| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1osetex | Structured version Visualization version GIF version | ||
| Description: The set of bijections between two classes exists. (Contributed by AV, 30-Mar-2024.) (Revised by AV, 8-Aug-2024.) (Proof shortened by SN, 22-Aug-2024.) |
| Ref | Expression |
|---|---|
| f1osetex | ⊢ {𝑓 ∣ 𝑓:𝐴–1-1-onto→𝐵} ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fosetex 8831 | . 2 ⊢ {𝑓 ∣ 𝑓:𝐴–onto→𝐵} ∈ V | |
| 2 | f1ofo 6807 | . . 3 ⊢ (𝑓:𝐴–1-1-onto→𝐵 → 𝑓:𝐴–onto→𝐵) | |
| 3 | 2 | ss2abi 4030 | . 2 ⊢ {𝑓 ∣ 𝑓:𝐴–1-1-onto→𝐵} ⊆ {𝑓 ∣ 𝑓:𝐴–onto→𝐵} |
| 4 | 1, 3 | ssexi 5277 | 1 ⊢ {𝑓 ∣ 𝑓:𝐴–1-1-onto→𝐵} ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 {cab 2707 Vcvv 3447 –onto→wfo 6509 –1-1-onto→wf1o 6510 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-map 8801 |
| This theorem is referenced by: hashfacen 14419 symgplusg 19313 symgvalstruct 19327 |
| Copyright terms: Public domain | W3C validator |