MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  upgrspthswlk Structured version   Visualization version   GIF version

Theorem upgrspthswlk 28085
Description: The set of simple paths in a pseudograph, expressed as walk. Notice that this theorem would not hold for arbitrary hypergraphs, since a walk with distinct vertices does not need to be a trail: let E = { p0, p1, p2 } be a hyperedge, then ( p0, e, p1, e, p2 ) is walk with distinct vertices, but not with distinct edges. Therefore, E is not a trail and, by definition, also no path. (Contributed by AV, 11-Jan-2021.) (Proof shortened by AV, 17-Jan-2021.) (Proof shortened by AV, 30-Oct-2021.)
Assertion
Ref Expression
upgrspthswlk (𝐺 ∈ UPGraph → (SPaths‘𝐺) = {⟨𝑓, 𝑝⟩ ∣ (𝑓(Walks‘𝐺)𝑝 ∧ Fun 𝑝)})
Distinct variable group:   𝑓,𝐺,𝑝

Proof of Theorem upgrspthswlk
StepHypRef Expression
1 spthsfval 28069 . 2 (SPaths‘𝐺) = {⟨𝑓, 𝑝⟩ ∣ (𝑓(Trails‘𝐺)𝑝 ∧ Fun 𝑝)}
2 istrl 28044 . . . . . 6 (𝑓(Trails‘𝐺)𝑝 ↔ (𝑓(Walks‘𝐺)𝑝 ∧ Fun 𝑓))
3 upgrwlkdvde 28084 . . . . . . . . . 10 ((𝐺 ∈ UPGraph ∧ 𝑓(Walks‘𝐺)𝑝 ∧ Fun 𝑝) → Fun 𝑓)
433exp 1117 . . . . . . . . 9 (𝐺 ∈ UPGraph → (𝑓(Walks‘𝐺)𝑝 → (Fun 𝑝 → Fun 𝑓)))
54com23 86 . . . . . . . 8 (𝐺 ∈ UPGraph → (Fun 𝑝 → (𝑓(Walks‘𝐺)𝑝 → Fun 𝑓)))
65imp 406 . . . . . . 7 ((𝐺 ∈ UPGraph ∧ Fun 𝑝) → (𝑓(Walks‘𝐺)𝑝 → Fun 𝑓))
76pm4.71d 561 . . . . . 6 ((𝐺 ∈ UPGraph ∧ Fun 𝑝) → (𝑓(Walks‘𝐺)𝑝 ↔ (𝑓(Walks‘𝐺)𝑝 ∧ Fun 𝑓)))
82, 7bitr4id 289 . . . . 5 ((𝐺 ∈ UPGraph ∧ Fun 𝑝) → (𝑓(Trails‘𝐺)𝑝𝑓(Walks‘𝐺)𝑝))
98ex 412 . . . 4 (𝐺 ∈ UPGraph → (Fun 𝑝 → (𝑓(Trails‘𝐺)𝑝𝑓(Walks‘𝐺)𝑝)))
109pm5.32rd 577 . . 3 (𝐺 ∈ UPGraph → ((𝑓(Trails‘𝐺)𝑝 ∧ Fun 𝑝) ↔ (𝑓(Walks‘𝐺)𝑝 ∧ Fun 𝑝)))
1110opabbidv 5144 . 2 (𝐺 ∈ UPGraph → {⟨𝑓, 𝑝⟩ ∣ (𝑓(Trails‘𝐺)𝑝 ∧ Fun 𝑝)} = {⟨𝑓, 𝑝⟩ ∣ (𝑓(Walks‘𝐺)𝑝 ∧ Fun 𝑝)})
121, 11eqtrid 2791 1 (𝐺 ∈ UPGraph → (SPaths‘𝐺) = {⟨𝑓, 𝑝⟩ ∣ (𝑓(Walks‘𝐺)𝑝 ∧ Fun 𝑝)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1541  wcel 2109   class class class wbr 5078  {copab 5140  ccnv 5587  Fun wfun 6424  cfv 6430  UPGraphcupgr 27431  Walkscwlks 27944  Trailsctrls 28038  SPathscspths 28060
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-cnex 10911  ax-resscn 10912  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-addrcl 10916  ax-mulcl 10917  ax-mulrcl 10918  ax-mulcom 10919  ax-addass 10920  ax-mulass 10921  ax-distr 10922  ax-i2m1 10923  ax-1ne0 10924  ax-1rid 10925  ax-rnegex 10926  ax-rrecex 10927  ax-cnre 10928  ax-pre-lttri 10929  ax-pre-lttrn 10930  ax-pre-ltadd 10931  ax-pre-mulgt0 10932
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-ifp 1060  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3072  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-int 4885  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-om 7701  df-1st 7817  df-2nd 7818  df-frecs 8081  df-wrecs 8112  df-recs 8186  df-rdg 8225  df-1o 8281  df-2o 8282  df-oadd 8285  df-er 8472  df-map 8591  df-pm 8592  df-en 8708  df-dom 8709  df-sdom 8710  df-fin 8711  df-dju 9643  df-card 9681  df-pnf 10995  df-mnf 10996  df-xr 10997  df-ltxr 10998  df-le 10999  df-sub 11190  df-neg 11191  df-nn 11957  df-2 12019  df-n0 12217  df-xnn0 12289  df-z 12303  df-uz 12565  df-fz 13222  df-fzo 13365  df-hash 14026  df-word 14199  df-edg 27399  df-uhgr 27409  df-upgr 27433  df-wlks 27947  df-trls 28040  df-spths 28064
This theorem is referenced by:  upgrwlkdvspth  28086
  Copyright terms: Public domain W3C validator