MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1osetex Structured version   Visualization version   GIF version

Theorem f1osetex 8900
Description: The set of bijections between two classes exists. (Contributed by AV, 30-Mar-2024.) (Revised by AV, 8-Aug-2024.) (Proof shortened by SN, 22-Aug-2024.)
Assertion
Ref Expression
f1osetex {𝑓𝑓:𝐴1-1-onto𝐵} ∈ V
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓

Proof of Theorem f1osetex
StepHypRef Expression
1 fosetex 8899 . 2 {𝑓𝑓:𝐴onto𝐵} ∈ V
2 f1ofo 6854 . . 3 (𝑓:𝐴1-1-onto𝐵𝑓:𝐴onto𝐵)
32ss2abi 4066 . 2 {𝑓𝑓:𝐴1-1-onto𝐵} ⊆ {𝑓𝑓:𝐴onto𝐵}
41, 3ssexi 5321 1 {𝑓𝑓:𝐴1-1-onto𝐵} ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 2107  {cab 2713  Vcvv 3479  ontowfo 6558  1-1-ontowf1o 6559
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-sbc 3788  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-br 5143  df-opab 5205  df-id 5577  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-ov 7435  df-oprab 7436  df-mpo 7437  df-map 8869
This theorem is referenced by:  hashfacen  14494  symgplusg  19401  symgvalstruct  19415  symgvalstructOLD  19416
  Copyright terms: Public domain W3C validator