| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elfz2z | Structured version Visualization version GIF version | ||
| Description: Membership of an integer in a finite set of sequential integers starting at 0. (Contributed by Alexander van der Vekens, 25-May-2018.) |
| Ref | Expression |
|---|---|
| elfz2z | ⊢ ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (0...𝑁) ↔ (0 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfz2nn0 13555 | . . 3 ⊢ (𝐾 ∈ (0...𝑁) ↔ (𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝐾 ≤ 𝑁)) | |
| 2 | df-3an 1088 | . . 3 ⊢ ((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝐾 ≤ 𝑁) ↔ ((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) ∧ 𝐾 ≤ 𝑁)) | |
| 3 | 1, 2 | bitri 275 | . 2 ⊢ (𝐾 ∈ (0...𝑁) ↔ ((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) ∧ 𝐾 ≤ 𝑁)) |
| 4 | nn0ge0 12443 | . . . . . 6 ⊢ (𝐾 ∈ ℕ0 → 0 ≤ 𝐾) | |
| 5 | 4 | adantr 480 | . . . . 5 ⊢ ((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → 0 ≤ 𝐾) |
| 6 | simpll 766 | . . . . . . . . 9 ⊢ (((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ≤ 𝑁) → 𝐾 ∈ ℤ) | |
| 7 | 6 | anim1i 615 | . . . . . . . 8 ⊢ ((((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ≤ 𝑁) ∧ 0 ≤ 𝐾) → (𝐾 ∈ ℤ ∧ 0 ≤ 𝐾)) |
| 8 | elnn0z 12518 | . . . . . . . 8 ⊢ (𝐾 ∈ ℕ0 ↔ (𝐾 ∈ ℤ ∧ 0 ≤ 𝐾)) | |
| 9 | 7, 8 | sylibr 234 | . . . . . . 7 ⊢ ((((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ≤ 𝑁) ∧ 0 ≤ 𝐾) → 𝐾 ∈ ℕ0) |
| 10 | 0red 11153 | . . . . . . . . . . 11 ⊢ ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 0 ∈ ℝ) | |
| 11 | zre 12509 | . . . . . . . . . . . 12 ⊢ (𝐾 ∈ ℤ → 𝐾 ∈ ℝ) | |
| 12 | 11 | adantr 480 | . . . . . . . . . . 11 ⊢ ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝐾 ∈ ℝ) |
| 13 | zre 12509 | . . . . . . . . . . . 12 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) | |
| 14 | 13 | adantl 481 | . . . . . . . . . . 11 ⊢ ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℝ) |
| 15 | letr 11244 | . . . . . . . . . . 11 ⊢ ((0 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((0 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁) → 0 ≤ 𝑁)) | |
| 16 | 10, 12, 14, 15 | syl3anc 1373 | . . . . . . . . . 10 ⊢ ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((0 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁) → 0 ≤ 𝑁)) |
| 17 | elnn0z 12518 | . . . . . . . . . . . 12 ⊢ (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℤ ∧ 0 ≤ 𝑁)) | |
| 18 | 17 | simplbi2 500 | . . . . . . . . . . 11 ⊢ (𝑁 ∈ ℤ → (0 ≤ 𝑁 → 𝑁 ∈ ℕ0)) |
| 19 | 18 | adantl 481 | . . . . . . . . . 10 ⊢ ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 ≤ 𝑁 → 𝑁 ∈ ℕ0)) |
| 20 | 16, 19 | syld 47 | . . . . . . . . 9 ⊢ ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((0 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁) → 𝑁 ∈ ℕ0)) |
| 21 | 20 | expcomd 416 | . . . . . . . 8 ⊢ ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ≤ 𝑁 → (0 ≤ 𝐾 → 𝑁 ∈ ℕ0))) |
| 22 | 21 | imp31 417 | . . . . . . 7 ⊢ ((((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ≤ 𝑁) ∧ 0 ≤ 𝐾) → 𝑁 ∈ ℕ0) |
| 23 | 9, 22 | jca 511 | . . . . . 6 ⊢ ((((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ≤ 𝑁) ∧ 0 ≤ 𝐾) → (𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)) |
| 24 | 23 | ex 412 | . . . . 5 ⊢ (((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ≤ 𝑁) → (0 ≤ 𝐾 → (𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0))) |
| 25 | 5, 24 | impbid2 226 | . . . 4 ⊢ (((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ≤ 𝑁) → ((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) ↔ 0 ≤ 𝐾)) |
| 26 | 25 | ex 412 | . . 3 ⊢ ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ≤ 𝑁 → ((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) ↔ 0 ≤ 𝐾))) |
| 27 | 26 | pm5.32rd 578 | . 2 ⊢ ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) ∧ 𝐾 ≤ 𝑁) ↔ (0 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) |
| 28 | 3, 27 | bitrid 283 | 1 ⊢ ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (0...𝑁) ↔ (0 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2109 class class class wbr 5102 (class class class)co 7369 ℝcr 11043 0cc0 11044 ≤ cle 11185 ℕ0cn0 12418 ℤcz 12505 ...cfz 13444 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-n0 12419 df-z 12506 df-uz 12770 df-fz 13445 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |