MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  permsetexOLD Structured version   Visualization version   GIF version

Theorem permsetexOLD 19363
Description: Obsolete version of f1osetex 8880 as of 8-Aug-2024. (Contributed by AV, 30-Mar-2024.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
permsetexOLD (𝐴𝑉 → {𝑓𝑓:𝐴1-1-onto𝐴} ∈ V)
Distinct variable group:   𝐴,𝑓
Allowed substitution hint:   𝑉(𝑓)

Proof of Theorem permsetexOLD
StepHypRef Expression
1 mapex 7944 . . 3 ((𝐴𝑉𝐴𝑉) → {𝑓𝑓:𝐴𝐴} ∈ V)
21anidms 565 . 2 (𝐴𝑉 → {𝑓𝑓:𝐴𝐴} ∈ V)
3 f1of 6835 . . . 4 (𝑓:𝐴1-1-onto𝐴𝑓:𝐴𝐴)
43ss2abi 4060 . . 3 {𝑓𝑓:𝐴1-1-onto𝐴} ⊆ {𝑓𝑓:𝐴𝐴}
54a1i 11 . 2 (𝐴𝑉 → {𝑓𝑓:𝐴1-1-onto𝐴} ⊆ {𝑓𝑓:𝐴𝐴})
62, 5ssexd 5321 1 (𝐴𝑉 → {𝑓𝑓:𝐴1-1-onto𝐴} ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2099  {cab 2703  Vcvv 3462  wss 3946  wf 6542  1-1-ontowf1o 6545
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2697  ax-sep 5296  ax-nul 5303  ax-pow 5361  ax-pr 5425  ax-un 7738
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-sb 2061  df-clab 2704  df-cleq 2718  df-clel 2803  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3464  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-nul 4323  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4906  df-br 5146  df-opab 5208  df-xp 5680  df-rel 5681  df-cnv 5682  df-dm 5684  df-rn 5685  df-fun 6548  df-fn 6549  df-f 6550  df-f1 6551  df-f1o 6553
This theorem is referenced by:  symgbasexOLD  19365
  Copyright terms: Public domain W3C validator