Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > upgrspthswlk | Structured version Visualization version GIF version |
Description: The set of simple paths in a pseudograph, expressed as walk. Notice that this theorem would not hold for arbitrary hypergraphs, since a walk with distinct vertices does not need to be a trail: let E = { p0, p1, p2 } be a hyperedge, then ( p0, e, p1, e, p2 ) is walk with distinct vertices, but not with distinct edges. Therefore, E is not a trail and, by definition, also no path. (Contributed by AV, 11-Jan-2021.) (Proof shortened by AV, 17-Jan-2021.) (Proof shortened by AV, 30-Oct-2021.) |
Ref | Expression |
---|---|
upgrspthswlk | ⊢ (𝐺 ∈ UPGraph → (SPaths‘𝐺) = {〈𝑓, 𝑝〉 ∣ (𝑓(Walks‘𝐺)𝑝 ∧ Fun ◡𝑝)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spthsfval 28319 | . 2 ⊢ (SPaths‘𝐺) = {〈𝑓, 𝑝〉 ∣ (𝑓(Trails‘𝐺)𝑝 ∧ Fun ◡𝑝)} | |
2 | istrl 28293 | . . . . . 6 ⊢ (𝑓(Trails‘𝐺)𝑝 ↔ (𝑓(Walks‘𝐺)𝑝 ∧ Fun ◡𝑓)) | |
3 | upgrwlkdvde 28334 | . . . . . . . . . 10 ⊢ ((𝐺 ∈ UPGraph ∧ 𝑓(Walks‘𝐺)𝑝 ∧ Fun ◡𝑝) → Fun ◡𝑓) | |
4 | 3 | 3exp 1118 | . . . . . . . . 9 ⊢ (𝐺 ∈ UPGraph → (𝑓(Walks‘𝐺)𝑝 → (Fun ◡𝑝 → Fun ◡𝑓))) |
5 | 4 | com23 86 | . . . . . . . 8 ⊢ (𝐺 ∈ UPGraph → (Fun ◡𝑝 → (𝑓(Walks‘𝐺)𝑝 → Fun ◡𝑓))) |
6 | 5 | imp 407 | . . . . . . 7 ⊢ ((𝐺 ∈ UPGraph ∧ Fun ◡𝑝) → (𝑓(Walks‘𝐺)𝑝 → Fun ◡𝑓)) |
7 | 6 | pm4.71d 562 | . . . . . 6 ⊢ ((𝐺 ∈ UPGraph ∧ Fun ◡𝑝) → (𝑓(Walks‘𝐺)𝑝 ↔ (𝑓(Walks‘𝐺)𝑝 ∧ Fun ◡𝑓))) |
8 | 2, 7 | bitr4id 289 | . . . . 5 ⊢ ((𝐺 ∈ UPGraph ∧ Fun ◡𝑝) → (𝑓(Trails‘𝐺)𝑝 ↔ 𝑓(Walks‘𝐺)𝑝)) |
9 | 8 | ex 413 | . . . 4 ⊢ (𝐺 ∈ UPGraph → (Fun ◡𝑝 → (𝑓(Trails‘𝐺)𝑝 ↔ 𝑓(Walks‘𝐺)𝑝))) |
10 | 9 | pm5.32rd 578 | . . 3 ⊢ (𝐺 ∈ UPGraph → ((𝑓(Trails‘𝐺)𝑝 ∧ Fun ◡𝑝) ↔ (𝑓(Walks‘𝐺)𝑝 ∧ Fun ◡𝑝))) |
11 | 10 | opabbidv 5155 | . 2 ⊢ (𝐺 ∈ UPGraph → {〈𝑓, 𝑝〉 ∣ (𝑓(Trails‘𝐺)𝑝 ∧ Fun ◡𝑝)} = {〈𝑓, 𝑝〉 ∣ (𝑓(Walks‘𝐺)𝑝 ∧ Fun ◡𝑝)}) |
12 | 1, 11 | eqtrid 2788 | 1 ⊢ (𝐺 ∈ UPGraph → (SPaths‘𝐺) = {〈𝑓, 𝑝〉 ∣ (𝑓(Walks‘𝐺)𝑝 ∧ Fun ◡𝑝)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1540 ∈ wcel 2105 class class class wbr 5089 {copab 5151 ◡ccnv 5613 Fun wfun 6467 ‘cfv 6473 UPGraphcupgr 27680 Walkscwlks 28193 Trailsctrls 28287 SPathscspths 28310 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5226 ax-sep 5240 ax-nul 5247 ax-pow 5305 ax-pr 5369 ax-un 7642 ax-cnex 11020 ax-resscn 11021 ax-1cn 11022 ax-icn 11023 ax-addcl 11024 ax-addrcl 11025 ax-mulcl 11026 ax-mulrcl 11027 ax-mulcom 11028 ax-addass 11029 ax-mulass 11030 ax-distr 11031 ax-i2m1 11032 ax-1ne0 11033 ax-1rid 11034 ax-rnegex 11035 ax-rrecex 11036 ax-cnre 11037 ax-pre-lttri 11038 ax-pre-lttrn 11039 ax-pre-ltadd 11040 ax-pre-mulgt0 11041 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-ifp 1061 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4269 df-if 4473 df-pw 4548 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-int 4894 df-iun 4940 df-br 5090 df-opab 5152 df-mpt 5173 df-tr 5207 df-id 5512 df-eprel 5518 df-po 5526 df-so 5527 df-fr 5569 df-we 5571 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6232 df-ord 6299 df-on 6300 df-lim 6301 df-suc 6302 df-iota 6425 df-fun 6475 df-fn 6476 df-f 6477 df-f1 6478 df-fo 6479 df-f1o 6480 df-fv 6481 df-riota 7286 df-ov 7332 df-oprab 7333 df-mpo 7334 df-om 7773 df-1st 7891 df-2nd 7892 df-frecs 8159 df-wrecs 8190 df-recs 8264 df-rdg 8303 df-1o 8359 df-2o 8360 df-oadd 8363 df-er 8561 df-map 8680 df-pm 8681 df-en 8797 df-dom 8798 df-sdom 8799 df-fin 8800 df-dju 9750 df-card 9788 df-pnf 11104 df-mnf 11105 df-xr 11106 df-ltxr 11107 df-le 11108 df-sub 11300 df-neg 11301 df-nn 12067 df-2 12129 df-n0 12327 df-xnn0 12399 df-z 12413 df-uz 12676 df-fz 13333 df-fzo 13476 df-hash 14138 df-word 14310 df-edg 27648 df-uhgr 27658 df-upgr 27682 df-wlks 28196 df-trls 28289 df-spths 28314 |
This theorem is referenced by: upgrwlkdvspth 28336 |
Copyright terms: Public domain | W3C validator |