| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elfz2z | Structured version Visualization version GIF version | ||
| Description: Membership of an integer in a finite set of sequential integers starting at 0. (Contributed by Alexander van der Vekens, 25-May-2018.) |
| Ref | Expression |
|---|---|
| elfz2z | ⊢ ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (0...𝑁) ↔ (0 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfz2nn0 13518 | . . 3 ⊢ (𝐾 ∈ (0...𝑁) ↔ (𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝐾 ≤ 𝑁)) | |
| 2 | df-3an 1088 | . . 3 ⊢ ((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝐾 ≤ 𝑁) ↔ ((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) ∧ 𝐾 ≤ 𝑁)) | |
| 3 | 1, 2 | bitri 275 | . 2 ⊢ (𝐾 ∈ (0...𝑁) ↔ ((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) ∧ 𝐾 ≤ 𝑁)) |
| 4 | nn0ge0 12406 | . . . . . 6 ⊢ (𝐾 ∈ ℕ0 → 0 ≤ 𝐾) | |
| 5 | 4 | adantr 480 | . . . . 5 ⊢ ((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → 0 ≤ 𝐾) |
| 6 | simpll 766 | . . . . . . . . 9 ⊢ (((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ≤ 𝑁) → 𝐾 ∈ ℤ) | |
| 7 | 6 | anim1i 615 | . . . . . . . 8 ⊢ ((((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ≤ 𝑁) ∧ 0 ≤ 𝐾) → (𝐾 ∈ ℤ ∧ 0 ≤ 𝐾)) |
| 8 | elnn0z 12481 | . . . . . . . 8 ⊢ (𝐾 ∈ ℕ0 ↔ (𝐾 ∈ ℤ ∧ 0 ≤ 𝐾)) | |
| 9 | 7, 8 | sylibr 234 | . . . . . . 7 ⊢ ((((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ≤ 𝑁) ∧ 0 ≤ 𝐾) → 𝐾 ∈ ℕ0) |
| 10 | 0red 11115 | . . . . . . . . . . 11 ⊢ ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 0 ∈ ℝ) | |
| 11 | zre 12472 | . . . . . . . . . . . 12 ⊢ (𝐾 ∈ ℤ → 𝐾 ∈ ℝ) | |
| 12 | 11 | adantr 480 | . . . . . . . . . . 11 ⊢ ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝐾 ∈ ℝ) |
| 13 | zre 12472 | . . . . . . . . . . . 12 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) | |
| 14 | 13 | adantl 481 | . . . . . . . . . . 11 ⊢ ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℝ) |
| 15 | letr 11207 | . . . . . . . . . . 11 ⊢ ((0 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((0 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁) → 0 ≤ 𝑁)) | |
| 16 | 10, 12, 14, 15 | syl3anc 1373 | . . . . . . . . . 10 ⊢ ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((0 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁) → 0 ≤ 𝑁)) |
| 17 | elnn0z 12481 | . . . . . . . . . . . 12 ⊢ (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℤ ∧ 0 ≤ 𝑁)) | |
| 18 | 17 | simplbi2 500 | . . . . . . . . . . 11 ⊢ (𝑁 ∈ ℤ → (0 ≤ 𝑁 → 𝑁 ∈ ℕ0)) |
| 19 | 18 | adantl 481 | . . . . . . . . . 10 ⊢ ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 ≤ 𝑁 → 𝑁 ∈ ℕ0)) |
| 20 | 16, 19 | syld 47 | . . . . . . . . 9 ⊢ ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((0 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁) → 𝑁 ∈ ℕ0)) |
| 21 | 20 | expcomd 416 | . . . . . . . 8 ⊢ ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ≤ 𝑁 → (0 ≤ 𝐾 → 𝑁 ∈ ℕ0))) |
| 22 | 21 | imp31 417 | . . . . . . 7 ⊢ ((((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ≤ 𝑁) ∧ 0 ≤ 𝐾) → 𝑁 ∈ ℕ0) |
| 23 | 9, 22 | jca 511 | . . . . . 6 ⊢ ((((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ≤ 𝑁) ∧ 0 ≤ 𝐾) → (𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)) |
| 24 | 23 | ex 412 | . . . . 5 ⊢ (((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ≤ 𝑁) → (0 ≤ 𝐾 → (𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0))) |
| 25 | 5, 24 | impbid2 226 | . . . 4 ⊢ (((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ≤ 𝑁) → ((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) ↔ 0 ≤ 𝐾)) |
| 26 | 25 | ex 412 | . . 3 ⊢ ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ≤ 𝑁 → ((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) ↔ 0 ≤ 𝐾))) |
| 27 | 26 | pm5.32rd 578 | . 2 ⊢ ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) ∧ 𝐾 ≤ 𝑁) ↔ (0 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) |
| 28 | 3, 27 | bitrid 283 | 1 ⊢ ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (0...𝑁) ↔ (0 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2111 class class class wbr 5089 (class class class)co 7346 ℝcr 11005 0cc0 11006 ≤ cle 11147 ℕ0cn0 12381 ℤcz 12468 ...cfz 13407 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-n0 12382 df-z 12469 df-uz 12733 df-fz 13408 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |