MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  permsetexOLD Structured version   Visualization version   GIF version

Theorem permsetexOLD 18977
Description: Obsolete version of f1osetex 8647 as of 8-Aug-2024. (Contributed by AV, 30-Mar-2024.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
permsetexOLD (𝐴𝑉 → {𝑓𝑓:𝐴1-1-onto𝐴} ∈ V)
Distinct variable group:   𝐴,𝑓
Allowed substitution hint:   𝑉(𝑓)

Proof of Theorem permsetexOLD
StepHypRef Expression
1 mapex 8621 . . 3 ((𝐴𝑉𝐴𝑉) → {𝑓𝑓:𝐴𝐴} ∈ V)
21anidms 567 . 2 (𝐴𝑉 → {𝑓𝑓:𝐴𝐴} ∈ V)
3 f1of 6716 . . . 4 (𝑓:𝐴1-1-onto𝐴𝑓:𝐴𝐴)
43ss2abi 4000 . . 3 {𝑓𝑓:𝐴1-1-onto𝐴} ⊆ {𝑓𝑓:𝐴𝐴}
54a1i 11 . 2 (𝐴𝑉 → {𝑓𝑓:𝐴1-1-onto𝐴} ⊆ {𝑓𝑓:𝐴𝐴})
62, 5ssexd 5248 1 (𝐴𝑉 → {𝑓𝑓:𝐴1-1-onto𝐴} ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106  {cab 2715  Vcvv 3432  wss 3887  wf 6429  1-1-ontowf1o 6432
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-xp 5595  df-rel 5596  df-cnv 5597  df-dm 5599  df-rn 5600  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-f1o 6440
This theorem is referenced by:  symgbasexOLD  18979
  Copyright terms: Public domain W3C validator