| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > symgbas | Structured version Visualization version GIF version | ||
| Description: The base set of the symmetric group. (Contributed by Mario Carneiro, 12-Jan-2015.) (Proof shortened by AV, 29-Mar-2024.) |
| Ref | Expression |
|---|---|
| symgbas.1 | ⊢ 𝐺 = (SymGrp‘𝐴) |
| symgbas.2 | ⊢ 𝐵 = (Base‘𝐺) |
| Ref | Expression |
|---|---|
| symgbas | ⊢ 𝐵 = {𝑥 ∣ 𝑥:𝐴–1-1-onto→𝐴} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | symgbas.1 | . . . . 5 ⊢ 𝐺 = (SymGrp‘𝐴) | |
| 2 | eqid 2733 | . . . . 5 ⊢ {𝑥 ∣ 𝑥:𝐴–1-1-onto→𝐴} = {𝑥 ∣ 𝑥:𝐴–1-1-onto→𝐴} | |
| 3 | 1, 2 | symgval 19285 | . . . 4 ⊢ 𝐺 = ((EndoFMnd‘𝐴) ↾s {𝑥 ∣ 𝑥:𝐴–1-1-onto→𝐴}) |
| 4 | 3 | eqcomi 2742 | . . 3 ⊢ ((EndoFMnd‘𝐴) ↾s {𝑥 ∣ 𝑥:𝐴–1-1-onto→𝐴}) = 𝐺 |
| 5 | 4 | fveq2i 6831 | . 2 ⊢ (Base‘((EndoFMnd‘𝐴) ↾s {𝑥 ∣ 𝑥:𝐴–1-1-onto→𝐴})) = (Base‘𝐺) |
| 6 | f1of 6768 | . . . . 5 ⊢ (𝑥:𝐴–1-1-onto→𝐴 → 𝑥:𝐴⟶𝐴) | |
| 7 | 6 | ss2abi 4015 | . . . 4 ⊢ {𝑥 ∣ 𝑥:𝐴–1-1-onto→𝐴} ⊆ {𝑥 ∣ 𝑥:𝐴⟶𝐴} |
| 8 | eqid 2733 | . . . . 5 ⊢ (EndoFMnd‘𝐴) = (EndoFMnd‘𝐴) | |
| 9 | eqid 2733 | . . . . 5 ⊢ (Base‘(EndoFMnd‘𝐴)) = (Base‘(EndoFMnd‘𝐴)) | |
| 10 | 8, 9 | efmndbasabf 18782 | . . . 4 ⊢ (Base‘(EndoFMnd‘𝐴)) = {𝑥 ∣ 𝑥:𝐴⟶𝐴} |
| 11 | 7, 10 | sseqtrri 3980 | . . 3 ⊢ {𝑥 ∣ 𝑥:𝐴–1-1-onto→𝐴} ⊆ (Base‘(EndoFMnd‘𝐴)) |
| 12 | eqid 2733 | . . . 4 ⊢ ((EndoFMnd‘𝐴) ↾s {𝑥 ∣ 𝑥:𝐴–1-1-onto→𝐴}) = ((EndoFMnd‘𝐴) ↾s {𝑥 ∣ 𝑥:𝐴–1-1-onto→𝐴}) | |
| 13 | 12, 9 | ressbas2 17151 | . . 3 ⊢ ({𝑥 ∣ 𝑥:𝐴–1-1-onto→𝐴} ⊆ (Base‘(EndoFMnd‘𝐴)) → {𝑥 ∣ 𝑥:𝐴–1-1-onto→𝐴} = (Base‘((EndoFMnd‘𝐴) ↾s {𝑥 ∣ 𝑥:𝐴–1-1-onto→𝐴}))) |
| 14 | 11, 13 | ax-mp 5 | . 2 ⊢ {𝑥 ∣ 𝑥:𝐴–1-1-onto→𝐴} = (Base‘((EndoFMnd‘𝐴) ↾s {𝑥 ∣ 𝑥:𝐴–1-1-onto→𝐴})) |
| 15 | symgbas.2 | . 2 ⊢ 𝐵 = (Base‘𝐺) | |
| 16 | 5, 14, 15 | 3eqtr4ri 2767 | 1 ⊢ 𝐵 = {𝑥 ∣ 𝑥:𝐴–1-1-onto→𝐴} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 {cab 2711 ⊆ wss 3898 ⟶wf 6482 –1-1-onto→wf1o 6485 ‘cfv 6486 (class class class)co 7352 Basecbs 17122 ↾s cress 17143 EndoFMndcefmnd 18778 SymGrpcsymg 19283 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-tp 4580 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-er 8628 df-map 8758 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-nn 12133 df-2 12195 df-3 12196 df-4 12197 df-5 12198 df-6 12199 df-7 12200 df-8 12201 df-9 12202 df-n0 12389 df-z 12476 df-uz 12739 df-fz 13410 df-struct 17060 df-sets 17077 df-slot 17095 df-ndx 17107 df-base 17123 df-ress 17144 df-plusg 17176 df-tset 17182 df-efmnd 18779 df-symg 19284 |
| This theorem is referenced by: elsymgbas2 19287 symghash 19292 symgbasfi 19293 symgressbas 19296 symgbas0 19303 symg1bas 19305 symgvalstruct 19311 symgsubmefmnd 19312 symgtset 19313 |
| Copyright terms: Public domain | W3C validator |