| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > clwwlknonel | Structured version Visualization version GIF version | ||
| Description: Characterization of a word over the set of vertices representing a closed walk on vertex 𝑋 of (nonzero) length 𝑁 in a graph 𝐺. This theorem would not hold for 𝑁 = 0 if 𝑊 = 𝑋 = ∅. (Contributed by Alexander van der Vekens, 20-Sep-2018.) (Revised by AV, 28-May-2021.) (Revised by AV, 24-Mar-2022.) |
| Ref | Expression |
|---|---|
| clwwlknonel.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| clwwlknonel.e | ⊢ 𝐸 = (Edg‘𝐺) |
| Ref | Expression |
|---|---|
| clwwlknonel | ⊢ (𝑁 ≠ 0 → (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ↔ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = 𝑁 ∧ (𝑊‘0) = 𝑋))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clwwlknonel.v | . . . . . . 7 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | clwwlknonel.e | . . . . . . 7 ⊢ 𝐸 = (Edg‘𝐺) | |
| 3 | 1, 2 | isclwwlk 29956 | . . . . . 6 ⊢ (𝑊 ∈ (ClWWalks‘𝐺) ↔ ((𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸)) |
| 4 | simpl 482 | . . . . . . . . . . . . 13 ⊢ (((♯‘𝑊) = 𝑁 ∧ 𝑊 = ∅) → (♯‘𝑊) = 𝑁) | |
| 5 | fveq2 6817 | . . . . . . . . . . . . . . 15 ⊢ (𝑊 = ∅ → (♯‘𝑊) = (♯‘∅)) | |
| 6 | hash0 14269 | . . . . . . . . . . . . . . 15 ⊢ (♯‘∅) = 0 | |
| 7 | 5, 6 | eqtrdi 2782 | . . . . . . . . . . . . . 14 ⊢ (𝑊 = ∅ → (♯‘𝑊) = 0) |
| 8 | 7 | adantl 481 | . . . . . . . . . . . . 13 ⊢ (((♯‘𝑊) = 𝑁 ∧ 𝑊 = ∅) → (♯‘𝑊) = 0) |
| 9 | 4, 8 | eqtr3d 2768 | . . . . . . . . . . . 12 ⊢ (((♯‘𝑊) = 𝑁 ∧ 𝑊 = ∅) → 𝑁 = 0) |
| 10 | 9 | ex 412 | . . . . . . . . . . 11 ⊢ ((♯‘𝑊) = 𝑁 → (𝑊 = ∅ → 𝑁 = 0)) |
| 11 | 10 | necon3d 2949 | . . . . . . . . . 10 ⊢ ((♯‘𝑊) = 𝑁 → (𝑁 ≠ 0 → 𝑊 ≠ ∅)) |
| 12 | 11 | impcom 407 | . . . . . . . . 9 ⊢ ((𝑁 ≠ 0 ∧ (♯‘𝑊) = 𝑁) → 𝑊 ≠ ∅) |
| 13 | 12 | biantrud 531 | . . . . . . . 8 ⊢ ((𝑁 ≠ 0 ∧ (♯‘𝑊) = 𝑁) → (𝑊 ∈ Word 𝑉 ↔ (𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅))) |
| 14 | 13 | bicomd 223 | . . . . . . 7 ⊢ ((𝑁 ≠ 0 ∧ (♯‘𝑊) = 𝑁) → ((𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅) ↔ 𝑊 ∈ Word 𝑉)) |
| 15 | 14 | 3anbi1d 1442 | . . . . . 6 ⊢ ((𝑁 ≠ 0 ∧ (♯‘𝑊) = 𝑁) → (((𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ↔ (𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸))) |
| 16 | 3, 15 | bitrid 283 | . . . . 5 ⊢ ((𝑁 ≠ 0 ∧ (♯‘𝑊) = 𝑁) → (𝑊 ∈ (ClWWalks‘𝐺) ↔ (𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸))) |
| 17 | 16 | a1d 25 | . . . 4 ⊢ ((𝑁 ≠ 0 ∧ (♯‘𝑊) = 𝑁) → ((𝑊‘0) = 𝑋 → (𝑊 ∈ (ClWWalks‘𝐺) ↔ (𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸)))) |
| 18 | 17 | expimpd 453 | . . 3 ⊢ (𝑁 ≠ 0 → (((♯‘𝑊) = 𝑁 ∧ (𝑊‘0) = 𝑋) → (𝑊 ∈ (ClWWalks‘𝐺) ↔ (𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸)))) |
| 19 | 18 | pm5.32rd 578 | . 2 ⊢ (𝑁 ≠ 0 → ((𝑊 ∈ (ClWWalks‘𝐺) ∧ ((♯‘𝑊) = 𝑁 ∧ (𝑊‘0) = 𝑋)) ↔ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ ((♯‘𝑊) = 𝑁 ∧ (𝑊‘0) = 𝑋)))) |
| 20 | isclwwlknon 30063 | . . 3 ⊢ (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ↔ (𝑊 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑊‘0) = 𝑋)) | |
| 21 | isclwwlkn 29999 | . . . 4 ⊢ (𝑊 ∈ (𝑁 ClWWalksN 𝐺) ↔ (𝑊 ∈ (ClWWalks‘𝐺) ∧ (♯‘𝑊) = 𝑁)) | |
| 22 | 21 | anbi1i 624 | . . 3 ⊢ ((𝑊 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑊‘0) = 𝑋) ↔ ((𝑊 ∈ (ClWWalks‘𝐺) ∧ (♯‘𝑊) = 𝑁) ∧ (𝑊‘0) = 𝑋)) |
| 23 | anass 468 | . . 3 ⊢ (((𝑊 ∈ (ClWWalks‘𝐺) ∧ (♯‘𝑊) = 𝑁) ∧ (𝑊‘0) = 𝑋) ↔ (𝑊 ∈ (ClWWalks‘𝐺) ∧ ((♯‘𝑊) = 𝑁 ∧ (𝑊‘0) = 𝑋))) | |
| 24 | 20, 22, 23 | 3bitri 297 | . 2 ⊢ (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ↔ (𝑊 ∈ (ClWWalks‘𝐺) ∧ ((♯‘𝑊) = 𝑁 ∧ (𝑊‘0) = 𝑋))) |
| 25 | 3anass 1094 | . 2 ⊢ (((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = 𝑁 ∧ (𝑊‘0) = 𝑋) ↔ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ ((♯‘𝑊) = 𝑁 ∧ (𝑊‘0) = 𝑋))) | |
| 26 | 19, 24, 25 | 3bitr4g 314 | 1 ⊢ (𝑁 ≠ 0 → (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ↔ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = 𝑁 ∧ (𝑊‘0) = 𝑋))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∀wral 3047 ∅c0 4278 {cpr 4573 ‘cfv 6476 (class class class)co 7341 0cc0 11001 1c1 11002 + caddc 11004 − cmin 11339 ..^cfzo 13549 ♯chash 14232 Word cword 14415 lastSclsw 14464 Vtxcvtx 28969 Edgcedg 29020 ClWWalkscclwwlk 29953 ClWWalksN cclwwlkn 29996 ClWWalksNOncclwwlknon 30059 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-oadd 8384 df-er 8617 df-map 8747 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-card 9827 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-nn 12121 df-n0 12377 df-xnn0 12450 df-z 12464 df-uz 12728 df-fz 13403 df-fzo 13550 df-hash 14233 df-word 14416 df-clwwlk 29954 df-clwwlkn 29997 df-clwwlknon 30060 |
| This theorem is referenced by: clwwlknonex2 30081 numclwwlk1lem2foa 30326 numclwwlk1lem2fo 30330 |
| Copyright terms: Public domain | W3C validator |