| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > clwwlknwwlksnb | Structured version Visualization version GIF version | ||
| Description: A word over vertices represents a closed walk of a fixed length 𝑁 greater than zero iff the word concatenated with its first symbol represents a walk of length 𝑁. This theorem would not hold for 𝑁 = 0 and 𝑊 = ∅, because (𝑊 ++ 〈“(𝑊‘0)”〉) = 〈“∅”〉 ∈ (0 WWalksN 𝐺) could be true, but not 𝑊 ∈ (0 ClWWalksN 𝐺) ↔ ∅ ∈ ∅. (Contributed by AV, 4-Mar-2022.) (Proof shortened by AV, 22-Mar-2022.) |
| Ref | Expression |
|---|---|
| clwwlkwwlksb.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| Ref | Expression |
|---|---|
| clwwlknwwlksnb | ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℕ) → (𝑊 ∈ (𝑁 ClWWalksN 𝐺) ↔ (𝑊 ++ 〈“(𝑊‘0)”〉) ∈ (𝑁 WWalksN 𝐺))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnnn0 12391 | . . . . 5 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0) | |
| 2 | ccatws1lenp1b 14528 | . . . . 5 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℕ0) → ((♯‘(𝑊 ++ 〈“(𝑊‘0)”〉)) = (𝑁 + 1) ↔ (♯‘𝑊) = 𝑁)) | |
| 3 | 1, 2 | sylan2 593 | . . . 4 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℕ) → ((♯‘(𝑊 ++ 〈“(𝑊‘0)”〉)) = (𝑁 + 1) ↔ (♯‘𝑊) = 𝑁)) |
| 4 | 3 | anbi2d 630 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℕ) → (((𝑊 ++ 〈“(𝑊‘0)”〉) ∈ (WWalks‘𝐺) ∧ (♯‘(𝑊 ++ 〈“(𝑊‘0)”〉)) = (𝑁 + 1)) ↔ ((𝑊 ++ 〈“(𝑊‘0)”〉) ∈ (WWalks‘𝐺) ∧ (♯‘𝑊) = 𝑁))) |
| 5 | simpl 482 | . . . . . . 7 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℕ) → 𝑊 ∈ Word 𝑉) | |
| 6 | eleq1 2816 | . . . . . . . . . 10 ⊢ ((♯‘𝑊) = 𝑁 → ((♯‘𝑊) ∈ ℕ ↔ 𝑁 ∈ ℕ)) | |
| 7 | len0nnbi 14458 | . . . . . . . . . . 11 ⊢ (𝑊 ∈ Word 𝑉 → (𝑊 ≠ ∅ ↔ (♯‘𝑊) ∈ ℕ)) | |
| 8 | 7 | biimprcd 250 | . . . . . . . . . 10 ⊢ ((♯‘𝑊) ∈ ℕ → (𝑊 ∈ Word 𝑉 → 𝑊 ≠ ∅)) |
| 9 | 6, 8 | biimtrrdi 254 | . . . . . . . . 9 ⊢ ((♯‘𝑊) = 𝑁 → (𝑁 ∈ ℕ → (𝑊 ∈ Word 𝑉 → 𝑊 ≠ ∅))) |
| 10 | 9 | com13 88 | . . . . . . . 8 ⊢ (𝑊 ∈ Word 𝑉 → (𝑁 ∈ ℕ → ((♯‘𝑊) = 𝑁 → 𝑊 ≠ ∅))) |
| 11 | 10 | imp31 417 | . . . . . . 7 ⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℕ) ∧ (♯‘𝑊) = 𝑁) → 𝑊 ≠ ∅) |
| 12 | clwwlkwwlksb.v | . . . . . . . 8 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 13 | 12 | clwwlkwwlksb 29998 | . . . . . . 7 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅) → (𝑊 ∈ (ClWWalks‘𝐺) ↔ (𝑊 ++ 〈“(𝑊‘0)”〉) ∈ (WWalks‘𝐺))) |
| 14 | 5, 11, 13 | syl2an2r 685 | . . . . . 6 ⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℕ) ∧ (♯‘𝑊) = 𝑁) → (𝑊 ∈ (ClWWalks‘𝐺) ↔ (𝑊 ++ 〈“(𝑊‘0)”〉) ∈ (WWalks‘𝐺))) |
| 15 | 14 | bicomd 223 | . . . . 5 ⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℕ) ∧ (♯‘𝑊) = 𝑁) → ((𝑊 ++ 〈“(𝑊‘0)”〉) ∈ (WWalks‘𝐺) ↔ 𝑊 ∈ (ClWWalks‘𝐺))) |
| 16 | 15 | ex 412 | . . . 4 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℕ) → ((♯‘𝑊) = 𝑁 → ((𝑊 ++ 〈“(𝑊‘0)”〉) ∈ (WWalks‘𝐺) ↔ 𝑊 ∈ (ClWWalks‘𝐺)))) |
| 17 | 16 | pm5.32rd 578 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℕ) → (((𝑊 ++ 〈“(𝑊‘0)”〉) ∈ (WWalks‘𝐺) ∧ (♯‘𝑊) = 𝑁) ↔ (𝑊 ∈ (ClWWalks‘𝐺) ∧ (♯‘𝑊) = 𝑁))) |
| 18 | 4, 17 | bitrd 279 | . 2 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℕ) → (((𝑊 ++ 〈“(𝑊‘0)”〉) ∈ (WWalks‘𝐺) ∧ (♯‘(𝑊 ++ 〈“(𝑊‘0)”〉)) = (𝑁 + 1)) ↔ (𝑊 ∈ (ClWWalks‘𝐺) ∧ (♯‘𝑊) = 𝑁))) |
| 19 | 1 | adantl 481 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ0) |
| 20 | iswwlksn 29783 | . . 3 ⊢ (𝑁 ∈ ℕ0 → ((𝑊 ++ 〈“(𝑊‘0)”〉) ∈ (𝑁 WWalksN 𝐺) ↔ ((𝑊 ++ 〈“(𝑊‘0)”〉) ∈ (WWalks‘𝐺) ∧ (♯‘(𝑊 ++ 〈“(𝑊‘0)”〉)) = (𝑁 + 1)))) | |
| 21 | 19, 20 | syl 17 | . 2 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℕ) → ((𝑊 ++ 〈“(𝑊‘0)”〉) ∈ (𝑁 WWalksN 𝐺) ↔ ((𝑊 ++ 〈“(𝑊‘0)”〉) ∈ (WWalks‘𝐺) ∧ (♯‘(𝑊 ++ 〈“(𝑊‘0)”〉)) = (𝑁 + 1)))) |
| 22 | isclwwlkn 29971 | . . 3 ⊢ (𝑊 ∈ (𝑁 ClWWalksN 𝐺) ↔ (𝑊 ∈ (ClWWalks‘𝐺) ∧ (♯‘𝑊) = 𝑁)) | |
| 23 | 22 | a1i 11 | . 2 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℕ) → (𝑊 ∈ (𝑁 ClWWalksN 𝐺) ↔ (𝑊 ∈ (ClWWalks‘𝐺) ∧ (♯‘𝑊) = 𝑁))) |
| 24 | 18, 21, 23 | 3bitr4rd 312 | 1 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℕ) → (𝑊 ∈ (𝑁 ClWWalksN 𝐺) ↔ (𝑊 ++ 〈“(𝑊‘0)”〉) ∈ (𝑁 WWalksN 𝐺))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∅c0 4284 ‘cfv 6482 (class class class)co 7349 0cc0 11009 1c1 11010 + caddc 11012 ℕcn 12128 ℕ0cn0 12384 ♯chash 14237 Word cword 14420 ++ cconcat 14477 〈“cs1 14502 Vtxcvtx 28941 WWalkscwwlks 29770 WWalksN cwwlksn 29771 ClWWalkscclwwlk 29925 ClWWalksN cclwwlkn 29968 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-2o 8389 df-oadd 8392 df-er 8625 df-map 8755 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-dju 9797 df-card 9835 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-2 12191 df-n0 12385 df-xnn0 12458 df-z 12472 df-uz 12736 df-fz 13411 df-fzo 13558 df-hash 14238 df-word 14421 df-lsw 14470 df-concat 14478 df-s1 14503 df-wwlks 29775 df-wwlksn 29776 df-clwwlk 29926 df-clwwlkn 29969 |
| This theorem is referenced by: clwwlknonwwlknonb 30050 |
| Copyright terms: Public domain | W3C validator |