Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > clwwlknwwlksnb | Structured version Visualization version GIF version |
Description: A word over vertices represents a closed walk of a fixed length 𝑁 greater than zero iff the word concatenated with its first symbol represents a walk of length 𝑁. This theorem would not hold for 𝑁 = 0 and 𝑊 = ∅, because (𝑊 ++ 〈“(𝑊‘0)”〉) = 〈“∅”〉 ∈ (0 WWalksN 𝐺) could be true, but not 𝑊 ∈ (0 ClWWalksN 𝐺) ↔ ∅ ∈ ∅. (Contributed by AV, 4-Mar-2022.) (Proof shortened by AV, 22-Mar-2022.) |
Ref | Expression |
---|---|
clwwlkwwlksb.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
clwwlknwwlksnb | ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℕ) → (𝑊 ∈ (𝑁 ClWWalksN 𝐺) ↔ (𝑊 ++ 〈“(𝑊‘0)”〉) ∈ (𝑁 WWalksN 𝐺))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnnn0 12240 | . . . . 5 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0) | |
2 | ccatws1lenp1b 14326 | . . . . 5 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℕ0) → ((♯‘(𝑊 ++ 〈“(𝑊‘0)”〉)) = (𝑁 + 1) ↔ (♯‘𝑊) = 𝑁)) | |
3 | 1, 2 | sylan2 593 | . . . 4 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℕ) → ((♯‘(𝑊 ++ 〈“(𝑊‘0)”〉)) = (𝑁 + 1) ↔ (♯‘𝑊) = 𝑁)) |
4 | 3 | anbi2d 629 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℕ) → (((𝑊 ++ 〈“(𝑊‘0)”〉) ∈ (WWalks‘𝐺) ∧ (♯‘(𝑊 ++ 〈“(𝑊‘0)”〉)) = (𝑁 + 1)) ↔ ((𝑊 ++ 〈“(𝑊‘0)”〉) ∈ (WWalks‘𝐺) ∧ (♯‘𝑊) = 𝑁))) |
5 | simpl 483 | . . . . . . 7 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℕ) → 𝑊 ∈ Word 𝑉) | |
6 | eleq1 2826 | . . . . . . . . . 10 ⊢ ((♯‘𝑊) = 𝑁 → ((♯‘𝑊) ∈ ℕ ↔ 𝑁 ∈ ℕ)) | |
7 | len0nnbi 14254 | . . . . . . . . . . 11 ⊢ (𝑊 ∈ Word 𝑉 → (𝑊 ≠ ∅ ↔ (♯‘𝑊) ∈ ℕ)) | |
8 | 7 | biimprcd 249 | . . . . . . . . . 10 ⊢ ((♯‘𝑊) ∈ ℕ → (𝑊 ∈ Word 𝑉 → 𝑊 ≠ ∅)) |
9 | 6, 8 | syl6bir 253 | . . . . . . . . 9 ⊢ ((♯‘𝑊) = 𝑁 → (𝑁 ∈ ℕ → (𝑊 ∈ Word 𝑉 → 𝑊 ≠ ∅))) |
10 | 9 | com13 88 | . . . . . . . 8 ⊢ (𝑊 ∈ Word 𝑉 → (𝑁 ∈ ℕ → ((♯‘𝑊) = 𝑁 → 𝑊 ≠ ∅))) |
11 | 10 | imp31 418 | . . . . . . 7 ⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℕ) ∧ (♯‘𝑊) = 𝑁) → 𝑊 ≠ ∅) |
12 | clwwlkwwlksb.v | . . . . . . . 8 ⊢ 𝑉 = (Vtx‘𝐺) | |
13 | 12 | clwwlkwwlksb 28418 | . . . . . . 7 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅) → (𝑊 ∈ (ClWWalks‘𝐺) ↔ (𝑊 ++ 〈“(𝑊‘0)”〉) ∈ (WWalks‘𝐺))) |
14 | 5, 11, 13 | syl2an2r 682 | . . . . . 6 ⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℕ) ∧ (♯‘𝑊) = 𝑁) → (𝑊 ∈ (ClWWalks‘𝐺) ↔ (𝑊 ++ 〈“(𝑊‘0)”〉) ∈ (WWalks‘𝐺))) |
15 | 14 | bicomd 222 | . . . . 5 ⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℕ) ∧ (♯‘𝑊) = 𝑁) → ((𝑊 ++ 〈“(𝑊‘0)”〉) ∈ (WWalks‘𝐺) ↔ 𝑊 ∈ (ClWWalks‘𝐺))) |
16 | 15 | ex 413 | . . . 4 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℕ) → ((♯‘𝑊) = 𝑁 → ((𝑊 ++ 〈“(𝑊‘0)”〉) ∈ (WWalks‘𝐺) ↔ 𝑊 ∈ (ClWWalks‘𝐺)))) |
17 | 16 | pm5.32rd 578 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℕ) → (((𝑊 ++ 〈“(𝑊‘0)”〉) ∈ (WWalks‘𝐺) ∧ (♯‘𝑊) = 𝑁) ↔ (𝑊 ∈ (ClWWalks‘𝐺) ∧ (♯‘𝑊) = 𝑁))) |
18 | 4, 17 | bitrd 278 | . 2 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℕ) → (((𝑊 ++ 〈“(𝑊‘0)”〉) ∈ (WWalks‘𝐺) ∧ (♯‘(𝑊 ++ 〈“(𝑊‘0)”〉)) = (𝑁 + 1)) ↔ (𝑊 ∈ (ClWWalks‘𝐺) ∧ (♯‘𝑊) = 𝑁))) |
19 | 1 | adantl 482 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ0) |
20 | iswwlksn 28203 | . . 3 ⊢ (𝑁 ∈ ℕ0 → ((𝑊 ++ 〈“(𝑊‘0)”〉) ∈ (𝑁 WWalksN 𝐺) ↔ ((𝑊 ++ 〈“(𝑊‘0)”〉) ∈ (WWalks‘𝐺) ∧ (♯‘(𝑊 ++ 〈“(𝑊‘0)”〉)) = (𝑁 + 1)))) | |
21 | 19, 20 | syl 17 | . 2 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℕ) → ((𝑊 ++ 〈“(𝑊‘0)”〉) ∈ (𝑁 WWalksN 𝐺) ↔ ((𝑊 ++ 〈“(𝑊‘0)”〉) ∈ (WWalks‘𝐺) ∧ (♯‘(𝑊 ++ 〈“(𝑊‘0)”〉)) = (𝑁 + 1)))) |
22 | isclwwlkn 28391 | . . 3 ⊢ (𝑊 ∈ (𝑁 ClWWalksN 𝐺) ↔ (𝑊 ∈ (ClWWalks‘𝐺) ∧ (♯‘𝑊) = 𝑁)) | |
23 | 22 | a1i 11 | . 2 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℕ) → (𝑊 ∈ (𝑁 ClWWalksN 𝐺) ↔ (𝑊 ∈ (ClWWalks‘𝐺) ∧ (♯‘𝑊) = 𝑁))) |
24 | 18, 21, 23 | 3bitr4rd 312 | 1 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℕ) → (𝑊 ∈ (𝑁 ClWWalksN 𝐺) ↔ (𝑊 ++ 〈“(𝑊‘0)”〉) ∈ (𝑁 WWalksN 𝐺))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 ∅c0 4256 ‘cfv 6433 (class class class)co 7275 0cc0 10871 1c1 10872 + caddc 10874 ℕcn 11973 ℕ0cn0 12233 ♯chash 14044 Word cword 14217 ++ cconcat 14273 〈“cs1 14300 Vtxcvtx 27366 WWalkscwwlks 28190 WWalksN cwwlksn 28191 ClWWalkscclwwlk 28345 ClWWalksN cclwwlkn 28388 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-oadd 8301 df-er 8498 df-map 8617 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-dju 9659 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-n0 12234 df-xnn0 12306 df-z 12320 df-uz 12583 df-fz 13240 df-fzo 13383 df-hash 14045 df-word 14218 df-lsw 14266 df-concat 14274 df-s1 14301 df-wwlks 28195 df-wwlksn 28196 df-clwwlk 28346 df-clwwlkn 28389 |
This theorem is referenced by: clwwlknonwwlknonb 28470 |
Copyright terms: Public domain | W3C validator |