![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > symgbas | Structured version Visualization version GIF version |
Description: The base set of the symmetric group. (Contributed by Mario Carneiro, 12-Jan-2015.) (Proof shortened by AV, 29-Mar-2024.) |
Ref | Expression |
---|---|
symgbas.1 | ⊢ 𝐺 = (SymGrp‘𝐴) |
symgbas.2 | ⊢ 𝐵 = (Base‘𝐺) |
Ref | Expression |
---|---|
symgbas | ⊢ 𝐵 = {𝑥 ∣ 𝑥:𝐴–1-1-onto→𝐴} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | symgbas.1 | . . . . 5 ⊢ 𝐺 = (SymGrp‘𝐴) | |
2 | eqid 2731 | . . . . 5 ⊢ {𝑥 ∣ 𝑥:𝐴–1-1-onto→𝐴} = {𝑥 ∣ 𝑥:𝐴–1-1-onto→𝐴} | |
3 | 1, 2 | symgval 19278 | . . . 4 ⊢ 𝐺 = ((EndoFMnd‘𝐴) ↾s {𝑥 ∣ 𝑥:𝐴–1-1-onto→𝐴}) |
4 | 3 | eqcomi 2740 | . . 3 ⊢ ((EndoFMnd‘𝐴) ↾s {𝑥 ∣ 𝑥:𝐴–1-1-onto→𝐴}) = 𝐺 |
5 | 4 | fveq2i 6894 | . 2 ⊢ (Base‘((EndoFMnd‘𝐴) ↾s {𝑥 ∣ 𝑥:𝐴–1-1-onto→𝐴})) = (Base‘𝐺) |
6 | f1of 6833 | . . . . 5 ⊢ (𝑥:𝐴–1-1-onto→𝐴 → 𝑥:𝐴⟶𝐴) | |
7 | 6 | ss2abi 4063 | . . . 4 ⊢ {𝑥 ∣ 𝑥:𝐴–1-1-onto→𝐴} ⊆ {𝑥 ∣ 𝑥:𝐴⟶𝐴} |
8 | eqid 2731 | . . . . 5 ⊢ (EndoFMnd‘𝐴) = (EndoFMnd‘𝐴) | |
9 | eqid 2731 | . . . . 5 ⊢ (Base‘(EndoFMnd‘𝐴)) = (Base‘(EndoFMnd‘𝐴)) | |
10 | 8, 9 | efmndbasabf 18790 | . . . 4 ⊢ (Base‘(EndoFMnd‘𝐴)) = {𝑥 ∣ 𝑥:𝐴⟶𝐴} |
11 | 7, 10 | sseqtrri 4019 | . . 3 ⊢ {𝑥 ∣ 𝑥:𝐴–1-1-onto→𝐴} ⊆ (Base‘(EndoFMnd‘𝐴)) |
12 | eqid 2731 | . . . 4 ⊢ ((EndoFMnd‘𝐴) ↾s {𝑥 ∣ 𝑥:𝐴–1-1-onto→𝐴}) = ((EndoFMnd‘𝐴) ↾s {𝑥 ∣ 𝑥:𝐴–1-1-onto→𝐴}) | |
13 | 12, 9 | ressbas2 17187 | . . 3 ⊢ ({𝑥 ∣ 𝑥:𝐴–1-1-onto→𝐴} ⊆ (Base‘(EndoFMnd‘𝐴)) → {𝑥 ∣ 𝑥:𝐴–1-1-onto→𝐴} = (Base‘((EndoFMnd‘𝐴) ↾s {𝑥 ∣ 𝑥:𝐴–1-1-onto→𝐴}))) |
14 | 11, 13 | ax-mp 5 | . 2 ⊢ {𝑥 ∣ 𝑥:𝐴–1-1-onto→𝐴} = (Base‘((EndoFMnd‘𝐴) ↾s {𝑥 ∣ 𝑥:𝐴–1-1-onto→𝐴})) |
15 | symgbas.2 | . 2 ⊢ 𝐵 = (Base‘𝐺) | |
16 | 5, 14, 15 | 3eqtr4ri 2770 | 1 ⊢ 𝐵 = {𝑥 ∣ 𝑥:𝐴–1-1-onto→𝐴} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1540 {cab 2708 ⊆ wss 3948 ⟶wf 6539 –1-1-onto→wf1o 6542 ‘cfv 6543 (class class class)co 7412 Basecbs 17149 ↾s cress 17178 EndoFMndcefmnd 18786 SymGrpcsymg 19276 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7728 ax-cnex 11169 ax-resscn 11170 ax-1cn 11171 ax-icn 11172 ax-addcl 11173 ax-addrcl 11174 ax-mulcl 11175 ax-mulrcl 11176 ax-mulcom 11177 ax-addass 11178 ax-mulass 11179 ax-distr 11180 ax-i2m1 11181 ax-1ne0 11182 ax-1rid 11183 ax-rnegex 11184 ax-rrecex 11185 ax-cnre 11186 ax-pre-lttri 11187 ax-pre-lttrn 11188 ax-pre-ltadd 11189 ax-pre-mulgt0 11190 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7859 df-1st 7978 df-2nd 7979 df-frecs 8269 df-wrecs 8300 df-recs 8374 df-rdg 8413 df-1o 8469 df-er 8706 df-map 8825 df-en 8943 df-dom 8944 df-sdom 8945 df-fin 8946 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-nn 12218 df-2 12280 df-3 12281 df-4 12282 df-5 12283 df-6 12284 df-7 12285 df-8 12286 df-9 12287 df-n0 12478 df-z 12564 df-uz 12828 df-fz 13490 df-struct 17085 df-sets 17102 df-slot 17120 df-ndx 17132 df-base 17150 df-ress 17179 df-plusg 17215 df-tset 17221 df-efmnd 18787 df-symg 19277 |
This theorem is referenced by: symgbasexOLD 19281 elsymgbas2 19282 symghash 19287 symgbasfi 19288 symgressbas 19291 symgbas0 19298 symg1bas 19300 symgvalstruct 19306 symgvalstructOLD 19307 symgsubmefmnd 19308 symgtset 19309 |
Copyright terms: Public domain | W3C validator |