Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  parteq1d Structured version   Visualization version   GIF version

Theorem parteq1d 37636
Description: Equality theorem for partition, deduction version. (Contributed by Peter Mazsa, 5-Oct-2021.)
Hypothesis
Ref Expression
parteq1d.1 (𝜑𝑅 = 𝑆)
Assertion
Ref Expression
parteq1d (𝜑 → (𝑅 Part 𝐴𝑆 Part 𝐴))

Proof of Theorem parteq1d
StepHypRef Expression
1 parteq1d.1 . 2 (𝜑𝑅 = 𝑆)
2 parteq1 37632 . 2 (𝑅 = 𝑆 → (𝑅 Part 𝐴𝑆 Part 𝐴))
31, 2syl 17 1 (𝜑 → (𝑅 Part 𝐴𝑆 Part 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1541   Part wpart 37070
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-br 5148  df-opab 5210  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-ec 8701  df-qs 8705  df-coss 37269  df-cnvrefrel 37385  df-dmqs 37497  df-funALTV 37540  df-disjALTV 37563  df-part 37624
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator