Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > clwwlknonel | Structured version Visualization version GIF version |
Description: Characterization of a word over the set of vertices representing a closed walk on vertex 𝑋 of (nonzero) length 𝑁 in a graph 𝐺. This theorem would not hold for 𝑁 = 0 if 𝑊 = 𝑋 = ∅. (Contributed by Alexander van der Vekens, 20-Sep-2018.) (Revised by AV, 28-May-2021.) (Revised by AV, 24-Mar-2022.) |
Ref | Expression |
---|---|
clwwlknonel.v | ⊢ 𝑉 = (Vtx‘𝐺) |
clwwlknonel.e | ⊢ 𝐸 = (Edg‘𝐺) |
Ref | Expression |
---|---|
clwwlknonel | ⊢ (𝑁 ≠ 0 → (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ↔ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = 𝑁 ∧ (𝑊‘0) = 𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clwwlknonel.v | . . . . . . 7 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | clwwlknonel.e | . . . . . . 7 ⊢ 𝐸 = (Edg‘𝐺) | |
3 | 1, 2 | isclwwlk 27869 | . . . . . 6 ⊢ (𝑊 ∈ (ClWWalks‘𝐺) ↔ ((𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸)) |
4 | simpl 487 | . . . . . . . . . . . . 13 ⊢ (((♯‘𝑊) = 𝑁 ∧ 𝑊 = ∅) → (♯‘𝑊) = 𝑁) | |
5 | fveq2 6659 | . . . . . . . . . . . . . . 15 ⊢ (𝑊 = ∅ → (♯‘𝑊) = (♯‘∅)) | |
6 | hash0 13779 | . . . . . . . . . . . . . . 15 ⊢ (♯‘∅) = 0 | |
7 | 5, 6 | eqtrdi 2810 | . . . . . . . . . . . . . 14 ⊢ (𝑊 = ∅ → (♯‘𝑊) = 0) |
8 | 7 | adantl 486 | . . . . . . . . . . . . 13 ⊢ (((♯‘𝑊) = 𝑁 ∧ 𝑊 = ∅) → (♯‘𝑊) = 0) |
9 | 4, 8 | eqtr3d 2796 | . . . . . . . . . . . 12 ⊢ (((♯‘𝑊) = 𝑁 ∧ 𝑊 = ∅) → 𝑁 = 0) |
10 | 9 | ex 417 | . . . . . . . . . . 11 ⊢ ((♯‘𝑊) = 𝑁 → (𝑊 = ∅ → 𝑁 = 0)) |
11 | 10 | necon3d 2973 | . . . . . . . . . 10 ⊢ ((♯‘𝑊) = 𝑁 → (𝑁 ≠ 0 → 𝑊 ≠ ∅)) |
12 | 11 | impcom 412 | . . . . . . . . 9 ⊢ ((𝑁 ≠ 0 ∧ (♯‘𝑊) = 𝑁) → 𝑊 ≠ ∅) |
13 | 12 | biantrud 536 | . . . . . . . 8 ⊢ ((𝑁 ≠ 0 ∧ (♯‘𝑊) = 𝑁) → (𝑊 ∈ Word 𝑉 ↔ (𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅))) |
14 | 13 | bicomd 226 | . . . . . . 7 ⊢ ((𝑁 ≠ 0 ∧ (♯‘𝑊) = 𝑁) → ((𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅) ↔ 𝑊 ∈ Word 𝑉)) |
15 | 14 | 3anbi1d 1438 | . . . . . 6 ⊢ ((𝑁 ≠ 0 ∧ (♯‘𝑊) = 𝑁) → (((𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ↔ (𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸))) |
16 | 3, 15 | syl5bb 286 | . . . . 5 ⊢ ((𝑁 ≠ 0 ∧ (♯‘𝑊) = 𝑁) → (𝑊 ∈ (ClWWalks‘𝐺) ↔ (𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸))) |
17 | 16 | a1d 25 | . . . 4 ⊢ ((𝑁 ≠ 0 ∧ (♯‘𝑊) = 𝑁) → ((𝑊‘0) = 𝑋 → (𝑊 ∈ (ClWWalks‘𝐺) ↔ (𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸)))) |
18 | 17 | expimpd 458 | . . 3 ⊢ (𝑁 ≠ 0 → (((♯‘𝑊) = 𝑁 ∧ (𝑊‘0) = 𝑋) → (𝑊 ∈ (ClWWalks‘𝐺) ↔ (𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸)))) |
19 | 18 | pm5.32rd 582 | . 2 ⊢ (𝑁 ≠ 0 → ((𝑊 ∈ (ClWWalks‘𝐺) ∧ ((♯‘𝑊) = 𝑁 ∧ (𝑊‘0) = 𝑋)) ↔ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ ((♯‘𝑊) = 𝑁 ∧ (𝑊‘0) = 𝑋)))) |
20 | isclwwlknon 27976 | . . 3 ⊢ (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ↔ (𝑊 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑊‘0) = 𝑋)) | |
21 | isclwwlkn 27912 | . . . 4 ⊢ (𝑊 ∈ (𝑁 ClWWalksN 𝐺) ↔ (𝑊 ∈ (ClWWalks‘𝐺) ∧ (♯‘𝑊) = 𝑁)) | |
22 | 21 | anbi1i 627 | . . 3 ⊢ ((𝑊 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑊‘0) = 𝑋) ↔ ((𝑊 ∈ (ClWWalks‘𝐺) ∧ (♯‘𝑊) = 𝑁) ∧ (𝑊‘0) = 𝑋)) |
23 | anass 473 | . . 3 ⊢ (((𝑊 ∈ (ClWWalks‘𝐺) ∧ (♯‘𝑊) = 𝑁) ∧ (𝑊‘0) = 𝑋) ↔ (𝑊 ∈ (ClWWalks‘𝐺) ∧ ((♯‘𝑊) = 𝑁 ∧ (𝑊‘0) = 𝑋))) | |
24 | 20, 22, 23 | 3bitri 301 | . 2 ⊢ (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ↔ (𝑊 ∈ (ClWWalks‘𝐺) ∧ ((♯‘𝑊) = 𝑁 ∧ (𝑊‘0) = 𝑋))) |
25 | 3anass 1093 | . 2 ⊢ (((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = 𝑁 ∧ (𝑊‘0) = 𝑋) ↔ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ ((♯‘𝑊) = 𝑁 ∧ (𝑊‘0) = 𝑋))) | |
26 | 19, 24, 25 | 3bitr4g 318 | 1 ⊢ (𝑁 ≠ 0 → (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ↔ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = 𝑁 ∧ (𝑊‘0) = 𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 400 ∧ w3a 1085 = wceq 1539 ∈ wcel 2112 ≠ wne 2952 ∀wral 3071 ∅c0 4226 {cpr 4525 ‘cfv 6336 (class class class)co 7151 0cc0 10576 1c1 10577 + caddc 10579 − cmin 10909 ..^cfzo 13083 ♯chash 13741 Word cword 13914 lastSclsw 13962 Vtxcvtx 26889 Edgcedg 26940 ClWWalkscclwwlk 27866 ClWWalksN cclwwlkn 27909 ClWWalksNOncclwwlknon 27972 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-rep 5157 ax-sep 5170 ax-nul 5177 ax-pow 5235 ax-pr 5299 ax-un 7460 ax-cnex 10632 ax-resscn 10633 ax-1cn 10634 ax-icn 10635 ax-addcl 10636 ax-addrcl 10637 ax-mulcl 10638 ax-mulrcl 10639 ax-mulcom 10640 ax-addass 10641 ax-mulass 10642 ax-distr 10643 ax-i2m1 10644 ax-1ne0 10645 ax-1rid 10646 ax-rnegex 10647 ax-rrecex 10648 ax-cnre 10649 ax-pre-lttri 10650 ax-pre-lttrn 10651 ax-pre-ltadd 10652 ax-pre-mulgt0 10653 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-nel 3057 df-ral 3076 df-rex 3077 df-reu 3078 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-pss 3878 df-nul 4227 df-if 4422 df-pw 4497 df-sn 4524 df-pr 4526 df-tp 4528 df-op 4530 df-uni 4800 df-int 4840 df-iun 4886 df-br 5034 df-opab 5096 df-mpt 5114 df-tr 5140 df-id 5431 df-eprel 5436 df-po 5444 df-so 5445 df-fr 5484 df-we 5486 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6127 df-ord 6173 df-on 6174 df-lim 6175 df-suc 6176 df-iota 6295 df-fun 6338 df-fn 6339 df-f 6340 df-f1 6341 df-fo 6342 df-f1o 6343 df-fv 6344 df-riota 7109 df-ov 7154 df-oprab 7155 df-mpo 7156 df-om 7581 df-1st 7694 df-2nd 7695 df-wrecs 7958 df-recs 8019 df-rdg 8057 df-1o 8113 df-oadd 8117 df-er 8300 df-map 8419 df-en 8529 df-dom 8530 df-sdom 8531 df-fin 8532 df-card 9402 df-pnf 10716 df-mnf 10717 df-xr 10718 df-ltxr 10719 df-le 10720 df-sub 10911 df-neg 10912 df-nn 11676 df-n0 11936 df-xnn0 12008 df-z 12022 df-uz 12284 df-fz 12941 df-fzo 13084 df-hash 13742 df-word 13915 df-clwwlk 27867 df-clwwlkn 27910 df-clwwlknon 27973 |
This theorem is referenced by: clwwlknonex2 27994 numclwwlk1lem2foa 28239 numclwwlk1lem2fo 28243 |
Copyright terms: Public domain | W3C validator |