![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f1osetex | Structured version Visualization version GIF version |
Description: The set of bijections between two classes exists. (Contributed by AV, 30-Mar-2024.) (Revised by AV, 8-Aug-2024.) (Proof shortened by SN, 22-Aug-2024.) |
Ref | Expression |
---|---|
f1osetex | ⊢ {𝑓 ∣ 𝑓:𝐴–1-1-onto→𝐵} ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fosetex 8851 | . 2 ⊢ {𝑓 ∣ 𝑓:𝐴–onto→𝐵} ∈ V | |
2 | f1ofo 6840 | . . 3 ⊢ (𝑓:𝐴–1-1-onto→𝐵 → 𝑓:𝐴–onto→𝐵) | |
3 | 2 | ss2abi 4063 | . 2 ⊢ {𝑓 ∣ 𝑓:𝐴–1-1-onto→𝐵} ⊆ {𝑓 ∣ 𝑓:𝐴–onto→𝐵} |
4 | 1, 3 | ssexi 5322 | 1 ⊢ {𝑓 ∣ 𝑓:𝐴–1-1-onto→𝐵} ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 {cab 2709 Vcvv 3474 –onto→wfo 6541 –1-1-onto→wf1o 6542 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3778 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7411 df-oprab 7412 df-mpo 7413 df-map 8821 |
This theorem is referenced by: hashfacen 14412 symgplusg 19249 symgvalstruct 19263 symgvalstructOLD 19264 |
Copyright terms: Public domain | W3C validator |