Step | Hyp | Ref
| Expression |
1 | | eldifi 4154 |
. . . . 5
⊢ (𝐹 ∈ ((Poly‘ℝ)
∖ {0𝑝}) → 𝐹 ∈
(Poly‘ℝ)) |
2 | | ax-resscn 11241 |
. . . . . . 7
⊢ ℝ
⊆ ℂ |
3 | | 1re 11290 |
. . . . . . 7
⊢ 1 ∈
ℝ |
4 | | plyid 26268 |
. . . . . . 7
⊢ ((ℝ
⊆ ℂ ∧ 1 ∈ ℝ) → Xp ∈
(Poly‘ℝ)) |
5 | 2, 3, 4 | mp2an 691 |
. . . . . 6
⊢
Xp ∈ (Poly‘ℝ) |
6 | 5 | a1i 11 |
. . . . 5
⊢ (𝐹 ∈ ((Poly‘ℝ)
∖ {0𝑝}) → Xp ∈
(Poly‘ℝ)) |
7 | | simprl 770 |
. . . . . 6
⊢ ((𝐹 ∈ ((Poly‘ℝ)
∖ {0𝑝}) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝑥 ∈ ℝ) |
8 | | simprr 772 |
. . . . . 6
⊢ ((𝐹 ∈ ((Poly‘ℝ)
∖ {0𝑝}) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝑦 ∈ ℝ) |
9 | 7, 8 | readdcld 11319 |
. . . . 5
⊢ ((𝐹 ∈ ((Poly‘ℝ)
∖ {0𝑝}) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 + 𝑦) ∈ ℝ) |
10 | 7, 8 | remulcld 11320 |
. . . . 5
⊢ ((𝐹 ∈ ((Poly‘ℝ)
∖ {0𝑝}) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 · 𝑦) ∈ ℝ) |
11 | 1, 6, 9, 10 | plymul 26277 |
. . . 4
⊢ (𝐹 ∈ ((Poly‘ℝ)
∖ {0𝑝}) → (𝐹 ∘f ·
Xp) ∈ (Poly‘ℝ)) |
12 | | 0re 11292 |
. . . 4
⊢ 0 ∈
ℝ |
13 | | eqid 2740 |
. . . . 5
⊢
(coeff‘(𝐹
∘f · Xp)) = (coeff‘(𝐹 ∘f ·
Xp)) |
14 | 13 | coef2 26290 |
. . . 4
⊢ (((𝐹 ∘f ·
Xp) ∈ (Poly‘ℝ) ∧ 0 ∈ ℝ)
→ (coeff‘(𝐹
∘f ·
Xp)):ℕ0⟶ℝ) |
15 | 11, 12, 14 | sylancl 585 |
. . 3
⊢ (𝐹 ∈ ((Poly‘ℝ)
∖ {0𝑝}) → (coeff‘(𝐹 ∘f ·
Xp)):ℕ0⟶ℝ) |
16 | 15 | feqmptd 6990 |
. 2
⊢ (𝐹 ∈ ((Poly‘ℝ)
∖ {0𝑝}) → (coeff‘(𝐹 ∘f ·
Xp)) = (𝑛
∈ ℕ0 ↦ ((coeff‘(𝐹 ∘f ·
Xp))‘𝑛))) |
17 | | cnex 11265 |
. . . . . . . . 9
⊢ ℂ
∈ V |
18 | 17 | a1i 11 |
. . . . . . . 8
⊢ (𝐹 ∈ ((Poly‘ℝ)
∖ {0𝑝}) → ℂ ∈ V) |
19 | | plyf 26257 |
. . . . . . . . 9
⊢ (𝐹 ∈ (Poly‘ℝ)
→ 𝐹:ℂ⟶ℂ) |
20 | 1, 19 | syl 17 |
. . . . . . . 8
⊢ (𝐹 ∈ ((Poly‘ℝ)
∖ {0𝑝}) → 𝐹:ℂ⟶ℂ) |
21 | | plyf 26257 |
. . . . . . . . . 10
⊢
(Xp ∈ (Poly‘ℝ) →
Xp:ℂ⟶ℂ) |
22 | 5, 21 | ax-mp 5 |
. . . . . . . . 9
⊢
Xp:ℂ⟶ℂ |
23 | 22 | a1i 11 |
. . . . . . . 8
⊢ (𝐹 ∈ ((Poly‘ℝ)
∖ {0𝑝}) →
Xp:ℂ⟶ℂ) |
24 | | simprl 770 |
. . . . . . . . 9
⊢ ((𝐹 ∈ ((Poly‘ℝ)
∖ {0𝑝}) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → 𝑥 ∈ ℂ) |
25 | | simprr 772 |
. . . . . . . . 9
⊢ ((𝐹 ∈ ((Poly‘ℝ)
∖ {0𝑝}) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → 𝑦 ∈ ℂ) |
26 | 24, 25 | mulcomd 11311 |
. . . . . . . 8
⊢ ((𝐹 ∈ ((Poly‘ℝ)
∖ {0𝑝}) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 · 𝑦) = (𝑦 · 𝑥)) |
27 | 18, 20, 23, 26 | caofcom 7750 |
. . . . . . 7
⊢ (𝐹 ∈ ((Poly‘ℝ)
∖ {0𝑝}) → (𝐹 ∘f ·
Xp) = (Xp ∘f ·
𝐹)) |
28 | 27 | fveq2d 6924 |
. . . . . 6
⊢ (𝐹 ∈ ((Poly‘ℝ)
∖ {0𝑝}) → (coeff‘(𝐹 ∘f ·
Xp)) = (coeff‘(Xp ∘f
· 𝐹))) |
29 | 28 | fveq1d 6922 |
. . . . 5
⊢ (𝐹 ∈ ((Poly‘ℝ)
∖ {0𝑝}) → ((coeff‘(𝐹 ∘f ·
Xp))‘𝑛) = ((coeff‘(Xp
∘f · 𝐹))‘𝑛)) |
30 | 29 | adantr 480 |
. . . 4
⊢ ((𝐹 ∈ ((Poly‘ℝ)
∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) →
((coeff‘(𝐹
∘f · Xp))‘𝑛) = ((coeff‘(Xp
∘f · 𝐹))‘𝑛)) |
31 | 5 | a1i 11 |
. . . . . 6
⊢ ((𝐹 ∈ ((Poly‘ℝ)
∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) →
Xp ∈ (Poly‘ℝ)) |
32 | 1 | adantr 480 |
. . . . . 6
⊢ ((𝐹 ∈ ((Poly‘ℝ)
∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) → 𝐹 ∈
(Poly‘ℝ)) |
33 | | simpr 484 |
. . . . . 6
⊢ ((𝐹 ∈ ((Poly‘ℝ)
∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈
ℕ0) |
34 | | eqid 2740 |
. . . . . . 7
⊢
(coeff‘Xp) =
(coeff‘Xp) |
35 | | eqid 2740 |
. . . . . . 7
⊢
(coeff‘𝐹) =
(coeff‘𝐹) |
36 | 34, 35 | coemul 26311 |
. . . . . 6
⊢
((Xp ∈ (Poly‘ℝ) ∧ 𝐹 ∈ (Poly‘ℝ)
∧ 𝑛 ∈
ℕ0) → ((coeff‘(Xp
∘f · 𝐹))‘𝑛) = Σ𝑖 ∈ (0...𝑛)(((coeff‘Xp)‘𝑖) · ((coeff‘𝐹)‘(𝑛 − 𝑖)))) |
37 | 31, 32, 33, 36 | syl3anc 1371 |
. . . . 5
⊢ ((𝐹 ∈ ((Poly‘ℝ)
∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) →
((coeff‘(Xp ∘f · 𝐹))‘𝑛) = Σ𝑖 ∈ (0...𝑛)(((coeff‘Xp)‘𝑖) · ((coeff‘𝐹)‘(𝑛 − 𝑖)))) |
38 | | elfznn0 13677 |
. . . . . . . . . 10
⊢ (𝑖 ∈ (0...𝑛) → 𝑖 ∈ ℕ0) |
39 | | coeidp 26323 |
. . . . . . . . . 10
⊢ (𝑖 ∈ ℕ0
→ ((coeff‘Xp)‘𝑖) = if(𝑖 = 1, 1, 0)) |
40 | 38, 39 | syl 17 |
. . . . . . . . 9
⊢ (𝑖 ∈ (0...𝑛) →
((coeff‘Xp)‘𝑖) = if(𝑖 = 1, 1, 0)) |
41 | 40 | oveq1d 7463 |
. . . . . . . 8
⊢ (𝑖 ∈ (0...𝑛) →
(((coeff‘Xp)‘𝑖) · ((coeff‘𝐹)‘(𝑛 − 𝑖))) = (if(𝑖 = 1, 1, 0) · ((coeff‘𝐹)‘(𝑛 − 𝑖)))) |
42 | | ovif 7548 |
. . . . . . . 8
⊢ (if(𝑖 = 1, 1, 0) ·
((coeff‘𝐹)‘(𝑛 − 𝑖))) = if(𝑖 = 1, (1 · ((coeff‘𝐹)‘(𝑛 − 𝑖))), (0 · ((coeff‘𝐹)‘(𝑛 − 𝑖)))) |
43 | 41, 42 | eqtrdi 2796 |
. . . . . . 7
⊢ (𝑖 ∈ (0...𝑛) →
(((coeff‘Xp)‘𝑖) · ((coeff‘𝐹)‘(𝑛 − 𝑖))) = if(𝑖 = 1, (1 · ((coeff‘𝐹)‘(𝑛 − 𝑖))), (0 · ((coeff‘𝐹)‘(𝑛 − 𝑖))))) |
44 | 43 | adantl 481 |
. . . . . 6
⊢ (((𝐹 ∈ ((Poly‘ℝ)
∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑛)) →
(((coeff‘Xp)‘𝑖) · ((coeff‘𝐹)‘(𝑛 − 𝑖))) = if(𝑖 = 1, (1 · ((coeff‘𝐹)‘(𝑛 − 𝑖))), (0 · ((coeff‘𝐹)‘(𝑛 − 𝑖))))) |
45 | 44 | sumeq2dv 15750 |
. . . . 5
⊢ ((𝐹 ∈ ((Poly‘ℝ)
∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) →
Σ𝑖 ∈ (0...𝑛)(((coeff‘Xp)‘𝑖) · ((coeff‘𝐹)‘(𝑛 − 𝑖))) = Σ𝑖 ∈ (0...𝑛)if(𝑖 = 1, (1 · ((coeff‘𝐹)‘(𝑛 − 𝑖))), (0 · ((coeff‘𝐹)‘(𝑛 − 𝑖))))) |
46 | | velsn 4664 |
. . . . . . . . . 10
⊢ (𝑖 ∈ {1} ↔ 𝑖 = 1) |
47 | 46 | bicomi 224 |
. . . . . . . . 9
⊢ (𝑖 = 1 ↔ 𝑖 ∈ {1}) |
48 | 47 | a1i 11 |
. . . . . . . 8
⊢ (((𝐹 ∈ ((Poly‘ℝ)
∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑛)) → (𝑖 = 1 ↔ 𝑖 ∈ {1})) |
49 | 35 | coef2 26290 |
. . . . . . . . . . . . 13
⊢ ((𝐹 ∈ (Poly‘ℝ)
∧ 0 ∈ ℝ) → (coeff‘𝐹):ℕ0⟶ℝ) |
50 | 1, 12, 49 | sylancl 585 |
. . . . . . . . . . . 12
⊢ (𝐹 ∈ ((Poly‘ℝ)
∖ {0𝑝}) → (coeff‘𝐹):ℕ0⟶ℝ) |
51 | 50 | ad2antrr 725 |
. . . . . . . . . . 11
⊢ (((𝐹 ∈ ((Poly‘ℝ)
∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑛)) → (coeff‘𝐹):ℕ0⟶ℝ) |
52 | | fznn0sub 13616 |
. . . . . . . . . . . 12
⊢ (𝑖 ∈ (0...𝑛) → (𝑛 − 𝑖) ∈
ℕ0) |
53 | 52 | adantl 481 |
. . . . . . . . . . 11
⊢ (((𝐹 ∈ ((Poly‘ℝ)
∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑛)) → (𝑛 − 𝑖) ∈
ℕ0) |
54 | 51, 53 | ffvelcdmd 7119 |
. . . . . . . . . 10
⊢ (((𝐹 ∈ ((Poly‘ℝ)
∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑛)) → ((coeff‘𝐹)‘(𝑛 − 𝑖)) ∈ ℝ) |
55 | 54 | recnd 11318 |
. . . . . . . . 9
⊢ (((𝐹 ∈ ((Poly‘ℝ)
∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑛)) → ((coeff‘𝐹)‘(𝑛 − 𝑖)) ∈ ℂ) |
56 | 55 | mullidd 11308 |
. . . . . . . 8
⊢ (((𝐹 ∈ ((Poly‘ℝ)
∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑛)) → (1 · ((coeff‘𝐹)‘(𝑛 − 𝑖))) = ((coeff‘𝐹)‘(𝑛 − 𝑖))) |
57 | 55 | mul02d 11488 |
. . . . . . . 8
⊢ (((𝐹 ∈ ((Poly‘ℝ)
∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑛)) → (0 · ((coeff‘𝐹)‘(𝑛 − 𝑖))) = 0) |
58 | 48, 56, 57 | ifbieq12d 4576 |
. . . . . . 7
⊢ (((𝐹 ∈ ((Poly‘ℝ)
∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑛)) → if(𝑖 = 1, (1 · ((coeff‘𝐹)‘(𝑛 − 𝑖))), (0 · ((coeff‘𝐹)‘(𝑛 − 𝑖)))) = if(𝑖 ∈ {1}, ((coeff‘𝐹)‘(𝑛 − 𝑖)), 0)) |
59 | 58 | sumeq2dv 15750 |
. . . . . 6
⊢ ((𝐹 ∈ ((Poly‘ℝ)
∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) →
Σ𝑖 ∈ (0...𝑛)if(𝑖 = 1, (1 · ((coeff‘𝐹)‘(𝑛 − 𝑖))), (0 · ((coeff‘𝐹)‘(𝑛 − 𝑖)))) = Σ𝑖 ∈ (0...𝑛)if(𝑖 ∈ {1}, ((coeff‘𝐹)‘(𝑛 − 𝑖)), 0)) |
60 | | eqeq2 2752 |
. . . . . . 7
⊢ (0 =
if(𝑛 = 0, 0,
((coeff‘𝐹)‘(𝑛 − 1))) → (Σ𝑖 ∈ (0...𝑛)if(𝑖 ∈ {1}, ((coeff‘𝐹)‘(𝑛 − 𝑖)), 0) = 0 ↔ Σ𝑖 ∈ (0...𝑛)if(𝑖 ∈ {1}, ((coeff‘𝐹)‘(𝑛 − 𝑖)), 0) = if(𝑛 = 0, 0, ((coeff‘𝐹)‘(𝑛 − 1))))) |
61 | | eqeq2 2752 |
. . . . . . 7
⊢
(((coeff‘𝐹)‘(𝑛 − 1)) = if(𝑛 = 0, 0, ((coeff‘𝐹)‘(𝑛 − 1))) → (Σ𝑖 ∈ (0...𝑛)if(𝑖 ∈ {1}, ((coeff‘𝐹)‘(𝑛 − 𝑖)), 0) = ((coeff‘𝐹)‘(𝑛 − 1)) ↔ Σ𝑖 ∈ (0...𝑛)if(𝑖 ∈ {1}, ((coeff‘𝐹)‘(𝑛 − 𝑖)), 0) = if(𝑛 = 0, 0, ((coeff‘𝐹)‘(𝑛 − 1))))) |
62 | | oveq2 7456 |
. . . . . . . . . . 11
⊢ (𝑛 = 0 → (0...𝑛) = (0...0)) |
63 | | 0z 12650 |
. . . . . . . . . . . 12
⊢ 0 ∈
ℤ |
64 | | fzsn 13626 |
. . . . . . . . . . . 12
⊢ (0 ∈
ℤ → (0...0) = {0}) |
65 | 63, 64 | ax-mp 5 |
. . . . . . . . . . 11
⊢ (0...0) =
{0} |
66 | 62, 65 | eqtrdi 2796 |
. . . . . . . . . 10
⊢ (𝑛 = 0 → (0...𝑛) = {0}) |
67 | | elsni 4665 |
. . . . . . . . . . . 12
⊢ (𝑖 ∈ {0} → 𝑖 = 0) |
68 | 67 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝑛 = 0 ∧ 𝑖 ∈ {0}) → 𝑖 = 0) |
69 | | ax-1ne0 11253 |
. . . . . . . . . . . . 13
⊢ 1 ≠
0 |
70 | 69 | nesymi 3004 |
. . . . . . . . . . . 12
⊢ ¬ 0
= 1 |
71 | | eqeq1 2744 |
. . . . . . . . . . . 12
⊢ (𝑖 = 0 → (𝑖 = 1 ↔ 0 = 1)) |
72 | 70, 71 | mtbiri 327 |
. . . . . . . . . . 11
⊢ (𝑖 = 0 → ¬ 𝑖 = 1) |
73 | 47 | notbii 320 |
. . . . . . . . . . . 12
⊢ (¬
𝑖 = 1 ↔ ¬ 𝑖 ∈ {1}) |
74 | 73 | biimpi 216 |
. . . . . . . . . . 11
⊢ (¬
𝑖 = 1 → ¬ 𝑖 ∈ {1}) |
75 | | iffalse 4557 |
. . . . . . . . . . 11
⊢ (¬
𝑖 ∈ {1} →
if(𝑖 ∈ {1},
((coeff‘𝐹)‘(𝑛 − 𝑖)), 0) = 0) |
76 | 68, 72, 74, 75 | 4syl 19 |
. . . . . . . . . 10
⊢ ((𝑛 = 0 ∧ 𝑖 ∈ {0}) → if(𝑖 ∈ {1}, ((coeff‘𝐹)‘(𝑛 − 𝑖)), 0) = 0) |
77 | 66, 76 | sumeq12rdv 15755 |
. . . . . . . . 9
⊢ (𝑛 = 0 → Σ𝑖 ∈ (0...𝑛)if(𝑖 ∈ {1}, ((coeff‘𝐹)‘(𝑛 − 𝑖)), 0) = Σ𝑖 ∈ {0}0) |
78 | | snfi 9109 |
. . . . . . . . . . 11
⊢ {0}
∈ Fin |
79 | 78 | olci 865 |
. . . . . . . . . 10
⊢ ({0}
⊆ (ℤ≥‘0) ∨ {0} ∈ Fin) |
80 | | sumz 15770 |
. . . . . . . . . 10
⊢ (({0}
⊆ (ℤ≥‘0) ∨ {0} ∈ Fin) →
Σ𝑖 ∈ {0}0 =
0) |
81 | 79, 80 | ax-mp 5 |
. . . . . . . . 9
⊢
Σ𝑖 ∈ {0}0
= 0 |
82 | 77, 81 | eqtrdi 2796 |
. . . . . . . 8
⊢ (𝑛 = 0 → Σ𝑖 ∈ (0...𝑛)if(𝑖 ∈ {1}, ((coeff‘𝐹)‘(𝑛 − 𝑖)), 0) = 0) |
83 | 82 | adantl 481 |
. . . . . . 7
⊢ (((𝐹 ∈ ((Poly‘ℝ)
∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 = 0) → Σ𝑖 ∈ (0...𝑛)if(𝑖 ∈ {1}, ((coeff‘𝐹)‘(𝑛 − 𝑖)), 0) = 0) |
84 | | simpll 766 |
. . . . . . . 8
⊢ (((𝐹 ∈ ((Poly‘ℝ)
∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) ∧ ¬
𝑛 = 0) → 𝐹 ∈ ((Poly‘ℝ)
∖ {0𝑝})) |
85 | 33 | adantr 480 |
. . . . . . . . 9
⊢ (((𝐹 ∈ ((Poly‘ℝ)
∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) ∧ ¬
𝑛 = 0) → 𝑛 ∈
ℕ0) |
86 | | simpr 484 |
. . . . . . . . . 10
⊢ (((𝐹 ∈ ((Poly‘ℝ)
∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) ∧ ¬
𝑛 = 0) → ¬ 𝑛 = 0) |
87 | 86 | neqned 2953 |
. . . . . . . . 9
⊢ (((𝐹 ∈ ((Poly‘ℝ)
∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) ∧ ¬
𝑛 = 0) → 𝑛 ≠ 0) |
88 | | elnnne0 12567 |
. . . . . . . . 9
⊢ (𝑛 ∈ ℕ ↔ (𝑛 ∈ ℕ0
∧ 𝑛 ≠
0)) |
89 | 85, 87, 88 | sylanbrc 582 |
. . . . . . . 8
⊢ (((𝐹 ∈ ((Poly‘ℝ)
∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) ∧ ¬
𝑛 = 0) → 𝑛 ∈
ℕ) |
90 | | 1nn0 12569 |
. . . . . . . . . . . . 13
⊢ 1 ∈
ℕ0 |
91 | 90 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝐹 ∈ ((Poly‘ℝ)
∖ {0𝑝}) ∧ 𝑛 ∈ ℕ) → 1 ∈
ℕ0) |
92 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ ((𝐹 ∈ ((Poly‘ℝ)
∖ {0𝑝}) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ) |
93 | 92 | nnnn0d 12613 |
. . . . . . . . . . . 12
⊢ ((𝐹 ∈ ((Poly‘ℝ)
∖ {0𝑝}) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ0) |
94 | 92 | nnge1d 12341 |
. . . . . . . . . . . 12
⊢ ((𝐹 ∈ ((Poly‘ℝ)
∖ {0𝑝}) ∧ 𝑛 ∈ ℕ) → 1 ≤ 𝑛) |
95 | | elfz2nn0 13675 |
. . . . . . . . . . . 12
⊢ (1 ∈
(0...𝑛) ↔ (1 ∈
ℕ0 ∧ 𝑛
∈ ℕ0 ∧ 1 ≤ 𝑛)) |
96 | 91, 93, 94, 95 | syl3anbrc 1343 |
. . . . . . . . . . 11
⊢ ((𝐹 ∈ ((Poly‘ℝ)
∖ {0𝑝}) ∧ 𝑛 ∈ ℕ) → 1 ∈ (0...𝑛)) |
97 | 96 | snssd 4834 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ ((Poly‘ℝ)
∖ {0𝑝}) ∧ 𝑛 ∈ ℕ) → {1} ⊆
(0...𝑛)) |
98 | 50 | ad2antrr 725 |
. . . . . . . . . . . . 13
⊢ (((𝐹 ∈ ((Poly‘ℝ)
∖ {0𝑝}) ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ {1}) → (coeff‘𝐹):ℕ0⟶ℝ) |
99 | | oveq2 7456 |
. . . . . . . . . . . . . . . 16
⊢ (𝑖 = 1 → (𝑛 − 𝑖) = (𝑛 − 1)) |
100 | 46, 99 | sylbi 217 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 ∈ {1} → (𝑛 − 𝑖) = (𝑛 − 1)) |
101 | 100 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ (((𝐹 ∈ ((Poly‘ℝ)
∖ {0𝑝}) ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ {1}) → (𝑛 − 𝑖) = (𝑛 − 1)) |
102 | | nnm1nn0 12594 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ ℕ → (𝑛 − 1) ∈
ℕ0) |
103 | 102 | ad2antlr 726 |
. . . . . . . . . . . . . 14
⊢ (((𝐹 ∈ ((Poly‘ℝ)
∖ {0𝑝}) ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ {1}) → (𝑛 − 1) ∈
ℕ0) |
104 | 101, 103 | eqeltrd 2844 |
. . . . . . . . . . . . 13
⊢ (((𝐹 ∈ ((Poly‘ℝ)
∖ {0𝑝}) ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ {1}) → (𝑛 − 𝑖) ∈
ℕ0) |
105 | 98, 104 | ffvelcdmd 7119 |
. . . . . . . . . . . 12
⊢ (((𝐹 ∈ ((Poly‘ℝ)
∖ {0𝑝}) ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ {1}) → ((coeff‘𝐹)‘(𝑛 − 𝑖)) ∈ ℝ) |
106 | 105 | recnd 11318 |
. . . . . . . . . . 11
⊢ (((𝐹 ∈ ((Poly‘ℝ)
∖ {0𝑝}) ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ {1}) → ((coeff‘𝐹)‘(𝑛 − 𝑖)) ∈ ℂ) |
107 | 106 | ralrimiva 3152 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ ((Poly‘ℝ)
∖ {0𝑝}) ∧ 𝑛 ∈ ℕ) → ∀𝑖 ∈ {1} ((coeff‘𝐹)‘(𝑛 − 𝑖)) ∈ ℂ) |
108 | | fzfi 14023 |
. . . . . . . . . . . 12
⊢
(0...𝑛) ∈
Fin |
109 | 108 | olci 865 |
. . . . . . . . . . 11
⊢
((0...𝑛) ⊆
(ℤ≥‘0) ∨ (0...𝑛) ∈ Fin) |
110 | 109 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ ((Poly‘ℝ)
∖ {0𝑝}) ∧ 𝑛 ∈ ℕ) → ((0...𝑛) ⊆
(ℤ≥‘0) ∨ (0...𝑛) ∈ Fin)) |
111 | | sumss2 15774 |
. . . . . . . . . 10
⊢ ((({1}
⊆ (0...𝑛) ∧
∀𝑖 ∈ {1}
((coeff‘𝐹)‘(𝑛 − 𝑖)) ∈ ℂ) ∧ ((0...𝑛) ⊆
(ℤ≥‘0) ∨ (0...𝑛) ∈ Fin)) → Σ𝑖 ∈ {1} ((coeff‘𝐹)‘(𝑛 − 𝑖)) = Σ𝑖 ∈ (0...𝑛)if(𝑖 ∈ {1}, ((coeff‘𝐹)‘(𝑛 − 𝑖)), 0)) |
112 | 97, 107, 110, 111 | syl21anc 837 |
. . . . . . . . 9
⊢ ((𝐹 ∈ ((Poly‘ℝ)
∖ {0𝑝}) ∧ 𝑛 ∈ ℕ) → Σ𝑖 ∈ {1} ((coeff‘𝐹)‘(𝑛 − 𝑖)) = Σ𝑖 ∈ (0...𝑛)if(𝑖 ∈ {1}, ((coeff‘𝐹)‘(𝑛 − 𝑖)), 0)) |
113 | 50 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝐹 ∈ ((Poly‘ℝ)
∖ {0𝑝}) ∧ 𝑛 ∈ ℕ) → (coeff‘𝐹):ℕ0⟶ℝ) |
114 | 102 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝐹 ∈ ((Poly‘ℝ)
∖ {0𝑝}) ∧ 𝑛 ∈ ℕ) → (𝑛 − 1) ∈
ℕ0) |
115 | 113, 114 | ffvelcdmd 7119 |
. . . . . . . . . . 11
⊢ ((𝐹 ∈ ((Poly‘ℝ)
∖ {0𝑝}) ∧ 𝑛 ∈ ℕ) → ((coeff‘𝐹)‘(𝑛 − 1)) ∈ ℝ) |
116 | 115 | recnd 11318 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ ((Poly‘ℝ)
∖ {0𝑝}) ∧ 𝑛 ∈ ℕ) → ((coeff‘𝐹)‘(𝑛 − 1)) ∈ ℂ) |
117 | 99 | fveq2d 6924 |
. . . . . . . . . . 11
⊢ (𝑖 = 1 → ((coeff‘𝐹)‘(𝑛 − 𝑖)) = ((coeff‘𝐹)‘(𝑛 − 1))) |
118 | 117 | sumsn 15794 |
. . . . . . . . . 10
⊢ ((1
∈ ℝ ∧ ((coeff‘𝐹)‘(𝑛 − 1)) ∈ ℂ) →
Σ𝑖 ∈ {1}
((coeff‘𝐹)‘(𝑛 − 𝑖)) = ((coeff‘𝐹)‘(𝑛 − 1))) |
119 | 3, 116, 118 | sylancr 586 |
. . . . . . . . 9
⊢ ((𝐹 ∈ ((Poly‘ℝ)
∖ {0𝑝}) ∧ 𝑛 ∈ ℕ) → Σ𝑖 ∈ {1} ((coeff‘𝐹)‘(𝑛 − 𝑖)) = ((coeff‘𝐹)‘(𝑛 − 1))) |
120 | 112, 119 | eqtr3d 2782 |
. . . . . . . 8
⊢ ((𝐹 ∈ ((Poly‘ℝ)
∖ {0𝑝}) ∧ 𝑛 ∈ ℕ) → Σ𝑖 ∈ (0...𝑛)if(𝑖 ∈ {1}, ((coeff‘𝐹)‘(𝑛 − 𝑖)), 0) = ((coeff‘𝐹)‘(𝑛 − 1))) |
121 | 84, 89, 120 | syl2anc 583 |
. . . . . . 7
⊢ (((𝐹 ∈ ((Poly‘ℝ)
∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) ∧ ¬
𝑛 = 0) → Σ𝑖 ∈ (0...𝑛)if(𝑖 ∈ {1}, ((coeff‘𝐹)‘(𝑛 − 𝑖)), 0) = ((coeff‘𝐹)‘(𝑛 − 1))) |
122 | 60, 61, 83, 121 | ifbothda 4586 |
. . . . . 6
⊢ ((𝐹 ∈ ((Poly‘ℝ)
∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) →
Σ𝑖 ∈ (0...𝑛)if(𝑖 ∈ {1}, ((coeff‘𝐹)‘(𝑛 − 𝑖)), 0) = if(𝑛 = 0, 0, ((coeff‘𝐹)‘(𝑛 − 1)))) |
123 | 59, 122 | eqtrd 2780 |
. . . . 5
⊢ ((𝐹 ∈ ((Poly‘ℝ)
∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) →
Σ𝑖 ∈ (0...𝑛)if(𝑖 = 1, (1 · ((coeff‘𝐹)‘(𝑛 − 𝑖))), (0 · ((coeff‘𝐹)‘(𝑛 − 𝑖)))) = if(𝑛 = 0, 0, ((coeff‘𝐹)‘(𝑛 − 1)))) |
124 | 37, 45, 123 | 3eqtrd 2784 |
. . . 4
⊢ ((𝐹 ∈ ((Poly‘ℝ)
∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) →
((coeff‘(Xp ∘f · 𝐹))‘𝑛) = if(𝑛 = 0, 0, ((coeff‘𝐹)‘(𝑛 − 1)))) |
125 | 30, 124 | eqtrd 2780 |
. . 3
⊢ ((𝐹 ∈ ((Poly‘ℝ)
∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) →
((coeff‘(𝐹
∘f · Xp))‘𝑛) = if(𝑛 = 0, 0, ((coeff‘𝐹)‘(𝑛 − 1)))) |
126 | 125 | mpteq2dva 5266 |
. 2
⊢ (𝐹 ∈ ((Poly‘ℝ)
∖ {0𝑝}) → (𝑛 ∈ ℕ0 ↦
((coeff‘(𝐹
∘f · Xp))‘𝑛)) = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, 0, ((coeff‘𝐹)‘(𝑛 − 1))))) |
127 | 16, 126 | eqtrd 2780 |
1
⊢ (𝐹 ∈ ((Poly‘ℝ)
∖ {0𝑝}) → (coeff‘(𝐹 ∘f ·
Xp)) = (𝑛
∈ ℕ0 ↦ if(𝑛 = 0, 0, ((coeff‘𝐹)‘(𝑛 − 1))))) |