Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  plymulx0 Structured version   Visualization version   GIF version

Theorem plymulx0 31160
Description: Coefficients of a polynomial multiplied by Xp. (Contributed by Thierry Arnoux, 25-Sep-2018.)
Assertion
Ref Expression
plymulx0 (𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) → (coeff‘(𝐹𝑓 · Xp)) = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, 0, ((coeff‘𝐹)‘(𝑛 − 1)))))
Distinct variable group:   𝑛,𝐹

Proof of Theorem plymulx0
Dummy variables 𝑖 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eldifi 3959 . . . . 5 (𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) → 𝐹 ∈ (Poly‘ℝ))
2 ax-resscn 10309 . . . . . . 7 ℝ ⊆ ℂ
3 1re 10356 . . . . . . 7 1 ∈ ℝ
4 plyid 24364 . . . . . . 7 ((ℝ ⊆ ℂ ∧ 1 ∈ ℝ) → Xp ∈ (Poly‘ℝ))
52, 3, 4mp2an 683 . . . . . 6 Xp ∈ (Poly‘ℝ)
65a1i 11 . . . . 5 (𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) → Xp ∈ (Poly‘ℝ))
7 simprl 787 . . . . . 6 ((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝑥 ∈ ℝ)
8 simprr 789 . . . . . 6 ((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝑦 ∈ ℝ)
97, 8readdcld 10386 . . . . 5 ((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 + 𝑦) ∈ ℝ)
107, 8remulcld 10387 . . . . 5 ((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 · 𝑦) ∈ ℝ)
111, 6, 9, 10plymul 24373 . . . 4 (𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) → (𝐹𝑓 · Xp) ∈ (Poly‘ℝ))
12 0re 10358 . . . 4 0 ∈ ℝ
13 eqid 2825 . . . . 5 (coeff‘(𝐹𝑓 · Xp)) = (coeff‘(𝐹𝑓 · Xp))
1413coef2 24386 . . . 4 (((𝐹𝑓 · Xp) ∈ (Poly‘ℝ) ∧ 0 ∈ ℝ) → (coeff‘(𝐹𝑓 · Xp)):ℕ0⟶ℝ)
1511, 12, 14sylancl 580 . . 3 (𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) → (coeff‘(𝐹𝑓 · Xp)):ℕ0⟶ℝ)
1615feqmptd 6496 . 2 (𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) → (coeff‘(𝐹𝑓 · Xp)) = (𝑛 ∈ ℕ0 ↦ ((coeff‘(𝐹𝑓 · Xp))‘𝑛)))
17 cnex 10333 . . . . . . . . 9 ℂ ∈ V
1817a1i 11 . . . . . . . 8 (𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) → ℂ ∈ V)
19 plyf 24353 . . . . . . . . 9 (𝐹 ∈ (Poly‘ℝ) → 𝐹:ℂ⟶ℂ)
201, 19syl 17 . . . . . . . 8 (𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) → 𝐹:ℂ⟶ℂ)
21 plyf 24353 . . . . . . . . . 10 (Xp ∈ (Poly‘ℝ) → Xp:ℂ⟶ℂ)
225, 21ax-mp 5 . . . . . . . . 9 Xp:ℂ⟶ℂ
2322a1i 11 . . . . . . . 8 (𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) → Xp:ℂ⟶ℂ)
24 simprl 787 . . . . . . . . 9 ((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → 𝑥 ∈ ℂ)
25 simprr 789 . . . . . . . . 9 ((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → 𝑦 ∈ ℂ)
2624, 25mulcomd 10378 . . . . . . . 8 ((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 · 𝑦) = (𝑦 · 𝑥))
2718, 20, 23, 26caofcom 7189 . . . . . . 7 (𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) → (𝐹𝑓 · Xp) = (Xp𝑓 · 𝐹))
2827fveq2d 6437 . . . . . 6 (𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) → (coeff‘(𝐹𝑓 · Xp)) = (coeff‘(Xp𝑓 · 𝐹)))
2928fveq1d 6435 . . . . 5 (𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) → ((coeff‘(𝐹𝑓 · Xp))‘𝑛) = ((coeff‘(Xp𝑓 · 𝐹))‘𝑛))
3029adantr 474 . . . 4 ((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) → ((coeff‘(𝐹𝑓 · Xp))‘𝑛) = ((coeff‘(Xp𝑓 · 𝐹))‘𝑛))
315a1i 11 . . . . . 6 ((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) → Xp ∈ (Poly‘ℝ))
321adantr 474 . . . . . 6 ((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) → 𝐹 ∈ (Poly‘ℝ))
33 simpr 479 . . . . . 6 ((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈ ℕ0)
34 eqid 2825 . . . . . . 7 (coeff‘Xp) = (coeff‘Xp)
35 eqid 2825 . . . . . . 7 (coeff‘𝐹) = (coeff‘𝐹)
3634, 35coemul 24407 . . . . . 6 ((Xp ∈ (Poly‘ℝ) ∧ 𝐹 ∈ (Poly‘ℝ) ∧ 𝑛 ∈ ℕ0) → ((coeff‘(Xp𝑓 · 𝐹))‘𝑛) = Σ𝑖 ∈ (0...𝑛)(((coeff‘Xp)‘𝑖) · ((coeff‘𝐹)‘(𝑛𝑖))))
3731, 32, 33, 36syl3anc 1494 . . . . 5 ((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) → ((coeff‘(Xp𝑓 · 𝐹))‘𝑛) = Σ𝑖 ∈ (0...𝑛)(((coeff‘Xp)‘𝑖) · ((coeff‘𝐹)‘(𝑛𝑖))))
38 elfznn0 12727 . . . . . . . . . 10 (𝑖 ∈ (0...𝑛) → 𝑖 ∈ ℕ0)
39 coeidp 24418 . . . . . . . . . 10 (𝑖 ∈ ℕ0 → ((coeff‘Xp)‘𝑖) = if(𝑖 = 1, 1, 0))
4038, 39syl 17 . . . . . . . . 9 (𝑖 ∈ (0...𝑛) → ((coeff‘Xp)‘𝑖) = if(𝑖 = 1, 1, 0))
4140oveq1d 6920 . . . . . . . 8 (𝑖 ∈ (0...𝑛) → (((coeff‘Xp)‘𝑖) · ((coeff‘𝐹)‘(𝑛𝑖))) = (if(𝑖 = 1, 1, 0) · ((coeff‘𝐹)‘(𝑛𝑖))))
42 ovif 6997 . . . . . . . 8 (if(𝑖 = 1, 1, 0) · ((coeff‘𝐹)‘(𝑛𝑖))) = if(𝑖 = 1, (1 · ((coeff‘𝐹)‘(𝑛𝑖))), (0 · ((coeff‘𝐹)‘(𝑛𝑖))))
4341, 42syl6eq 2877 . . . . . . 7 (𝑖 ∈ (0...𝑛) → (((coeff‘Xp)‘𝑖) · ((coeff‘𝐹)‘(𝑛𝑖))) = if(𝑖 = 1, (1 · ((coeff‘𝐹)‘(𝑛𝑖))), (0 · ((coeff‘𝐹)‘(𝑛𝑖)))))
4443adantl 475 . . . . . 6 (((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑛)) → (((coeff‘Xp)‘𝑖) · ((coeff‘𝐹)‘(𝑛𝑖))) = if(𝑖 = 1, (1 · ((coeff‘𝐹)‘(𝑛𝑖))), (0 · ((coeff‘𝐹)‘(𝑛𝑖)))))
4544sumeq2dv 14810 . . . . 5 ((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) → Σ𝑖 ∈ (0...𝑛)(((coeff‘Xp)‘𝑖) · ((coeff‘𝐹)‘(𝑛𝑖))) = Σ𝑖 ∈ (0...𝑛)if(𝑖 = 1, (1 · ((coeff‘𝐹)‘(𝑛𝑖))), (0 · ((coeff‘𝐹)‘(𝑛𝑖)))))
46 velsn 4413 . . . . . . . . . 10 (𝑖 ∈ {1} ↔ 𝑖 = 1)
4746bicomi 216 . . . . . . . . 9 (𝑖 = 1 ↔ 𝑖 ∈ {1})
4847a1i 11 . . . . . . . 8 (((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑛)) → (𝑖 = 1 ↔ 𝑖 ∈ {1}))
4935coef2 24386 . . . . . . . . . . . . 13 ((𝐹 ∈ (Poly‘ℝ) ∧ 0 ∈ ℝ) → (coeff‘𝐹):ℕ0⟶ℝ)
501, 12, 49sylancl 580 . . . . . . . . . . . 12 (𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) → (coeff‘𝐹):ℕ0⟶ℝ)
5150ad2antrr 717 . . . . . . . . . . 11 (((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑛)) → (coeff‘𝐹):ℕ0⟶ℝ)
52 fznn0sub 12666 . . . . . . . . . . . 12 (𝑖 ∈ (0...𝑛) → (𝑛𝑖) ∈ ℕ0)
5352adantl 475 . . . . . . . . . . 11 (((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑛)) → (𝑛𝑖) ∈ ℕ0)
5451, 53ffvelrnd 6609 . . . . . . . . . 10 (((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑛)) → ((coeff‘𝐹)‘(𝑛𝑖)) ∈ ℝ)
5554recnd 10385 . . . . . . . . 9 (((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑛)) → ((coeff‘𝐹)‘(𝑛𝑖)) ∈ ℂ)
5655mulid2d 10375 . . . . . . . 8 (((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑛)) → (1 · ((coeff‘𝐹)‘(𝑛𝑖))) = ((coeff‘𝐹)‘(𝑛𝑖)))
5755mul02d 10553 . . . . . . . 8 (((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑛)) → (0 · ((coeff‘𝐹)‘(𝑛𝑖))) = 0)
5848, 56, 57ifbieq12d 4333 . . . . . . 7 (((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑛)) → if(𝑖 = 1, (1 · ((coeff‘𝐹)‘(𝑛𝑖))), (0 · ((coeff‘𝐹)‘(𝑛𝑖)))) = if(𝑖 ∈ {1}, ((coeff‘𝐹)‘(𝑛𝑖)), 0))
5958sumeq2dv 14810 . . . . . 6 ((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) → Σ𝑖 ∈ (0...𝑛)if(𝑖 = 1, (1 · ((coeff‘𝐹)‘(𝑛𝑖))), (0 · ((coeff‘𝐹)‘(𝑛𝑖)))) = Σ𝑖 ∈ (0...𝑛)if(𝑖 ∈ {1}, ((coeff‘𝐹)‘(𝑛𝑖)), 0))
60 eqeq2 2836 . . . . . . 7 (0 = if(𝑛 = 0, 0, ((coeff‘𝐹)‘(𝑛 − 1))) → (Σ𝑖 ∈ (0...𝑛)if(𝑖 ∈ {1}, ((coeff‘𝐹)‘(𝑛𝑖)), 0) = 0 ↔ Σ𝑖 ∈ (0...𝑛)if(𝑖 ∈ {1}, ((coeff‘𝐹)‘(𝑛𝑖)), 0) = if(𝑛 = 0, 0, ((coeff‘𝐹)‘(𝑛 − 1)))))
61 eqeq2 2836 . . . . . . 7 (((coeff‘𝐹)‘(𝑛 − 1)) = if(𝑛 = 0, 0, ((coeff‘𝐹)‘(𝑛 − 1))) → (Σ𝑖 ∈ (0...𝑛)if(𝑖 ∈ {1}, ((coeff‘𝐹)‘(𝑛𝑖)), 0) = ((coeff‘𝐹)‘(𝑛 − 1)) ↔ Σ𝑖 ∈ (0...𝑛)if(𝑖 ∈ {1}, ((coeff‘𝐹)‘(𝑛𝑖)), 0) = if(𝑛 = 0, 0, ((coeff‘𝐹)‘(𝑛 − 1)))))
62 oveq2 6913 . . . . . . . . . . 11 (𝑛 = 0 → (0...𝑛) = (0...0))
63 0z 11715 . . . . . . . . . . . 12 0 ∈ ℤ
64 fzsn 12676 . . . . . . . . . . . 12 (0 ∈ ℤ → (0...0) = {0})
6563, 64ax-mp 5 . . . . . . . . . . 11 (0...0) = {0}
6662, 65syl6eq 2877 . . . . . . . . . 10 (𝑛 = 0 → (0...𝑛) = {0})
67 elsni 4414 . . . . . . . . . . . . 13 (𝑖 ∈ {0} → 𝑖 = 0)
6867adantl 475 . . . . . . . . . . . 12 ((𝑛 = 0 ∧ 𝑖 ∈ {0}) → 𝑖 = 0)
69 ax-1ne0 10321 . . . . . . . . . . . . . 14 1 ≠ 0
7069nesymi 3056 . . . . . . . . . . . . 13 ¬ 0 = 1
71 eqeq1 2829 . . . . . . . . . . . . 13 (𝑖 = 0 → (𝑖 = 1 ↔ 0 = 1))
7270, 71mtbiri 319 . . . . . . . . . . . 12 (𝑖 = 0 → ¬ 𝑖 = 1)
7368, 72syl 17 . . . . . . . . . . 11 ((𝑛 = 0 ∧ 𝑖 ∈ {0}) → ¬ 𝑖 = 1)
7447notbii 312 . . . . . . . . . . . 12 𝑖 = 1 ↔ ¬ 𝑖 ∈ {1})
7574biimpi 208 . . . . . . . . . . 11 𝑖 = 1 → ¬ 𝑖 ∈ {1})
76 iffalse 4315 . . . . . . . . . . 11 𝑖 ∈ {1} → if(𝑖 ∈ {1}, ((coeff‘𝐹)‘(𝑛𝑖)), 0) = 0)
7773, 75, 763syl 18 . . . . . . . . . 10 ((𝑛 = 0 ∧ 𝑖 ∈ {0}) → if(𝑖 ∈ {1}, ((coeff‘𝐹)‘(𝑛𝑖)), 0) = 0)
7866, 77sumeq12rdv 14815 . . . . . . . . 9 (𝑛 = 0 → Σ𝑖 ∈ (0...𝑛)if(𝑖 ∈ {1}, ((coeff‘𝐹)‘(𝑛𝑖)), 0) = Σ𝑖 ∈ {0}0)
79 snfi 8307 . . . . . . . . . . 11 {0} ∈ Fin
8079olci 897 . . . . . . . . . 10 ({0} ⊆ (ℤ‘0) ∨ {0} ∈ Fin)
81 sumz 14830 . . . . . . . . . 10 (({0} ⊆ (ℤ‘0) ∨ {0} ∈ Fin) → Σ𝑖 ∈ {0}0 = 0)
8280, 81ax-mp 5 . . . . . . . . 9 Σ𝑖 ∈ {0}0 = 0
8378, 82syl6eq 2877 . . . . . . . 8 (𝑛 = 0 → Σ𝑖 ∈ (0...𝑛)if(𝑖 ∈ {1}, ((coeff‘𝐹)‘(𝑛𝑖)), 0) = 0)
8483adantl 475 . . . . . . 7 (((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 = 0) → Σ𝑖 ∈ (0...𝑛)if(𝑖 ∈ {1}, ((coeff‘𝐹)‘(𝑛𝑖)), 0) = 0)
85 simpll 783 . . . . . . . 8 (((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) ∧ ¬ 𝑛 = 0) → 𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}))
8633adantr 474 . . . . . . . . 9 (((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) ∧ ¬ 𝑛 = 0) → 𝑛 ∈ ℕ0)
87 simpr 479 . . . . . . . . . 10 (((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) ∧ ¬ 𝑛 = 0) → ¬ 𝑛 = 0)
8887neqned 3006 . . . . . . . . 9 (((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) ∧ ¬ 𝑛 = 0) → 𝑛 ≠ 0)
89 elnnne0 11634 . . . . . . . . 9 (𝑛 ∈ ℕ ↔ (𝑛 ∈ ℕ0𝑛 ≠ 0))
9086, 88, 89sylanbrc 578 . . . . . . . 8 (((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) ∧ ¬ 𝑛 = 0) → 𝑛 ∈ ℕ)
91 1nn0 11636 . . . . . . . . . . . . 13 1 ∈ ℕ0
9291a1i 11 . . . . . . . . . . . 12 ((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ) → 1 ∈ ℕ0)
93 simpr 479 . . . . . . . . . . . . 13 ((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
9493nnnn0d 11678 . . . . . . . . . . . 12 ((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ0)
9593nnge1d 11399 . . . . . . . . . . . 12 ((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ) → 1 ≤ 𝑛)
96 elfz2nn0 12725 . . . . . . . . . . . 12 (1 ∈ (0...𝑛) ↔ (1 ∈ ℕ0𝑛 ∈ ℕ0 ∧ 1 ≤ 𝑛))
9792, 94, 95, 96syl3anbrc 1447 . . . . . . . . . . 11 ((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ) → 1 ∈ (0...𝑛))
9897snssd 4558 . . . . . . . . . 10 ((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ) → {1} ⊆ (0...𝑛))
9950ad2antrr 717 . . . . . . . . . . . . 13 (((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ {1}) → (coeff‘𝐹):ℕ0⟶ℝ)
100 oveq2 6913 . . . . . . . . . . . . . . . 16 (𝑖 = 1 → (𝑛𝑖) = (𝑛 − 1))
10146, 100sylbi 209 . . . . . . . . . . . . . . 15 (𝑖 ∈ {1} → (𝑛𝑖) = (𝑛 − 1))
102101adantl 475 . . . . . . . . . . . . . 14 (((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ {1}) → (𝑛𝑖) = (𝑛 − 1))
103 nnm1nn0 11661 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → (𝑛 − 1) ∈ ℕ0)
104103ad2antlr 718 . . . . . . . . . . . . . 14 (((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ {1}) → (𝑛 − 1) ∈ ℕ0)
105102, 104eqeltrd 2906 . . . . . . . . . . . . 13 (((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ {1}) → (𝑛𝑖) ∈ ℕ0)
10699, 105ffvelrnd 6609 . . . . . . . . . . . 12 (((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ {1}) → ((coeff‘𝐹)‘(𝑛𝑖)) ∈ ℝ)
107106recnd 10385 . . . . . . . . . . 11 (((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ {1}) → ((coeff‘𝐹)‘(𝑛𝑖)) ∈ ℂ)
108107ralrimiva 3175 . . . . . . . . . 10 ((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ) → ∀𝑖 ∈ {1} ((coeff‘𝐹)‘(𝑛𝑖)) ∈ ℂ)
109 fzfi 13066 . . . . . . . . . . . 12 (0...𝑛) ∈ Fin
110109olci 897 . . . . . . . . . . 11 ((0...𝑛) ⊆ (ℤ‘0) ∨ (0...𝑛) ∈ Fin)
111110a1i 11 . . . . . . . . . 10 ((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ) → ((0...𝑛) ⊆ (ℤ‘0) ∨ (0...𝑛) ∈ Fin))
112 sumss2 14834 . . . . . . . . . 10 ((({1} ⊆ (0...𝑛) ∧ ∀𝑖 ∈ {1} ((coeff‘𝐹)‘(𝑛𝑖)) ∈ ℂ) ∧ ((0...𝑛) ⊆ (ℤ‘0) ∨ (0...𝑛) ∈ Fin)) → Σ𝑖 ∈ {1} ((coeff‘𝐹)‘(𝑛𝑖)) = Σ𝑖 ∈ (0...𝑛)if(𝑖 ∈ {1}, ((coeff‘𝐹)‘(𝑛𝑖)), 0))
11398, 108, 111, 112syl21anc 871 . . . . . . . . 9 ((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ) → Σ𝑖 ∈ {1} ((coeff‘𝐹)‘(𝑛𝑖)) = Σ𝑖 ∈ (0...𝑛)if(𝑖 ∈ {1}, ((coeff‘𝐹)‘(𝑛𝑖)), 0))
11450adantr 474 . . . . . . . . . . . 12 ((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ) → (coeff‘𝐹):ℕ0⟶ℝ)
115103adantl 475 . . . . . . . . . . . 12 ((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ) → (𝑛 − 1) ∈ ℕ0)
116114, 115ffvelrnd 6609 . . . . . . . . . . 11 ((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ) → ((coeff‘𝐹)‘(𝑛 − 1)) ∈ ℝ)
117116recnd 10385 . . . . . . . . . 10 ((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ) → ((coeff‘𝐹)‘(𝑛 − 1)) ∈ ℂ)
118100fveq2d 6437 . . . . . . . . . . 11 (𝑖 = 1 → ((coeff‘𝐹)‘(𝑛𝑖)) = ((coeff‘𝐹)‘(𝑛 − 1)))
119118sumsn 14852 . . . . . . . . . 10 ((1 ∈ ℝ ∧ ((coeff‘𝐹)‘(𝑛 − 1)) ∈ ℂ) → Σ𝑖 ∈ {1} ((coeff‘𝐹)‘(𝑛𝑖)) = ((coeff‘𝐹)‘(𝑛 − 1)))
1203, 117, 119sylancr 581 . . . . . . . . 9 ((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ) → Σ𝑖 ∈ {1} ((coeff‘𝐹)‘(𝑛𝑖)) = ((coeff‘𝐹)‘(𝑛 − 1)))
121113, 120eqtr3d 2863 . . . . . . . 8 ((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ) → Σ𝑖 ∈ (0...𝑛)if(𝑖 ∈ {1}, ((coeff‘𝐹)‘(𝑛𝑖)), 0) = ((coeff‘𝐹)‘(𝑛 − 1)))
12285, 90, 121syl2anc 579 . . . . . . 7 (((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) ∧ ¬ 𝑛 = 0) → Σ𝑖 ∈ (0...𝑛)if(𝑖 ∈ {1}, ((coeff‘𝐹)‘(𝑛𝑖)), 0) = ((coeff‘𝐹)‘(𝑛 − 1)))
12360, 61, 84, 122ifbothda 4343 . . . . . 6 ((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) → Σ𝑖 ∈ (0...𝑛)if(𝑖 ∈ {1}, ((coeff‘𝐹)‘(𝑛𝑖)), 0) = if(𝑛 = 0, 0, ((coeff‘𝐹)‘(𝑛 − 1))))
12459, 123eqtrd 2861 . . . . 5 ((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) → Σ𝑖 ∈ (0...𝑛)if(𝑖 = 1, (1 · ((coeff‘𝐹)‘(𝑛𝑖))), (0 · ((coeff‘𝐹)‘(𝑛𝑖)))) = if(𝑛 = 0, 0, ((coeff‘𝐹)‘(𝑛 − 1))))
12537, 45, 1243eqtrd 2865 . . . 4 ((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) → ((coeff‘(Xp𝑓 · 𝐹))‘𝑛) = if(𝑛 = 0, 0, ((coeff‘𝐹)‘(𝑛 − 1))))
12630, 125eqtrd 2861 . . 3 ((𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) ∧ 𝑛 ∈ ℕ0) → ((coeff‘(𝐹𝑓 · Xp))‘𝑛) = if(𝑛 = 0, 0, ((coeff‘𝐹)‘(𝑛 − 1))))
127126mpteq2dva 4967 . 2 (𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) → (𝑛 ∈ ℕ0 ↦ ((coeff‘(𝐹𝑓 · Xp))‘𝑛)) = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, 0, ((coeff‘𝐹)‘(𝑛 − 1)))))
12816, 127eqtrd 2861 1 (𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) → (coeff‘(𝐹𝑓 · Xp)) = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, 0, ((coeff‘𝐹)‘(𝑛 − 1)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 386  wo 878   = wceq 1656  wcel 2164  wne 2999  wral 3117  Vcvv 3414  cdif 3795  wss 3798  ifcif 4306  {csn 4397   class class class wbr 4873  cmpt 4952  wf 6119  cfv 6123  (class class class)co 6905  𝑓 cof 7155  Fincfn 8222  cc 10250  cr 10251  0cc0 10252  1c1 10253   · cmul 10257  cle 10392  cmin 10585  cn 11350  0cn0 11618  cz 11704  cuz 11968  ...cfz 12619  Σcsu 14793  0𝑝c0p 23835  Polycply 24339  Xpcidp 24340  coeffccoe 24341
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-rep 4994  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-inf2 8815  ax-cnex 10308  ax-resscn 10309  ax-1cn 10310  ax-icn 10311  ax-addcl 10312  ax-addrcl 10313  ax-mulcl 10314  ax-mulrcl 10315  ax-mulcom 10316  ax-addass 10317  ax-mulass 10318  ax-distr 10319  ax-i2m1 10320  ax-1ne0 10321  ax-1rid 10322  ax-rnegex 10323  ax-rrecex 10324  ax-cnre 10325  ax-pre-lttri 10326  ax-pre-lttrn 10327  ax-pre-ltadd 10328  ax-pre-mulgt0 10329  ax-pre-sup 10330  ax-addf 10331
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-fal 1670  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4659  df-int 4698  df-iun 4742  df-br 4874  df-opab 4936  df-mpt 4953  df-tr 4976  df-id 5250  df-eprel 5255  df-po 5263  df-so 5264  df-fr 5301  df-se 5302  df-we 5303  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-pred 5920  df-ord 5966  df-on 5967  df-lim 5968  df-suc 5969  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-isom 6132  df-riota 6866  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-of 7157  df-om 7327  df-1st 7428  df-2nd 7429  df-wrecs 7672  df-recs 7734  df-rdg 7772  df-1o 7826  df-oadd 7830  df-er 8009  df-map 8124  df-pm 8125  df-en 8223  df-dom 8224  df-sdom 8225  df-fin 8226  df-sup 8617  df-inf 8618  df-oi 8684  df-card 9078  df-pnf 10393  df-mnf 10394  df-xr 10395  df-ltxr 10396  df-le 10397  df-sub 10587  df-neg 10588  df-div 11010  df-nn 11351  df-2 11414  df-3 11415  df-n0 11619  df-z 11705  df-uz 11969  df-rp 12113  df-fz 12620  df-fzo 12761  df-fl 12888  df-seq 13096  df-exp 13155  df-hash 13411  df-cj 14216  df-re 14217  df-im 14218  df-sqrt 14352  df-abs 14353  df-clim 14596  df-rlim 14597  df-sum 14794  df-0p 23836  df-ply 24343  df-idp 24344  df-coe 24345  df-dgr 24346
This theorem is referenced by:  plymulx  31161
  Copyright terms: Public domain W3C validator