Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  parteq1d Structured version   Visualization version   GIF version

Theorem parteq1d 38738
Description: Equality theorem for partition, deduction version. (Contributed by Peter Mazsa, 5-Oct-2021.)
Hypothesis
Ref Expression
parteq1d.1 (𝜑𝑅 = 𝑆)
Assertion
Ref Expression
parteq1d (𝜑 → (𝑅 Part 𝐴𝑆 Part 𝐴))

Proof of Theorem parteq1d
StepHypRef Expression
1 parteq1d.1 . 2 (𝜑𝑅 = 𝑆)
2 parteq1 38734 . 2 (𝑅 = 𝑆 → (𝑅 Part 𝐴𝑆 Part 𝐴))
31, 2syl 17 1 (𝜑 → (𝑅 Part 𝐴𝑆 Part 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1539   Part wpart 38180
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-br 5124  df-opab 5186  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-ec 8729  df-qs 8733  df-coss 38371  df-cnvrefrel 38487  df-dmqs 38599  df-funALTV 38642  df-disjALTV 38665  df-part 38726
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator