MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1osetex Structured version   Visualization version   GIF version

Theorem f1osetex 8832
Description: The set of bijections between two classes exists. (Contributed by AV, 30-Mar-2024.) (Revised by AV, 8-Aug-2024.) (Proof shortened by SN, 22-Aug-2024.)
Assertion
Ref Expression
f1osetex {𝑓𝑓:𝐴1-1-onto𝐵} ∈ V
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓

Proof of Theorem f1osetex
StepHypRef Expression
1 fosetex 8831 . 2 {𝑓𝑓:𝐴onto𝐵} ∈ V
2 f1ofo 6807 . . 3 (𝑓:𝐴1-1-onto𝐵𝑓:𝐴onto𝐵)
32ss2abi 4030 . 2 {𝑓𝑓:𝐴1-1-onto𝐵} ⊆ {𝑓𝑓:𝐴onto𝐵}
41, 3ssexi 5277 1 {𝑓𝑓:𝐴1-1-onto𝐵} ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 2109  {cab 2707  Vcvv 3447  ontowfo 6509  1-1-ontowf1o 6510
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-map 8801
This theorem is referenced by:  hashfacen  14419  symgplusg  19313  symgvalstruct  19327
  Copyright terms: Public domain W3C validator