![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > elfz2z | Structured version Visualization version GIF version |
Description: Membership of an integer in a finite set of sequential integers starting at 0. (Contributed by Alexander van der Vekens, 25-May-2018.) |
Ref | Expression |
---|---|
elfz2z | ⊢ ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (0...𝑁) ↔ (0 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfz2nn0 12852 | . . 3 ⊢ (𝐾 ∈ (0...𝑁) ↔ (𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝐾 ≤ 𝑁)) | |
2 | df-3an 1082 | . . 3 ⊢ ((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝐾 ≤ 𝑁) ↔ ((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) ∧ 𝐾 ≤ 𝑁)) | |
3 | 1, 2 | bitri 276 | . 2 ⊢ (𝐾 ∈ (0...𝑁) ↔ ((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) ∧ 𝐾 ≤ 𝑁)) |
4 | nn0ge0 11776 | . . . . . 6 ⊢ (𝐾 ∈ ℕ0 → 0 ≤ 𝐾) | |
5 | 4 | adantr 481 | . . . . 5 ⊢ ((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → 0 ≤ 𝐾) |
6 | simpll 763 | . . . . . . . . 9 ⊢ (((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ≤ 𝑁) → 𝐾 ∈ ℤ) | |
7 | 6 | anim1i 614 | . . . . . . . 8 ⊢ ((((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ≤ 𝑁) ∧ 0 ≤ 𝐾) → (𝐾 ∈ ℤ ∧ 0 ≤ 𝐾)) |
8 | elnn0z 11848 | . . . . . . . 8 ⊢ (𝐾 ∈ ℕ0 ↔ (𝐾 ∈ ℤ ∧ 0 ≤ 𝐾)) | |
9 | 7, 8 | sylibr 235 | . . . . . . 7 ⊢ ((((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ≤ 𝑁) ∧ 0 ≤ 𝐾) → 𝐾 ∈ ℕ0) |
10 | 0red 10497 | . . . . . . . . . . 11 ⊢ ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 0 ∈ ℝ) | |
11 | zre 11839 | . . . . . . . . . . . 12 ⊢ (𝐾 ∈ ℤ → 𝐾 ∈ ℝ) | |
12 | 11 | adantr 481 | . . . . . . . . . . 11 ⊢ ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝐾 ∈ ℝ) |
13 | zre 11839 | . . . . . . . . . . . 12 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) | |
14 | 13 | adantl 482 | . . . . . . . . . . 11 ⊢ ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℝ) |
15 | letr 10587 | . . . . . . . . . . 11 ⊢ ((0 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((0 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁) → 0 ≤ 𝑁)) | |
16 | 10, 12, 14, 15 | syl3anc 1364 | . . . . . . . . . 10 ⊢ ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((0 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁) → 0 ≤ 𝑁)) |
17 | elnn0z 11848 | . . . . . . . . . . . 12 ⊢ (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℤ ∧ 0 ≤ 𝑁)) | |
18 | 17 | simplbi2 501 | . . . . . . . . . . 11 ⊢ (𝑁 ∈ ℤ → (0 ≤ 𝑁 → 𝑁 ∈ ℕ0)) |
19 | 18 | adantl 482 | . . . . . . . . . 10 ⊢ ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 ≤ 𝑁 → 𝑁 ∈ ℕ0)) |
20 | 16, 19 | syld 47 | . . . . . . . . 9 ⊢ ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((0 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁) → 𝑁 ∈ ℕ0)) |
21 | 20 | expcomd 417 | . . . . . . . 8 ⊢ ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ≤ 𝑁 → (0 ≤ 𝐾 → 𝑁 ∈ ℕ0))) |
22 | 21 | imp31 418 | . . . . . . 7 ⊢ ((((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ≤ 𝑁) ∧ 0 ≤ 𝐾) → 𝑁 ∈ ℕ0) |
23 | 9, 22 | jca 512 | . . . . . 6 ⊢ ((((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ≤ 𝑁) ∧ 0 ≤ 𝐾) → (𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)) |
24 | 23 | ex 413 | . . . . 5 ⊢ (((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ≤ 𝑁) → (0 ≤ 𝐾 → (𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0))) |
25 | 5, 24 | impbid2 227 | . . . 4 ⊢ (((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ≤ 𝑁) → ((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) ↔ 0 ≤ 𝐾)) |
26 | 25 | ex 413 | . . 3 ⊢ ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ≤ 𝑁 → ((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) ↔ 0 ≤ 𝐾))) |
27 | 26 | pm5.32rd 578 | . 2 ⊢ ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) ∧ 𝐾 ≤ 𝑁) ↔ (0 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) |
28 | 3, 27 | syl5bb 284 | 1 ⊢ ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (0...𝑁) ↔ (0 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 207 ∧ wa 396 ∧ w3a 1080 ∈ wcel 2083 class class class wbr 4968 (class class class)co 7023 ℝcr 10389 0cc0 10390 ≤ cle 10529 ℕ0cn0 11751 ℤcz 11835 ...cfz 12746 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1781 ax-4 1795 ax-5 1892 ax-6 1951 ax-7 1996 ax-8 2085 ax-9 2093 ax-10 2114 ax-11 2128 ax-12 2143 ax-13 2346 ax-ext 2771 ax-sep 5101 ax-nul 5108 ax-pow 5164 ax-pr 5228 ax-un 7326 ax-cnex 10446 ax-resscn 10447 ax-1cn 10448 ax-icn 10449 ax-addcl 10450 ax-addrcl 10451 ax-mulcl 10452 ax-mulrcl 10453 ax-mulcom 10454 ax-addass 10455 ax-mulass 10456 ax-distr 10457 ax-i2m1 10458 ax-1ne0 10459 ax-1rid 10460 ax-rnegex 10461 ax-rrecex 10462 ax-cnre 10463 ax-pre-lttri 10464 ax-pre-lttrn 10465 ax-pre-ltadd 10466 ax-pre-mulgt0 10467 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1528 df-ex 1766 df-nf 1770 df-sb 2045 df-mo 2578 df-eu 2614 df-clab 2778 df-cleq 2790 df-clel 2865 df-nfc 2937 df-ne 2987 df-nel 3093 df-ral 3112 df-rex 3113 df-reu 3114 df-rab 3116 df-v 3442 df-sbc 3712 df-csb 3818 df-dif 3868 df-un 3870 df-in 3872 df-ss 3880 df-pss 3882 df-nul 4218 df-if 4388 df-pw 4461 df-sn 4479 df-pr 4481 df-tp 4483 df-op 4485 df-uni 4752 df-iun 4833 df-br 4969 df-opab 5031 df-mpt 5048 df-tr 5071 df-id 5355 df-eprel 5360 df-po 5369 df-so 5370 df-fr 5409 df-we 5411 df-xp 5456 df-rel 5457 df-cnv 5458 df-co 5459 df-dm 5460 df-rn 5461 df-res 5462 df-ima 5463 df-pred 6030 df-ord 6076 df-on 6077 df-lim 6078 df-suc 6079 df-iota 6196 df-fun 6234 df-fn 6235 df-f 6236 df-f1 6237 df-fo 6238 df-f1o 6239 df-fv 6240 df-riota 6984 df-ov 7026 df-oprab 7027 df-mpo 7028 df-om 7444 df-1st 7552 df-2nd 7553 df-wrecs 7805 df-recs 7867 df-rdg 7905 df-er 8146 df-en 8365 df-dom 8366 df-sdom 8367 df-pnf 10530 df-mnf 10531 df-xr 10532 df-ltxr 10533 df-le 10534 df-sub 10725 df-neg 10726 df-nn 11493 df-n0 11752 df-z 11836 df-uz 12098 df-fz 12747 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |