∈ Fin
7978olci 867 . . . . . . . . . 10 ({0} ⊆ (ℤ‘0) ∨ {0} ∈ Fin)
80 sumz 15758 . . . . . . . . . 10 (({0} ⊆ (ℤ‘0) ∨ {0} ∈ Fin) → Σ𝑖 ∈ {0}0 = 0)
8179, 80ax-mp 5 . . . . . . . . 9 Σ𝑖 ∈ {0}0 = 0
8277, 81eqtrdi 2793 . . . . . . . 8 (𝑛 = 0 → Σ𝑖 ∈ (0...𝑛)if(𝑖 ∈ {1}, ((coeff‘𝐹)‘(𝑛𝑖)), 0) = 0)
8382adantl 481 . . . . . . 7 (((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 = 0) → Σ𝑖 ∈ (0...𝑛)if(𝑖 ∈ {1}, ((coeff‘𝐹)‘(𝑛𝑖)), 0) = 0)
84 simpll 767 . . . . . . . 8 (((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) ∧ ¬ 𝑛 = 0) → 𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}))
8533adantr 480 . . . . . . . . 9 (((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) ∧ ¬ 𝑛 = 0) → 𝑛 ∈ ℕ0)
86 simpr 484 . . . . . . . . . 10 (((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) ∧ ¬ 𝑛 = 0) → ¬ 𝑛 = 0)
8786neqned 2947 . . . . . . . . 9 (((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) ∧ ¬ 𝑛 = 0) → 𝑛 ≠ 0)
88 elnnne0 12540 . . . . . . . . 9 (𝑛 ∈ ℕ ↔ (𝑛 ∈ ℕ0𝑛 ≠ 0))
8985, 87, 88sylanbrc 583 . . . . . . . 8 (((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) ∧ ¬ 𝑛 = 0) → 𝑛 ∈ ℕ)
90 1nn0 12542 . . . . . . . . . . . . 13 1 ∈ ℕ0
9190a1i 11 . . . . . . . . . . . 12 ((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ) → 1 ∈ ℕ0)
92 simpr 484 . . . . . . . . . . . . 13 ((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
9392nnnn0d 12587 . . . . . . . . . . . 12 ((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ0)
9492nnge1d 12314 . . . . . . . . . . . 12 ((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ) → 1 ≤ 𝑛)
95 elfz2nn0 13658 . . . . . . . . . . . 12 (1 ∈ (0...𝑛) ↔ (1 ∈ ℕ0𝑛 ∈ ℕ0 ∧ 1 ≤ 𝑛))
9691, 93, 94, 95syl3anbrc 1344 . . . . . . . . . . 11 ((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ) → 1 ∈ (0...𝑛))
9796snssd 4809 . . . . . . . . . 10 ((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ) → {1} ⊆ (0...𝑛))
9850ad2antrr 726 . . . . . . . . . . . . 13 (((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ {1}) → (coeff‘𝐹):ℕ0⟶ℝ)
99 oveq2 7439 . . . . . . . . . . . . . . . 16 (𝑖 = 1 → (𝑛𝑖) = (𝑛 − 1))
10046, 99sylbi 217 . . . . . . . . . . . . . . 15 (𝑖 ∈ {1} → (𝑛𝑖) = (𝑛 − 1))
101100adantl 481 . . . . . . . . . . . . . 14 (((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ {1}) → (𝑛𝑖) = (𝑛 − 1))
102 nnm1nn0 12567 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → (𝑛 − 1) ∈ ℕ0)
103102ad2antlr 727 . . . . . . . . . . . . . 14 (((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ {1}) → (𝑛 − 1) ∈ ℕ0)
104101, 103eqeltrd 2841 . . . . . . . . . . . . 13 (((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ {1}) → (𝑛𝑖) ∈ ℕ0)
10598, 104ffvelcdmd 7105 . . . . . . . . . . . 12 (((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ {1}) → ((coeff‘𝐹)‘(𝑛𝑖)) ∈ ℝ)
106105recnd 11289 . . . . . . . . . . 11 (((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ {1}) → ((coeff‘𝐹)‘(𝑛𝑖)) ∈ ℂ)
107106ralrimiva 3146 . . . . . . . . . 10 ((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ) → ∀𝑖 ∈ {1} ((coeff‘𝐹)‘(𝑛𝑖)) ∈ ℂ)
108 fzfi 14013 . . . . . . . . . . . 12 (0...𝑛) ∈ Fin
109108olci 867 . . . . . . . . . . 11 ((0...𝑛) ⊆ (ℤ‘0) ∨ (0...𝑛) ∈ Fin)
110109a1i 11 . . . . . . . . . 10 ((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ) → ((0...𝑛) ⊆ (ℤ‘0) ∨ (0...𝑛) ∈ Fin))
111 sumss2 15762 . . . . . . . . . 10 ((({1} ⊆ (0...𝑛) ∧ ∀𝑖 ∈ {1} ((coeff‘𝐹)‘(𝑛𝑖)) ∈ ℂ) ∧ ((0...𝑛) ⊆ (ℤ‘0) ∨ (0...𝑛) ∈ Fin)) → Σ𝑖 ∈ {1} ((coeff‘𝐹)‘(𝑛𝑖)) = Σ𝑖 ∈ (0...𝑛)if(𝑖 ∈ {1}, ((coeff‘𝐹)‘(𝑛𝑖)), 0))
11297, 107, 110, 111syl21anc 838 . . . . . . . . 9 ((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ) → Σ𝑖 ∈ {1} ((coeff‘𝐹)‘(𝑛𝑖)) = Σ𝑖 ∈ (0...𝑛)if(𝑖 ∈ {1}, ((coeff‘𝐹)‘(𝑛𝑖)), 0))
11350adantr 480 . . . . . . . . . . . 12 ((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ) → (coeff‘𝐹):ℕ0⟶ℝ)
114102adantl 481 . . . . . . . . . . . 12 ((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ) → (𝑛 − 1) ∈ ℕ0)
115113, 114ffvelcdmd 7105 . . . . . . . . . . 11 ((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ) → ((coeff‘𝐹)‘(𝑛 − 1)) ∈ ℝ)
116115recnd 11289 . . . . . . . . . 10 ((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ) → ((coeff‘𝐹)‘(𝑛 − 1)) ∈ ℂ)
11799fveq2d 6910 . . . . . . . . . . 11 (𝑖 = 1 → ((coeff‘𝐹)‘(𝑛𝑖)) = ((coeff‘𝐹)‘(𝑛 − 1)))
118117sumsn 15782 . . . . . . . . . 10 ((1 ∈ ℝ ∧ ((coeff‘𝐹)‘(𝑛 − 1)) ∈ ℂ) → Σ𝑖 ∈ {1} ((coeff‘𝐹)‘(𝑛𝑖)) = ((coeff‘𝐹)‘(𝑛 − 1)))
1193, 116, 118sylancr 587 . . . . . . . . 9 ((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ) → Σ𝑖 ∈ {1} ((coeff‘𝐹)‘(𝑛𝑖)) = ((coeff‘𝐹)‘(𝑛 − 1)))
120112, 119eqtr3d 2779 . . . . . . . 8 ((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ) → Σ𝑖 ∈ (0...𝑛)if(𝑖 ∈ {1}, ((coeff‘𝐹)‘(𝑛𝑖)), 0) = ((coeff‘𝐹)‘(𝑛 − 1)))
12184, 89, 120syl2anc 584 . . . . . . 7 (((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) ∧ ¬ 𝑛 = 0) → Σ𝑖 ∈ (0...𝑛)if(𝑖 ∈ {1}, ((coeff‘𝐹)‘(𝑛𝑖)), 0) = ((coeff‘𝐹)‘(𝑛 − 1)))
12260, 61, 83, 121ifbothda 4564 . . . . . 6 ((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) → Σ𝑖 ∈ (0...𝑛)if(𝑖 ∈ {1}, ((coeff‘𝐹)‘(𝑛𝑖)), 0) = if(𝑛 = 0, 0, ((coeff‘𝐹)‘(𝑛 − 1))))
12359, 122eqtrd 2777 . . . . 5 ((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) → Σ𝑖 ∈ (0...𝑛)if(𝑖 = 1, (1 · ((coeff‘𝐹)‘(𝑛𝑖))), (0 · ((coeff‘𝐹)‘(𝑛𝑖)))) = if(𝑛 = 0, 0, ((coeff‘𝐹)‘(𝑛 − 1))))
12437, 45, 1233eqtrd 2781 . . . 4 ((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) → ((coeff‘(Xpf · 𝐹))‘𝑛) = if(𝑛 = 0, 0, ((coeff‘𝐹)‘(𝑛 − 1))))
12530, 124eqtrd 2777 . . 3 ((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) → ((coeff‘(𝐹f · Xp))‘𝑛) = if(𝑛 = 0, 0, ((coeff‘𝐹)‘(𝑛 − 1))))
126125mpteq2dva 5242 . 2 (𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) → (𝑛 ∈ ℕ0 ↦ ((coeff‘(𝐹f · Xp))‘𝑛)) = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, 0, ((coeff‘𝐹)‘(𝑛 − 1)))))
12716, 126eqtrd 2777 1 (𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) → (coeff‘(𝐹f · Xp)) = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, 0, ((coeff‘𝐹)‘(𝑛 − 1)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 848   = wceq 1540  wcel 2108  wne 2940  wral 3061  Vcvv 3480  cdif 3948  wss 3951  ifcif 4525  {csn 4626   class class class wbr 5143  cmpt 5225  wf 6557  cfv 6561  (class class class)co 7431  f cof 7695  Fincfn 8985  cc 11153  cr 11154  0cc0 11155  1c1 11156   · cmul 11160  cle 11296  cmin 11492  cn 12266  0cn0 12526  cz 12613  cuz 12878  ...cfz 13547  Σcsu 15722  0𝑝c0p 25704  Polycply 26223  Xpcidp 26224  coeffccoe 26225
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-map 8868  df-pm 8869  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-inf 9483  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12614  df-uz 12879  df-rp 13035  df-fz 13548  df-fzo 13695  df-fl 13832  df-seq 14043  df-exp 14103  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-clim 15524  df-rlim 15525  df-sum 15723  df-0p 25705  df-ply 26227  df-idp 26228  df-coe 26229  df-dgr 26230
This theorem is referenced by:  plymulx  34563
  Copyright terms: Public domain W3C validator