Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > permsetexOLD | Structured version Visualization version GIF version |
Description: Obsolete version of f1osetex 8605 as of 8-Aug-2024. (Contributed by AV, 30-Mar-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
permsetexOLD | ⊢ (𝐴 ∈ 𝑉 → {𝑓 ∣ 𝑓:𝐴–1-1-onto→𝐴} ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mapex 8579 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) → {𝑓 ∣ 𝑓:𝐴⟶𝐴} ∈ V) | |
2 | 1 | anidms 566 | . 2 ⊢ (𝐴 ∈ 𝑉 → {𝑓 ∣ 𝑓:𝐴⟶𝐴} ∈ V) |
3 | f1of 6700 | . . . 4 ⊢ (𝑓:𝐴–1-1-onto→𝐴 → 𝑓:𝐴⟶𝐴) | |
4 | 3 | ss2abi 3996 | . . 3 ⊢ {𝑓 ∣ 𝑓:𝐴–1-1-onto→𝐴} ⊆ {𝑓 ∣ 𝑓:𝐴⟶𝐴} |
5 | 4 | a1i 11 | . 2 ⊢ (𝐴 ∈ 𝑉 → {𝑓 ∣ 𝑓:𝐴–1-1-onto→𝐴} ⊆ {𝑓 ∣ 𝑓:𝐴⟶𝐴}) |
6 | 2, 5 | ssexd 5243 | 1 ⊢ (𝐴 ∈ 𝑉 → {𝑓 ∣ 𝑓:𝐴–1-1-onto→𝐴} ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 {cab 2715 Vcvv 3422 ⊆ wss 3883 ⟶wf 6414 –1-1-onto→wf1o 6417 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-xp 5586 df-rel 5587 df-cnv 5588 df-dm 5590 df-rn 5591 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-f1o 6425 |
This theorem is referenced by: symgbasexOLD 18894 |
Copyright terms: Public domain | W3C validator |