MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwlknonel Structured version   Visualization version   GIF version

Theorem clwwlknonel 30124
Description: Characterization of a word over the set of vertices representing a closed walk on vertex 𝑋 of (nonzero) length 𝑁 in a graph 𝐺. This theorem would not hold for 𝑁 = 0 if 𝑊 = 𝑋 = ∅. (Contributed by Alexander van der Vekens, 20-Sep-2018.) (Revised by AV, 28-May-2021.) (Revised by AV, 24-Mar-2022.)
Hypotheses
Ref Expression
clwwlknonel.v 𝑉 = (Vtx‘𝐺)
clwwlknonel.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
clwwlknonel (𝑁 ≠ 0 → (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ↔ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = 𝑁 ∧ (𝑊‘0) = 𝑋)))
Distinct variable groups:   𝑖,𝐺   𝑖,𝑊
Allowed substitution hints:   𝐸(𝑖)   𝑁(𝑖)   𝑉(𝑖)   𝑋(𝑖)

Proof of Theorem clwwlknonel
StepHypRef Expression
1 clwwlknonel.v . . . . . . 7 𝑉 = (Vtx‘𝐺)
2 clwwlknonel.e . . . . . . 7 𝐸 = (Edg‘𝐺)
31, 2isclwwlk 30013 . . . . . 6 (𝑊 ∈ (ClWWalks‘𝐺) ↔ ((𝑊 ∈ Word 𝑉𝑊 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸))
4 simpl 482 . . . . . . . . . . . . 13 (((♯‘𝑊) = 𝑁𝑊 = ∅) → (♯‘𝑊) = 𝑁)
5 fveq2 6907 . . . . . . . . . . . . . . 15 (𝑊 = ∅ → (♯‘𝑊) = (♯‘∅))
6 hash0 14403 . . . . . . . . . . . . . . 15 (♯‘∅) = 0
75, 6eqtrdi 2791 . . . . . . . . . . . . . 14 (𝑊 = ∅ → (♯‘𝑊) = 0)
87adantl 481 . . . . . . . . . . . . 13 (((♯‘𝑊) = 𝑁𝑊 = ∅) → (♯‘𝑊) = 0)
94, 8eqtr3d 2777 . . . . . . . . . . . 12 (((♯‘𝑊) = 𝑁𝑊 = ∅) → 𝑁 = 0)
109ex 412 . . . . . . . . . . 11 ((♯‘𝑊) = 𝑁 → (𝑊 = ∅ → 𝑁 = 0))
1110necon3d 2959 . . . . . . . . . 10 ((♯‘𝑊) = 𝑁 → (𝑁 ≠ 0 → 𝑊 ≠ ∅))
1211impcom 407 . . . . . . . . 9 ((𝑁 ≠ 0 ∧ (♯‘𝑊) = 𝑁) → 𝑊 ≠ ∅)
1312biantrud 531 . . . . . . . 8 ((𝑁 ≠ 0 ∧ (♯‘𝑊) = 𝑁) → (𝑊 ∈ Word 𝑉 ↔ (𝑊 ∈ Word 𝑉𝑊 ≠ ∅)))
1413bicomd 223 . . . . . . 7 ((𝑁 ≠ 0 ∧ (♯‘𝑊) = 𝑁) → ((𝑊 ∈ Word 𝑉𝑊 ≠ ∅) ↔ 𝑊 ∈ Word 𝑉))
15143anbi1d 1439 . . . . . 6 ((𝑁 ≠ 0 ∧ (♯‘𝑊) = 𝑁) → (((𝑊 ∈ Word 𝑉𝑊 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ↔ (𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸)))
163, 15bitrid 283 . . . . 5 ((𝑁 ≠ 0 ∧ (♯‘𝑊) = 𝑁) → (𝑊 ∈ (ClWWalks‘𝐺) ↔ (𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸)))
1716a1d 25 . . . 4 ((𝑁 ≠ 0 ∧ (♯‘𝑊) = 𝑁) → ((𝑊‘0) = 𝑋 → (𝑊 ∈ (ClWWalks‘𝐺) ↔ (𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸))))
1817expimpd 453 . . 3 (𝑁 ≠ 0 → (((♯‘𝑊) = 𝑁 ∧ (𝑊‘0) = 𝑋) → (𝑊 ∈ (ClWWalks‘𝐺) ↔ (𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸))))
1918pm5.32rd 578 . 2 (𝑁 ≠ 0 → ((𝑊 ∈ (ClWWalks‘𝐺) ∧ ((♯‘𝑊) = 𝑁 ∧ (𝑊‘0) = 𝑋)) ↔ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ ((♯‘𝑊) = 𝑁 ∧ (𝑊‘0) = 𝑋))))
20 isclwwlknon 30120 . . 3 (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ↔ (𝑊 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑊‘0) = 𝑋))
21 isclwwlkn 30056 . . . 4 (𝑊 ∈ (𝑁 ClWWalksN 𝐺) ↔ (𝑊 ∈ (ClWWalks‘𝐺) ∧ (♯‘𝑊) = 𝑁))
2221anbi1i 624 . . 3 ((𝑊 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑊‘0) = 𝑋) ↔ ((𝑊 ∈ (ClWWalks‘𝐺) ∧ (♯‘𝑊) = 𝑁) ∧ (𝑊‘0) = 𝑋))
23 anass 468 . . 3 (((𝑊 ∈ (ClWWalks‘𝐺) ∧ (♯‘𝑊) = 𝑁) ∧ (𝑊‘0) = 𝑋) ↔ (𝑊 ∈ (ClWWalks‘𝐺) ∧ ((♯‘𝑊) = 𝑁 ∧ (𝑊‘0) = 𝑋)))
2420, 22, 233bitri 297 . 2 (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ↔ (𝑊 ∈ (ClWWalks‘𝐺) ∧ ((♯‘𝑊) = 𝑁 ∧ (𝑊‘0) = 𝑋)))
25 3anass 1094 . 2 (((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = 𝑁 ∧ (𝑊‘0) = 𝑋) ↔ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ ((♯‘𝑊) = 𝑁 ∧ (𝑊‘0) = 𝑋)))
2619, 24, 253bitr4g 314 1 (𝑁 ≠ 0 → (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ↔ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = 𝑁 ∧ (𝑊‘0) = 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  wne 2938  wral 3059  c0 4339  {cpr 4633  cfv 6563  (class class class)co 7431  0cc0 11153  1c1 11154   + caddc 11156  cmin 11490  ..^cfzo 13691  chash 14366  Word cword 14549  lastSclsw 14597  Vtxcvtx 29028  Edgcedg 29079  ClWWalkscclwwlk 30010   ClWWalksN cclwwlkn 30053  ClWWalksNOncclwwlknon 30116
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-oadd 8509  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-n0 12525  df-xnn0 12598  df-z 12612  df-uz 12877  df-fz 13545  df-fzo 13692  df-hash 14367  df-word 14550  df-clwwlk 30011  df-clwwlkn 30054  df-clwwlknon 30117
This theorem is referenced by:  clwwlknonex2  30138  numclwwlk1lem2foa  30383  numclwwlk1lem2fo  30387
  Copyright terms: Public domain W3C validator