![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > permsetexOLD | Structured version Visualization version GIF version |
Description: Obsolete version of f1osetex 8867 as of 8-Aug-2024. (Contributed by AV, 30-Mar-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
permsetexOLD | ⊢ (𝐴 ∈ 𝑉 → {𝑓 ∣ 𝑓:𝐴–1-1-onto→𝐴} ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mapex 8840 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) → {𝑓 ∣ 𝑓:𝐴⟶𝐴} ∈ V) | |
2 | 1 | anidms 566 | . 2 ⊢ (𝐴 ∈ 𝑉 → {𝑓 ∣ 𝑓:𝐴⟶𝐴} ∈ V) |
3 | f1of 6833 | . . . 4 ⊢ (𝑓:𝐴–1-1-onto→𝐴 → 𝑓:𝐴⟶𝐴) | |
4 | 3 | ss2abi 4059 | . . 3 ⊢ {𝑓 ∣ 𝑓:𝐴–1-1-onto→𝐴} ⊆ {𝑓 ∣ 𝑓:𝐴⟶𝐴} |
5 | 4 | a1i 11 | . 2 ⊢ (𝐴 ∈ 𝑉 → {𝑓 ∣ 𝑓:𝐴–1-1-onto→𝐴} ⊆ {𝑓 ∣ 𝑓:𝐴⟶𝐴}) |
6 | 2, 5 | ssexd 5318 | 1 ⊢ (𝐴 ∈ 𝑉 → {𝑓 ∣ 𝑓:𝐴–1-1-onto→𝐴} ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2099 {cab 2704 Vcvv 3469 ⊆ wss 3944 ⟶wf 6538 –1-1-onto→wf1o 6541 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7732 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2705 df-cleq 2719 df-clel 2805 df-ral 3057 df-rex 3066 df-rab 3428 df-v 3471 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5143 df-opab 5205 df-xp 5678 df-rel 5679 df-cnv 5680 df-dm 5682 df-rn 5683 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-f1o 6549 |
This theorem is referenced by: symgbasexOLD 19310 |
Copyright terms: Public domain | W3C validator |