MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  permsetexOLD Structured version   Visualization version   GIF version

Theorem permsetexOLD 18892
Description: Obsolete version of f1osetex 8605 as of 8-Aug-2024. (Contributed by AV, 30-Mar-2024.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
permsetexOLD (𝐴𝑉 → {𝑓𝑓:𝐴1-1-onto𝐴} ∈ V)
Distinct variable group:   𝐴,𝑓
Allowed substitution hint:   𝑉(𝑓)

Proof of Theorem permsetexOLD
StepHypRef Expression
1 mapex 8579 . . 3 ((𝐴𝑉𝐴𝑉) → {𝑓𝑓:𝐴𝐴} ∈ V)
21anidms 566 . 2 (𝐴𝑉 → {𝑓𝑓:𝐴𝐴} ∈ V)
3 f1of 6700 . . . 4 (𝑓:𝐴1-1-onto𝐴𝑓:𝐴𝐴)
43ss2abi 3996 . . 3 {𝑓𝑓:𝐴1-1-onto𝐴} ⊆ {𝑓𝑓:𝐴𝐴}
54a1i 11 . 2 (𝐴𝑉 → {𝑓𝑓:𝐴1-1-onto𝐴} ⊆ {𝑓𝑓:𝐴𝐴})
62, 5ssexd 5243 1 (𝐴𝑉 → {𝑓𝑓:𝐴1-1-onto𝐴} ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  {cab 2715  Vcvv 3422  wss 3883  wf 6414  1-1-ontowf1o 6417
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-xp 5586  df-rel 5587  df-cnv 5588  df-dm 5590  df-rn 5591  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-f1o 6425
This theorem is referenced by:  symgbasexOLD  18894
  Copyright terms: Public domain W3C validator