Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  plymulx0 Structured version   Visualization version   GIF version

Theorem plymulx0 34515
Description: Coefficients of a polynomial multiplied by Xp. (Contributed by Thierry Arnoux, 25-Sep-2018.)
Assertion
Ref Expression
plymulx0 (𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) → (coeff‘(𝐹f · Xp)) = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, 0, ((coeff‘𝐹)‘(𝑛 − 1)))))
Distinct variable group:   𝑛,𝐹

Proof of Theorem plymulx0
Dummy variables 𝑖 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eldifi 4082 . . . . 5 (𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) → 𝐹 ∈ (Poly‘ℝ))
2 ax-resscn 11066 . . . . . . 7 ℝ ⊆ ℂ
3 1re 11115 . . . . . . 7 1 ∈ ℝ
4 plyid 26112 . . . . . . 7 ((ℝ ⊆ ℂ ∧ 1 ∈ ℝ) → Xp ∈ (Poly‘ℝ))
52, 3, 4mp2an 692 . . . . . 6 Xp ∈ (Poly‘ℝ)
65a1i 11 . . . . 5 (𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) → Xp ∈ (Poly‘ℝ))
7 simprl 770 . . . . . 6 ((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝑥 ∈ ℝ)
8 simprr 772 . . . . . 6 ((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝑦 ∈ ℝ)
97, 8readdcld 11144 . . . . 5 ((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 + 𝑦) ∈ ℝ)
107, 8remulcld 11145 . . . . 5 ((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 · 𝑦) ∈ ℝ)
111, 6, 9, 10plymul 26121 . . . 4 (𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) → (𝐹f · Xp) ∈ (Poly‘ℝ))
12 0re 11117 . . . 4 0 ∈ ℝ
13 eqid 2729 . . . . 5 (coeff‘(𝐹f · Xp)) = (coeff‘(𝐹f · Xp))
1413coef2 26134 . . . 4 (((𝐹f · Xp) ∈ (Poly‘ℝ) ∧ 0 ∈ ℝ) → (coeff‘(𝐹f · Xp)):ℕ0⟶ℝ)
1511, 12, 14sylancl 586 . . 3 (𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) → (coeff‘(𝐹f · Xp)):ℕ0⟶ℝ)
1615feqmptd 6891 . 2 (𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) → (coeff‘(𝐹f · Xp)) = (𝑛 ∈ ℕ0 ↦ ((coeff‘(𝐹f · Xp))‘𝑛)))
17 cnex 11090 . . . . . . . . 9 ℂ ∈ V
1817a1i 11 . . . . . . . 8 (𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) → ℂ ∈ V)
19 plyf 26101 . . . . . . . . 9 (𝐹 ∈ (Poly‘ℝ) → 𝐹:ℂ⟶ℂ)
201, 19syl 17 . . . . . . . 8 (𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) → 𝐹:ℂ⟶ℂ)
21 plyf 26101 . . . . . . . . . 10 (Xp ∈ (Poly‘ℝ) → Xp:ℂ⟶ℂ)
225, 21ax-mp 5 . . . . . . . . 9 Xp:ℂ⟶ℂ
2322a1i 11 . . . . . . . 8 (𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) → Xp:ℂ⟶ℂ)
24 simprl 770 . . . . . . . . 9 ((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → 𝑥 ∈ ℂ)
25 simprr 772 . . . . . . . . 9 ((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → 𝑦 ∈ ℂ)
2624, 25mulcomd 11136 . . . . . . . 8 ((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 · 𝑦) = (𝑦 · 𝑥))
2718, 20, 23, 26caofcom 7650 . . . . . . 7 (𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) → (𝐹f · Xp) = (Xpf · 𝐹))
2827fveq2d 6826 . . . . . 6 (𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) → (coeff‘(𝐹f · Xp)) = (coeff‘(Xpf · 𝐹)))
2928fveq1d 6824 . . . . 5 (𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) → ((coeff‘(𝐹f · Xp))‘𝑛) = ((coeff‘(Xpf · 𝐹))‘𝑛))
3029adantr 480 . . . 4 ((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) → ((coeff‘(𝐹f · Xp))‘𝑛) = ((coeff‘(Xpf · 𝐹))‘𝑛))
315a1i 11 . . . . . 6 ((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) → Xp ∈ (Poly‘ℝ))
321adantr 480 . . . . . 6 ((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) → 𝐹 ∈ (Poly‘ℝ))
33 simpr 484 . . . . . 6 ((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈ ℕ0)
34 eqid 2729 . . . . . . 7 (coeff‘Xp) = (coeff‘Xp)
35 eqid 2729 . . . . . . 7 (coeff‘𝐹) = (coeff‘𝐹)
3634, 35coemul 26155 . . . . . 6 ((Xp ∈ (Poly‘ℝ) ∧ 𝐹 ∈ (Poly‘ℝ) ∧ 𝑛 ∈ ℕ0) → ((coeff‘(Xpf · 𝐹))‘𝑛) = Σ𝑖 ∈ (0...𝑛)(((coeff‘Xp)‘𝑖) · ((coeff‘𝐹)‘(𝑛𝑖))))
3731, 32, 33, 36syl3anc 1373 . . . . 5 ((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) → ((coeff‘(Xpf · 𝐹))‘𝑛) = Σ𝑖 ∈ (0...𝑛)(((coeff‘Xp)‘𝑖) · ((coeff‘𝐹)‘(𝑛𝑖))))
38 elfznn0 13523 . . . . . . . . . 10 (𝑖 ∈ (0...𝑛) → 𝑖 ∈ ℕ0)
39 coeidp 26167 . . . . . . . . . 10 (𝑖 ∈ ℕ0 → ((coeff‘Xp)‘𝑖) = if(𝑖 = 1, 1, 0))
4038, 39syl 17 . . . . . . . . 9 (𝑖 ∈ (0...𝑛) → ((coeff‘Xp)‘𝑖) = if(𝑖 = 1, 1, 0))
4140oveq1d 7364 . . . . . . . 8 (𝑖 ∈ (0...𝑛) → (((coeff‘Xp)‘𝑖) · ((coeff‘𝐹)‘(𝑛𝑖))) = (if(𝑖 = 1, 1, 0) · ((coeff‘𝐹)‘(𝑛𝑖))))
42 ovif 7447 . . . . . . . 8 (if(𝑖 = 1, 1, 0) · ((coeff‘𝐹)‘(𝑛𝑖))) = if(𝑖 = 1, (1 · ((coeff‘𝐹)‘(𝑛𝑖))), (0 · ((coeff‘𝐹)‘(𝑛𝑖))))
4341, 42eqtrdi 2780 . . . . . . 7 (𝑖 ∈ (0...𝑛) → (((coeff‘Xp)‘𝑖) · ((coeff‘𝐹)‘(𝑛𝑖))) = if(𝑖 = 1, (1 · ((coeff‘𝐹)‘(𝑛𝑖))), (0 · ((coeff‘𝐹)‘(𝑛𝑖)))))
4443adantl 481 . . . . . 6 (((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑛)) → (((coeff‘Xp)‘𝑖) · ((coeff‘𝐹)‘(𝑛𝑖))) = if(𝑖 = 1, (1 · ((coeff‘𝐹)‘(𝑛𝑖))), (0 · ((coeff‘𝐹)‘(𝑛𝑖)))))
4544sumeq2dv 15609 . . . . 5 ((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) → Σ𝑖 ∈ (0...𝑛)(((coeff‘Xp)‘𝑖) · ((coeff‘𝐹)‘(𝑛𝑖))) = Σ𝑖 ∈ (0...𝑛)if(𝑖 = 1, (1 · ((coeff‘𝐹)‘(𝑛𝑖))), (0 · ((coeff‘𝐹)‘(𝑛𝑖)))))
46 velsn 4593 . . . . . . . . . 10 (𝑖 ∈ {1} ↔ 𝑖 = 1)
4746bicomi 224 . . . . . . . . 9 (𝑖 = 1 ↔ 𝑖 ∈ {1})
4847a1i 11 . . . . . . . 8 (((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑛)) → (𝑖 = 1 ↔ 𝑖 ∈ {1}))
4935coef2 26134 . . . . . . . . . . . . 13 ((𝐹 ∈ (Poly‘ℝ) ∧ 0 ∈ ℝ) → (coeff‘𝐹):ℕ0⟶ℝ)
501, 12, 49sylancl 586 . . . . . . . . . . . 12 (𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) → (coeff‘𝐹):ℕ0⟶ℝ)
5150ad2antrr 726 . . . . . . . . . . 11 (((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑛)) → (coeff‘𝐹):ℕ0⟶ℝ)
52 fznn0sub 13459 . . . . . . . . . . . 12 (𝑖 ∈ (0...𝑛) → (𝑛𝑖) ∈ ℕ0)
5352adantl 481 . . . . . . . . . . 11 (((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑛)) → (𝑛𝑖) ∈ ℕ0)
5451, 53ffvelcdmd 7019 . . . . . . . . . 10 (((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑛)) → ((coeff‘𝐹)‘(𝑛𝑖)) ∈ ℝ)
5554recnd 11143 . . . . . . . . 9 (((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑛)) → ((coeff‘𝐹)‘(𝑛𝑖)) ∈ ℂ)
5655mullidd 11133 . . . . . . . 8 (((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑛)) → (1 · ((coeff‘𝐹)‘(𝑛𝑖))) = ((coeff‘𝐹)‘(𝑛𝑖)))
5755mul02d 11314 . . . . . . . 8 (((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑛)) → (0 · ((coeff‘𝐹)‘(𝑛𝑖))) = 0)
5848, 56, 57ifbieq12d 4505 . . . . . . 7 (((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑛)) → if(𝑖 = 1, (1 · ((coeff‘𝐹)‘(𝑛𝑖))), (0 · ((coeff‘𝐹)‘(𝑛𝑖)))) = if(𝑖 ∈ {1}, ((coeff‘𝐹)‘(𝑛𝑖)), 0))
5958sumeq2dv 15609 . . . . . 6 ((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) → Σ𝑖 ∈ (0...𝑛)if(𝑖 = 1, (1 · ((coeff‘𝐹)‘(𝑛𝑖))), (0 · ((coeff‘𝐹)‘(𝑛𝑖)))) = Σ𝑖 ∈ (0...𝑛)if(𝑖 ∈ {1}, ((coeff‘𝐹)‘(𝑛𝑖)), 0))
60 eqeq2 2741 . . . . . . 7 (0 = if(𝑛 = 0, 0, ((coeff‘𝐹)‘(𝑛 − 1))) → (Σ𝑖 ∈ (0...𝑛)if(𝑖 ∈ {1}, ((coeff‘𝐹)‘(𝑛𝑖)), 0) = 0 ↔ Σ𝑖 ∈ (0...𝑛)if(𝑖 ∈ {1}, ((coeff‘𝐹)‘(𝑛𝑖)), 0) = if(𝑛 = 0, 0, ((coeff‘𝐹)‘(𝑛 − 1)))))
61 eqeq2 2741 . . . . . . 7 (((coeff‘𝐹)‘(𝑛 − 1)) = if(𝑛 = 0, 0, ((coeff‘𝐹)‘(𝑛 − 1))) → (Σ𝑖 ∈ (0...𝑛)if(𝑖 ∈ {1}, ((coeff‘𝐹)‘(𝑛𝑖)), 0) = ((coeff‘𝐹)‘(𝑛 − 1)) ↔ Σ𝑖 ∈ (0...𝑛)if(𝑖 ∈ {1}, ((coeff‘𝐹)‘(𝑛𝑖)), 0) = if(𝑛 = 0, 0, ((coeff‘𝐹)‘(𝑛 − 1)))))
62 oveq2 7357 . . . . . . . . . . 11 (𝑛 = 0 → (0...𝑛) = (0...0))
63 0z 12482 . . . . . . . . . . . 12 0 ∈ ℤ
64 fzsn 13469 . . . . . . . . . . . 12 (0 ∈ ℤ → (0...0) = {0})
6563, 64ax-mp 5 . . . . . . . . . . 11 (0...0) = {0}
6662, 65eqtrdi 2780 . . . . . . . . . 10 (𝑛 = 0 → (0...𝑛) = {0})
67 elsni 4594 . . . . . . . . . . . 12 (𝑖 ∈ {0} → 𝑖 = 0)
6867adantl 481 . . . . . . . . . . 11 ((𝑛 = 0 ∧ 𝑖 ∈ {0}) → 𝑖 = 0)
69 ax-1ne0 11078 . . . . . . . . . . . . 13 1 ≠ 0
7069nesymi 2982 . . . . . . . . . . . 12 ¬ 0 = 1
71 eqeq1 2733 . . . . . . . . . . . 12 (𝑖 = 0 → (𝑖 = 1 ↔ 0 = 1))
7270, 71mtbiri 327 . . . . . . . . . . 11 (𝑖 = 0 → ¬ 𝑖 = 1)
7347notbii 320 . . . . . . . . . . . 12 𝑖 = 1 ↔ ¬ 𝑖 ∈ {1})
7473biimpi 216 . . . . . . . . . . 11 𝑖 = 1 → ¬ 𝑖 ∈ {1})
75 iffalse 4485 . . . . . . . . . . 11 𝑖 ∈ {1} → if(𝑖 ∈ {1}, ((coeff‘𝐹)‘(𝑛𝑖)), 0) = 0)
7668, 72, 74, 754syl 19 . . . . . . . . . 10 ((𝑛 = 0 ∧ 𝑖 ∈ {0}) → if(𝑖 ∈ {1}, ((coeff‘𝐹)‘(𝑛𝑖)), 0) = 0)
7766, 76sumeq12rdv 15614 . . . . . . . . 9 (𝑛 = 0 → Σ𝑖 ∈ (0...𝑛)if(𝑖 ∈ {1}, ((coeff‘𝐹)‘(𝑛𝑖)), 0) = Σ𝑖 ∈ {0}0)
78 snfi 8968 . . . . . . . . . . 11 {0} ∈ Fin
7978olci 866 . . . . . . . . . 10 ({0} ⊆ (ℤ‘0) ∨ {0} ∈ Fin)
80 sumz 15629 . . . . . . . . . 10 (({0} ⊆ (ℤ‘0) ∨ {0} ∈ Fin) → Σ𝑖 ∈ {0}0 = 0)
8179, 80ax-mp 5 . . . . . . . . 9 Σ𝑖 ∈ {0}0 = 0
8277, 81eqtrdi 2780 . . . . . . . 8 (𝑛 = 0 → Σ𝑖 ∈ (0...𝑛)if(𝑖 ∈ {1}, ((coeff‘𝐹)‘(𝑛𝑖)), 0) = 0)
8382adantl 481 . . . . . . 7 (((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 = 0) → Σ𝑖 ∈ (0...𝑛)if(𝑖 ∈ {1}, ((coeff‘𝐹)‘(𝑛𝑖)), 0) = 0)
84 simpll 766 . . . . . . . 8 (((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) ∧ ¬ 𝑛 = 0) → 𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}))
8533adantr 480 . . . . . . . . 9 (((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) ∧ ¬ 𝑛 = 0) → 𝑛 ∈ ℕ0)
86 simpr 484 . . . . . . . . . 10 (((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) ∧ ¬ 𝑛 = 0) → ¬ 𝑛 = 0)
8786neqned 2932 . . . . . . . . 9 (((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) ∧ ¬ 𝑛 = 0) → 𝑛 ≠ 0)
88 elnnne0 12398 . . . . . . . . 9 (𝑛 ∈ ℕ ↔ (𝑛 ∈ ℕ0𝑛 ≠ 0))
8985, 87, 88sylanbrc 583 . . . . . . . 8 (((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) ∧ ¬ 𝑛 = 0) → 𝑛 ∈ ℕ)
90 1nn0 12400 . . . . . . . . . . . . 13 1 ∈ ℕ0
9190a1i 11 . . . . . . . . . . . 12 ((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ) → 1 ∈ ℕ0)
92 simpr 484 . . . . . . . . . . . . 13 ((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
9392nnnn0d 12445 . . . . . . . . . . . 12 ((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ0)
9492nnge1d 12176 . . . . . . . . . . . 12 ((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ) → 1 ≤ 𝑛)
95 elfz2nn0 13521 . . . . . . . . . . . 12 (1 ∈ (0...𝑛) ↔ (1 ∈ ℕ0𝑛 ∈ ℕ0 ∧ 1 ≤ 𝑛))
9691, 93, 94, 95syl3anbrc 1344 . . . . . . . . . . 11 ((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ) → 1 ∈ (0...𝑛))
9796snssd 4760 . . . . . . . . . 10 ((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ) → {1} ⊆ (0...𝑛))
9850ad2antrr 726 . . . . . . . . . . . . 13 (((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ {1}) → (coeff‘𝐹):ℕ0⟶ℝ)
99 oveq2 7357 . . . . . . . . . . . . . . . 16 (𝑖 = 1 → (𝑛𝑖) = (𝑛 − 1))
10046, 99sylbi 217 . . . . . . . . . . . . . . 15 (𝑖 ∈ {1} → (𝑛𝑖) = (𝑛 − 1))
101100adantl 481 . . . . . . . . . . . . . 14 (((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ {1}) → (𝑛𝑖) = (𝑛 − 1))
102 nnm1nn0 12425 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → (𝑛 − 1) ∈ ℕ0)
103102ad2antlr 727 . . . . . . . . . . . . . 14 (((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ {1}) → (𝑛 − 1) ∈ ℕ0)
104101, 103eqeltrd 2828 . . . . . . . . . . . . 13 (((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ {1}) → (𝑛𝑖) ∈ ℕ0)
10598, 104ffvelcdmd 7019 . . . . . . . . . . . 12 (((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ {1}) → ((coeff‘𝐹)‘(𝑛𝑖)) ∈ ℝ)
106105recnd 11143 . . . . . . . . . . 11 (((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ {1}) → ((coeff‘𝐹)‘(𝑛𝑖)) ∈ ℂ)
107106ralrimiva 3121 . . . . . . . . . 10 ((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ) → ∀𝑖 ∈ {1} ((coeff‘𝐹)‘(𝑛𝑖)) ∈ ℂ)
108 fzfi 13879 . . . . . . . . . . . 12 (0...𝑛) ∈ Fin
109108olci 866 . . . . . . . . . . 11 ((0...𝑛) ⊆ (ℤ‘0) ∨ (0...𝑛) ∈ Fin)
110109a1i 11 . . . . . . . . . 10 ((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ) → ((0...𝑛) ⊆ (ℤ‘0) ∨ (0...𝑛) ∈ Fin))
111 sumss2 15633 . . . . . . . . . 10 ((({1} ⊆ (0...𝑛) ∧ ∀𝑖 ∈ {1} ((coeff‘𝐹)‘(𝑛𝑖)) ∈ ℂ) ∧ ((0...𝑛) ⊆ (ℤ‘0) ∨ (0...𝑛) ∈ Fin)) → Σ𝑖 ∈ {1} ((coeff‘𝐹)‘(𝑛𝑖)) = Σ𝑖 ∈ (0...𝑛)if(𝑖 ∈ {1}, ((coeff‘𝐹)‘(𝑛𝑖)), 0))
11297, 107, 110, 111syl21anc 837 . . . . . . . . 9 ((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ) → Σ𝑖 ∈ {1} ((coeff‘𝐹)‘(𝑛𝑖)) = Σ𝑖 ∈ (0...𝑛)if(𝑖 ∈ {1}, ((coeff‘𝐹)‘(𝑛𝑖)), 0))
11350adantr 480 . . . . . . . . . . . 12 ((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ) → (coeff‘𝐹):ℕ0⟶ℝ)
114102adantl 481 . . . . . . . . . . . 12 ((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ) → (𝑛 − 1) ∈ ℕ0)
115113, 114ffvelcdmd 7019 . . . . . . . . . . 11 ((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ) → ((coeff‘𝐹)‘(𝑛 − 1)) ∈ ℝ)
116115recnd 11143 . . . . . . . . . 10 ((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ) → ((coeff‘𝐹)‘(𝑛 − 1)) ∈ ℂ)
11799fveq2d 6826 . . . . . . . . . . 11 (𝑖 = 1 → ((coeff‘𝐹)‘(𝑛𝑖)) = ((coeff‘𝐹)‘(𝑛 − 1)))
118117sumsn 15653 . . . . . . . . . 10 ((1 ∈ ℝ ∧ ((coeff‘𝐹)‘(𝑛 − 1)) ∈ ℂ) → Σ𝑖 ∈ {1} ((coeff‘𝐹)‘(𝑛𝑖)) = ((coeff‘𝐹)‘(𝑛 − 1)))
1193, 116, 118sylancr 587 . . . . . . . . 9 ((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ) → Σ𝑖 ∈ {1} ((coeff‘𝐹)‘(𝑛𝑖)) = ((coeff‘𝐹)‘(𝑛 − 1)))
120112, 119eqtr3d 2766 . . . . . . . 8 ((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ) → Σ𝑖 ∈ (0...𝑛)if(𝑖 ∈ {1}, ((coeff‘𝐹)‘(𝑛𝑖)), 0) = ((coeff‘𝐹)‘(𝑛 − 1)))
12184, 89, 120syl2anc 584 . . . . . . 7 (((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) ∧ ¬ 𝑛 = 0) → Σ𝑖 ∈ (0...𝑛)if(𝑖 ∈ {1}, ((coeff‘𝐹)‘(𝑛𝑖)), 0) = ((coeff‘𝐹)‘(𝑛 − 1)))
12260, 61, 83, 121ifbothda 4515 . . . . . 6 ((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) → Σ𝑖 ∈ (0...𝑛)if(𝑖 ∈ {1}, ((coeff‘𝐹)‘(𝑛𝑖)), 0) = if(𝑛 = 0, 0, ((coeff‘𝐹)‘(𝑛 − 1))))
12359, 122eqtrd 2764 . . . . 5 ((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) → Σ𝑖 ∈ (0...𝑛)if(𝑖 = 1, (1 · ((coeff‘𝐹)‘(𝑛𝑖))), (0 · ((coeff‘𝐹)‘(𝑛𝑖)))) = if(𝑛 = 0, 0, ((coeff‘𝐹)‘(𝑛 − 1))))
12437, 45, 1233eqtrd 2768 . . . 4 ((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) → ((coeff‘(Xpf · 𝐹))‘𝑛) = if(𝑛 = 0, 0, ((coeff‘𝐹)‘(𝑛 − 1))))
12530, 124eqtrd 2764 . . 3 ((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) → ((coeff‘(𝐹f · Xp))‘𝑛) = if(𝑛 = 0, 0, ((coeff‘𝐹)‘(𝑛 − 1))))
126125mpteq2dva 5185 . 2 (𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) → (𝑛 ∈ ℕ0 ↦ ((coeff‘(𝐹f · Xp))‘𝑛)) = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, 0, ((coeff‘𝐹)‘(𝑛 − 1)))))
12716, 126eqtrd 2764 1 (𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) → (coeff‘(𝐹f · Xp)) = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, 0, ((coeff‘𝐹)‘(𝑛 − 1)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2925  wral 3044  Vcvv 3436  cdif 3900  wss 3903  ifcif 4476  {csn 4577   class class class wbr 5092  cmpt 5173  wf 6478  cfv 6482  (class class class)co 7349  f cof 7611  Fincfn 8872  cc 11007  cr 11008  0cc0 11009  1c1 11010   · cmul 11014  cle 11150  cmin 11347  cn 12128  0cn0 12384  cz 12471  cuz 12735  ...cfz 13410  Σcsu 15593  0𝑝c0p 25568  Polycply 26087  Xpcidp 26088  coeffccoe 26089
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-map 8755  df-pm 8756  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-sup 9332  df-inf 9333  df-oi 9402  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-n0 12385  df-z 12472  df-uz 12736  df-rp 12894  df-fz 13411  df-fzo 13558  df-fl 13696  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-rlim 15396  df-sum 15594  df-0p 25569  df-ply 26091  df-idp 26092  df-coe 26093  df-dgr 26094
This theorem is referenced by:  plymulx  34516
  Copyright terms: Public domain W3C validator