![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > permsetexOLD | Structured version Visualization version GIF version |
Description: Obsolete version of f1osetex 8880 as of 8-Aug-2024. (Contributed by AV, 30-Mar-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
permsetexOLD | ⊢ (𝐴 ∈ 𝑉 → {𝑓 ∣ 𝑓:𝐴–1-1-onto→𝐴} ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mapex 7944 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) → {𝑓 ∣ 𝑓:𝐴⟶𝐴} ∈ V) | |
2 | 1 | anidms 565 | . 2 ⊢ (𝐴 ∈ 𝑉 → {𝑓 ∣ 𝑓:𝐴⟶𝐴} ∈ V) |
3 | f1of 6835 | . . . 4 ⊢ (𝑓:𝐴–1-1-onto→𝐴 → 𝑓:𝐴⟶𝐴) | |
4 | 3 | ss2abi 4060 | . . 3 ⊢ {𝑓 ∣ 𝑓:𝐴–1-1-onto→𝐴} ⊆ {𝑓 ∣ 𝑓:𝐴⟶𝐴} |
5 | 4 | a1i 11 | . 2 ⊢ (𝐴 ∈ 𝑉 → {𝑓 ∣ 𝑓:𝐴–1-1-onto→𝐴} ⊆ {𝑓 ∣ 𝑓:𝐴⟶𝐴}) |
6 | 2, 5 | ssexd 5321 | 1 ⊢ (𝐴 ∈ 𝑉 → {𝑓 ∣ 𝑓:𝐴–1-1-onto→𝐴} ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2099 {cab 2703 Vcvv 3462 ⊆ wss 3946 ⟶wf 6542 –1-1-onto→wf1o 6545 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2697 ax-sep 5296 ax-nul 5303 ax-pow 5361 ax-pr 5425 ax-un 7738 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2704 df-cleq 2718 df-clel 2803 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3464 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-nul 4323 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4906 df-br 5146 df-opab 5208 df-xp 5680 df-rel 5681 df-cnv 5682 df-dm 5684 df-rn 5685 df-fun 6548 df-fn 6549 df-f 6550 df-f1 6551 df-f1o 6553 |
This theorem is referenced by: symgbasexOLD 19365 |
Copyright terms: Public domain | W3C validator |