Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > permsetexOLD | Structured version Visualization version GIF version |
Description: Obsolete version of f1osetex 8647 as of 8-Aug-2024. (Contributed by AV, 30-Mar-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
permsetexOLD | ⊢ (𝐴 ∈ 𝑉 → {𝑓 ∣ 𝑓:𝐴–1-1-onto→𝐴} ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mapex 8621 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) → {𝑓 ∣ 𝑓:𝐴⟶𝐴} ∈ V) | |
2 | 1 | anidms 567 | . 2 ⊢ (𝐴 ∈ 𝑉 → {𝑓 ∣ 𝑓:𝐴⟶𝐴} ∈ V) |
3 | f1of 6716 | . . . 4 ⊢ (𝑓:𝐴–1-1-onto→𝐴 → 𝑓:𝐴⟶𝐴) | |
4 | 3 | ss2abi 4000 | . . 3 ⊢ {𝑓 ∣ 𝑓:𝐴–1-1-onto→𝐴} ⊆ {𝑓 ∣ 𝑓:𝐴⟶𝐴} |
5 | 4 | a1i 11 | . 2 ⊢ (𝐴 ∈ 𝑉 → {𝑓 ∣ 𝑓:𝐴–1-1-onto→𝐴} ⊆ {𝑓 ∣ 𝑓:𝐴⟶𝐴}) |
6 | 2, 5 | ssexd 5248 | 1 ⊢ (𝐴 ∈ 𝑉 → {𝑓 ∣ 𝑓:𝐴–1-1-onto→𝐴} ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 {cab 2715 Vcvv 3432 ⊆ wss 3887 ⟶wf 6429 –1-1-onto→wf1o 6432 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-xp 5595 df-rel 5596 df-cnv 5597 df-dm 5599 df-rn 5600 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-f1o 6440 |
This theorem is referenced by: symgbasexOLD 18979 |
Copyright terms: Public domain | W3C validator |