![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > upgrspthswlk | Structured version Visualization version GIF version |
Description: The set of simple paths in a pseudograph, expressed as walk. Notice that this theorem would not hold for arbitrary hypergraphs, since a walk with distinct vertices does not need to be a trail: let E = { p0, p1, p2 } be a hyperedge, then ( p0, e, p1, e, p2 ) is walk with distinct vertices, but not with distinct edges. Therefore, E is not a trail and, by definition, also no path. (Contributed by AV, 11-Jan-2021.) (Proof shortened by AV, 17-Jan-2021.) (Proof shortened by AV, 30-Oct-2021.) |
Ref | Expression |
---|---|
upgrspthswlk | β’ (πΊ β UPGraph β (SPathsβπΊ) = {β¨π, πβ© β£ (π(WalksβπΊ)π β§ Fun β‘π)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spthsfval 28976 | . 2 β’ (SPathsβπΊ) = {β¨π, πβ© β£ (π(TrailsβπΊ)π β§ Fun β‘π)} | |
2 | istrl 28950 | . . . . . 6 β’ (π(TrailsβπΊ)π β (π(WalksβπΊ)π β§ Fun β‘π)) | |
3 | upgrwlkdvde 28991 | . . . . . . . . . 10 β’ ((πΊ β UPGraph β§ π(WalksβπΊ)π β§ Fun β‘π) β Fun β‘π) | |
4 | 3 | 3exp 1119 | . . . . . . . . 9 β’ (πΊ β UPGraph β (π(WalksβπΊ)π β (Fun β‘π β Fun β‘π))) |
5 | 4 | com23 86 | . . . . . . . 8 β’ (πΊ β UPGraph β (Fun β‘π β (π(WalksβπΊ)π β Fun β‘π))) |
6 | 5 | imp 407 | . . . . . . 7 β’ ((πΊ β UPGraph β§ Fun β‘π) β (π(WalksβπΊ)π β Fun β‘π)) |
7 | 6 | pm4.71d 562 | . . . . . 6 β’ ((πΊ β UPGraph β§ Fun β‘π) β (π(WalksβπΊ)π β (π(WalksβπΊ)π β§ Fun β‘π))) |
8 | 2, 7 | bitr4id 289 | . . . . 5 β’ ((πΊ β UPGraph β§ Fun β‘π) β (π(TrailsβπΊ)π β π(WalksβπΊ)π)) |
9 | 8 | ex 413 | . . . 4 β’ (πΊ β UPGraph β (Fun β‘π β (π(TrailsβπΊ)π β π(WalksβπΊ)π))) |
10 | 9 | pm5.32rd 578 | . . 3 β’ (πΊ β UPGraph β ((π(TrailsβπΊ)π β§ Fun β‘π) β (π(WalksβπΊ)π β§ Fun β‘π))) |
11 | 10 | opabbidv 5214 | . 2 β’ (πΊ β UPGraph β {β¨π, πβ© β£ (π(TrailsβπΊ)π β§ Fun β‘π)} = {β¨π, πβ© β£ (π(WalksβπΊ)π β§ Fun β‘π)}) |
12 | 1, 11 | eqtrid 2784 | 1 β’ (πΊ β UPGraph β (SPathsβπΊ) = {β¨π, πβ© β£ (π(WalksβπΊ)π β§ Fun β‘π)}) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 396 = wceq 1541 β wcel 2106 class class class wbr 5148 {copab 5210 β‘ccnv 5675 Fun wfun 6537 βcfv 6543 UPGraphcupgr 28337 Walkscwlks 28850 Trailsctrls 28944 SPathscspths 28967 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-ifp 1062 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-1st 7974 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-1o 8465 df-2o 8466 df-oadd 8469 df-er 8702 df-map 8821 df-pm 8822 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-dju 9895 df-card 9933 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-nn 12212 df-2 12274 df-n0 12472 df-xnn0 12544 df-z 12558 df-uz 12822 df-fz 13484 df-fzo 13627 df-hash 14290 df-word 14464 df-edg 28305 df-uhgr 28315 df-upgr 28339 df-wlks 28853 df-trls 28946 df-spths 28971 |
This theorem is referenced by: upgrwlkdvspth 28993 |
Copyright terms: Public domain | W3C validator |