| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > upgrspthswlk | Structured version Visualization version GIF version | ||
| Description: The set of simple paths in a pseudograph, expressed as walk. Notice that this theorem would not hold for arbitrary hypergraphs, since a walk with distinct vertices does not need to be a trail: let E = { p0, p1, p2 } be a hyperedge, then ( p0, e, p1, e, p2 ) is walk with distinct vertices, but not with distinct edges. Therefore, E is not a trail and, by definition, also no path. (Contributed by AV, 11-Jan-2021.) (Proof shortened by AV, 17-Jan-2021.) (Proof shortened by AV, 30-Oct-2021.) |
| Ref | Expression |
|---|---|
| upgrspthswlk | ⊢ (𝐺 ∈ UPGraph → (SPaths‘𝐺) = {〈𝑓, 𝑝〉 ∣ (𝑓(Walks‘𝐺)𝑝 ∧ Fun ◡𝑝)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spthsfval 29648 | . 2 ⊢ (SPaths‘𝐺) = {〈𝑓, 𝑝〉 ∣ (𝑓(Trails‘𝐺)𝑝 ∧ Fun ◡𝑝)} | |
| 2 | istrl 29622 | . . . . . 6 ⊢ (𝑓(Trails‘𝐺)𝑝 ↔ (𝑓(Walks‘𝐺)𝑝 ∧ Fun ◡𝑓)) | |
| 3 | upgrwlkdvde 29665 | . . . . . . . . . 10 ⊢ ((𝐺 ∈ UPGraph ∧ 𝑓(Walks‘𝐺)𝑝 ∧ Fun ◡𝑝) → Fun ◡𝑓) | |
| 4 | 3 | 3exp 1119 | . . . . . . . . 9 ⊢ (𝐺 ∈ UPGraph → (𝑓(Walks‘𝐺)𝑝 → (Fun ◡𝑝 → Fun ◡𝑓))) |
| 5 | 4 | com23 86 | . . . . . . . 8 ⊢ (𝐺 ∈ UPGraph → (Fun ◡𝑝 → (𝑓(Walks‘𝐺)𝑝 → Fun ◡𝑓))) |
| 6 | 5 | imp 406 | . . . . . . 7 ⊢ ((𝐺 ∈ UPGraph ∧ Fun ◡𝑝) → (𝑓(Walks‘𝐺)𝑝 → Fun ◡𝑓)) |
| 7 | 6 | pm4.71d 561 | . . . . . 6 ⊢ ((𝐺 ∈ UPGraph ∧ Fun ◡𝑝) → (𝑓(Walks‘𝐺)𝑝 ↔ (𝑓(Walks‘𝐺)𝑝 ∧ Fun ◡𝑓))) |
| 8 | 2, 7 | bitr4id 290 | . . . . 5 ⊢ ((𝐺 ∈ UPGraph ∧ Fun ◡𝑝) → (𝑓(Trails‘𝐺)𝑝 ↔ 𝑓(Walks‘𝐺)𝑝)) |
| 9 | 8 | ex 412 | . . . 4 ⊢ (𝐺 ∈ UPGraph → (Fun ◡𝑝 → (𝑓(Trails‘𝐺)𝑝 ↔ 𝑓(Walks‘𝐺)𝑝))) |
| 10 | 9 | pm5.32rd 578 | . . 3 ⊢ (𝐺 ∈ UPGraph → ((𝑓(Trails‘𝐺)𝑝 ∧ Fun ◡𝑝) ↔ (𝑓(Walks‘𝐺)𝑝 ∧ Fun ◡𝑝))) |
| 11 | 10 | opabbidv 5185 | . 2 ⊢ (𝐺 ∈ UPGraph → {〈𝑓, 𝑝〉 ∣ (𝑓(Trails‘𝐺)𝑝 ∧ Fun ◡𝑝)} = {〈𝑓, 𝑝〉 ∣ (𝑓(Walks‘𝐺)𝑝 ∧ Fun ◡𝑝)}) |
| 12 | 1, 11 | eqtrid 2782 | 1 ⊢ (𝐺 ∈ UPGraph → (SPaths‘𝐺) = {〈𝑓, 𝑝〉 ∣ (𝑓(Walks‘𝐺)𝑝 ∧ Fun ◡𝑝)}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 class class class wbr 5119 {copab 5181 ◡ccnv 5653 Fun wfun 6524 ‘cfv 6530 UPGraphcupgr 29005 Walkscwlks 29522 Trailsctrls 29616 SPathscspths 29639 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-om 7860 df-1st 7986 df-2nd 7987 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-1o 8478 df-2o 8479 df-oadd 8482 df-er 8717 df-map 8840 df-pm 8841 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-dju 9913 df-card 9951 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-nn 12239 df-2 12301 df-n0 12500 df-xnn0 12573 df-z 12587 df-uz 12851 df-fz 13523 df-fzo 13670 df-hash 14347 df-word 14530 df-edg 28973 df-uhgr 28983 df-upgr 29007 df-wlks 29525 df-trls 29618 df-spths 29643 |
| This theorem is referenced by: upgrwlkdvspth 29667 |
| Copyright terms: Public domain | W3C validator |