| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > clwwlknwwlksnb | Structured version Visualization version GIF version | ||
| Description: A word over vertices represents a closed walk of a fixed length 𝑁 greater than zero iff the word concatenated with its first symbol represents a walk of length 𝑁. This theorem would not hold for 𝑁 = 0 and 𝑊 = ∅, because (𝑊 ++ 〈“(𝑊‘0)”〉) = 〈“∅”〉 ∈ (0 WWalksN 𝐺) could be true, but not 𝑊 ∈ (0 ClWWalksN 𝐺) ↔ ∅ ∈ ∅. (Contributed by AV, 4-Mar-2022.) (Proof shortened by AV, 22-Mar-2022.) |
| Ref | Expression |
|---|---|
| clwwlkwwlksb.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| Ref | Expression |
|---|---|
| clwwlknwwlksnb | ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℕ) → (𝑊 ∈ (𝑁 ClWWalksN 𝐺) ↔ (𝑊 ++ 〈“(𝑊‘0)”〉) ∈ (𝑁 WWalksN 𝐺))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnnn0 12535 | . . . . 5 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0) | |
| 2 | ccatws1lenp1b 14660 | . . . . 5 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℕ0) → ((♯‘(𝑊 ++ 〈“(𝑊‘0)”〉)) = (𝑁 + 1) ↔ (♯‘𝑊) = 𝑁)) | |
| 3 | 1, 2 | sylan2 593 | . . . 4 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℕ) → ((♯‘(𝑊 ++ 〈“(𝑊‘0)”〉)) = (𝑁 + 1) ↔ (♯‘𝑊) = 𝑁)) |
| 4 | 3 | anbi2d 630 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℕ) → (((𝑊 ++ 〈“(𝑊‘0)”〉) ∈ (WWalks‘𝐺) ∧ (♯‘(𝑊 ++ 〈“(𝑊‘0)”〉)) = (𝑁 + 1)) ↔ ((𝑊 ++ 〈“(𝑊‘0)”〉) ∈ (WWalks‘𝐺) ∧ (♯‘𝑊) = 𝑁))) |
| 5 | simpl 482 | . . . . . . 7 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℕ) → 𝑊 ∈ Word 𝑉) | |
| 6 | eleq1 2828 | . . . . . . . . . 10 ⊢ ((♯‘𝑊) = 𝑁 → ((♯‘𝑊) ∈ ℕ ↔ 𝑁 ∈ ℕ)) | |
| 7 | len0nnbi 14590 | . . . . . . . . . . 11 ⊢ (𝑊 ∈ Word 𝑉 → (𝑊 ≠ ∅ ↔ (♯‘𝑊) ∈ ℕ)) | |
| 8 | 7 | biimprcd 250 | . . . . . . . . . 10 ⊢ ((♯‘𝑊) ∈ ℕ → (𝑊 ∈ Word 𝑉 → 𝑊 ≠ ∅)) |
| 9 | 6, 8 | biimtrrdi 254 | . . . . . . . . 9 ⊢ ((♯‘𝑊) = 𝑁 → (𝑁 ∈ ℕ → (𝑊 ∈ Word 𝑉 → 𝑊 ≠ ∅))) |
| 10 | 9 | com13 88 | . . . . . . . 8 ⊢ (𝑊 ∈ Word 𝑉 → (𝑁 ∈ ℕ → ((♯‘𝑊) = 𝑁 → 𝑊 ≠ ∅))) |
| 11 | 10 | imp31 417 | . . . . . . 7 ⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℕ) ∧ (♯‘𝑊) = 𝑁) → 𝑊 ≠ ∅) |
| 12 | clwwlkwwlksb.v | . . . . . . . 8 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 13 | 12 | clwwlkwwlksb 30074 | . . . . . . 7 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅) → (𝑊 ∈ (ClWWalks‘𝐺) ↔ (𝑊 ++ 〈“(𝑊‘0)”〉) ∈ (WWalks‘𝐺))) |
| 14 | 5, 11, 13 | syl2an2r 685 | . . . . . 6 ⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℕ) ∧ (♯‘𝑊) = 𝑁) → (𝑊 ∈ (ClWWalks‘𝐺) ↔ (𝑊 ++ 〈“(𝑊‘0)”〉) ∈ (WWalks‘𝐺))) |
| 15 | 14 | bicomd 223 | . . . . 5 ⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℕ) ∧ (♯‘𝑊) = 𝑁) → ((𝑊 ++ 〈“(𝑊‘0)”〉) ∈ (WWalks‘𝐺) ↔ 𝑊 ∈ (ClWWalks‘𝐺))) |
| 16 | 15 | ex 412 | . . . 4 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℕ) → ((♯‘𝑊) = 𝑁 → ((𝑊 ++ 〈“(𝑊‘0)”〉) ∈ (WWalks‘𝐺) ↔ 𝑊 ∈ (ClWWalks‘𝐺)))) |
| 17 | 16 | pm5.32rd 578 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℕ) → (((𝑊 ++ 〈“(𝑊‘0)”〉) ∈ (WWalks‘𝐺) ∧ (♯‘𝑊) = 𝑁) ↔ (𝑊 ∈ (ClWWalks‘𝐺) ∧ (♯‘𝑊) = 𝑁))) |
| 18 | 4, 17 | bitrd 279 | . 2 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℕ) → (((𝑊 ++ 〈“(𝑊‘0)”〉) ∈ (WWalks‘𝐺) ∧ (♯‘(𝑊 ++ 〈“(𝑊‘0)”〉)) = (𝑁 + 1)) ↔ (𝑊 ∈ (ClWWalks‘𝐺) ∧ (♯‘𝑊) = 𝑁))) |
| 19 | 1 | adantl 481 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ0) |
| 20 | iswwlksn 29859 | . . 3 ⊢ (𝑁 ∈ ℕ0 → ((𝑊 ++ 〈“(𝑊‘0)”〉) ∈ (𝑁 WWalksN 𝐺) ↔ ((𝑊 ++ 〈“(𝑊‘0)”〉) ∈ (WWalks‘𝐺) ∧ (♯‘(𝑊 ++ 〈“(𝑊‘0)”〉)) = (𝑁 + 1)))) | |
| 21 | 19, 20 | syl 17 | . 2 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℕ) → ((𝑊 ++ 〈“(𝑊‘0)”〉) ∈ (𝑁 WWalksN 𝐺) ↔ ((𝑊 ++ 〈“(𝑊‘0)”〉) ∈ (WWalks‘𝐺) ∧ (♯‘(𝑊 ++ 〈“(𝑊‘0)”〉)) = (𝑁 + 1)))) |
| 22 | isclwwlkn 30047 | . . 3 ⊢ (𝑊 ∈ (𝑁 ClWWalksN 𝐺) ↔ (𝑊 ∈ (ClWWalks‘𝐺) ∧ (♯‘𝑊) = 𝑁)) | |
| 23 | 22 | a1i 11 | . 2 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℕ) → (𝑊 ∈ (𝑁 ClWWalksN 𝐺) ↔ (𝑊 ∈ (ClWWalks‘𝐺) ∧ (♯‘𝑊) = 𝑁))) |
| 24 | 18, 21, 23 | 3bitr4rd 312 | 1 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℕ) → (𝑊 ∈ (𝑁 ClWWalksN 𝐺) ↔ (𝑊 ++ 〈“(𝑊‘0)”〉) ∈ (𝑁 WWalksN 𝐺))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ≠ wne 2939 ∅c0 4332 ‘cfv 6560 (class class class)co 7432 0cc0 11156 1c1 11157 + caddc 11159 ℕcn 12267 ℕ0cn0 12528 ♯chash 14370 Word cword 14553 ++ cconcat 14609 〈“cs1 14634 Vtxcvtx 29014 WWalkscwwlks 29846 WWalksN cwwlksn 29847 ClWWalkscclwwlk 30001 ClWWalksN cclwwlkn 30044 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-cnex 11212 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-int 4946 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-om 7889 df-1st 8015 df-2nd 8016 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-1o 8507 df-2o 8508 df-oadd 8511 df-er 8746 df-map 8869 df-en 8987 df-dom 8988 df-sdom 8989 df-fin 8990 df-dju 9942 df-card 9980 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-nn 12268 df-2 12330 df-n0 12529 df-xnn0 12602 df-z 12616 df-uz 12880 df-fz 13549 df-fzo 13696 df-hash 14371 df-word 14554 df-lsw 14602 df-concat 14610 df-s1 14635 df-wwlks 29851 df-wwlksn 29852 df-clwwlk 30002 df-clwwlkn 30045 |
| This theorem is referenced by: clwwlknonwwlknonb 30126 |
| Copyright terms: Public domain | W3C validator |