MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  upgrspthswlk Structured version   Visualization version   GIF version

Theorem upgrspthswlk 28151
Description: The set of simple paths in a pseudograph, expressed as walk. Notice that this theorem would not hold for arbitrary hypergraphs, since a walk with distinct vertices does not need to be a trail: let E = { p0, p1, p2 } be a hyperedge, then ( p0, e, p1, e, p2 ) is walk with distinct vertices, but not with distinct edges. Therefore, E is not a trail and, by definition, also no path. (Contributed by AV, 11-Jan-2021.) (Proof shortened by AV, 17-Jan-2021.) (Proof shortened by AV, 30-Oct-2021.)
Assertion
Ref Expression
upgrspthswlk (𝐺 ∈ UPGraph → (SPaths‘𝐺) = {⟨𝑓, 𝑝⟩ ∣ (𝑓(Walks‘𝐺)𝑝 ∧ Fun 𝑝)})
Distinct variable group:   𝑓,𝐺,𝑝

Proof of Theorem upgrspthswlk
StepHypRef Expression
1 spthsfval 28135 . 2 (SPaths‘𝐺) = {⟨𝑓, 𝑝⟩ ∣ (𝑓(Trails‘𝐺)𝑝 ∧ Fun 𝑝)}
2 istrl 28109 . . . . . 6 (𝑓(Trails‘𝐺)𝑝 ↔ (𝑓(Walks‘𝐺)𝑝 ∧ Fun 𝑓))
3 upgrwlkdvde 28150 . . . . . . . . . 10 ((𝐺 ∈ UPGraph ∧ 𝑓(Walks‘𝐺)𝑝 ∧ Fun 𝑝) → Fun 𝑓)
433exp 1119 . . . . . . . . 9 (𝐺 ∈ UPGraph → (𝑓(Walks‘𝐺)𝑝 → (Fun 𝑝 → Fun 𝑓)))
54com23 86 . . . . . . . 8 (𝐺 ∈ UPGraph → (Fun 𝑝 → (𝑓(Walks‘𝐺)𝑝 → Fun 𝑓)))
65imp 408 . . . . . . 7 ((𝐺 ∈ UPGraph ∧ Fun 𝑝) → (𝑓(Walks‘𝐺)𝑝 → Fun 𝑓))
76pm4.71d 563 . . . . . 6 ((𝐺 ∈ UPGraph ∧ Fun 𝑝) → (𝑓(Walks‘𝐺)𝑝 ↔ (𝑓(Walks‘𝐺)𝑝 ∧ Fun 𝑓)))
82, 7bitr4id 290 . . . . 5 ((𝐺 ∈ UPGraph ∧ Fun 𝑝) → (𝑓(Trails‘𝐺)𝑝𝑓(Walks‘𝐺)𝑝))
98ex 414 . . . 4 (𝐺 ∈ UPGraph → (Fun 𝑝 → (𝑓(Trails‘𝐺)𝑝𝑓(Walks‘𝐺)𝑝)))
109pm5.32rd 579 . . 3 (𝐺 ∈ UPGraph → ((𝑓(Trails‘𝐺)𝑝 ∧ Fun 𝑝) ↔ (𝑓(Walks‘𝐺)𝑝 ∧ Fun 𝑝)))
1110opabbidv 5147 . 2 (𝐺 ∈ UPGraph → {⟨𝑓, 𝑝⟩ ∣ (𝑓(Trails‘𝐺)𝑝 ∧ Fun 𝑝)} = {⟨𝑓, 𝑝⟩ ∣ (𝑓(Walks‘𝐺)𝑝 ∧ Fun 𝑝)})
121, 11eqtrid 2788 1 (𝐺 ∈ UPGraph → (SPaths‘𝐺) = {⟨𝑓, 𝑝⟩ ∣ (𝑓(Walks‘𝐺)𝑝 ∧ Fun 𝑝)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1539  wcel 2104   class class class wbr 5081  {copab 5143  ccnv 5599  Fun wfun 6452  cfv 6458  UPGraphcupgr 27495  Walkscwlks 28008  Trailsctrls 28103  SPathscspths 28126
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-rep 5218  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620  ax-cnex 10973  ax-resscn 10974  ax-1cn 10975  ax-icn 10976  ax-addcl 10977  ax-addrcl 10978  ax-mulcl 10979  ax-mulrcl 10980  ax-mulcom 10981  ax-addass 10982  ax-mulass 10983  ax-distr 10984  ax-i2m1 10985  ax-1ne0 10986  ax-1rid 10987  ax-rnegex 10988  ax-rrecex 10989  ax-cnre 10990  ax-pre-lttri 10991  ax-pre-lttrn 10992  ax-pre-ltadd 10993  ax-pre-mulgt0 10994
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-ifp 1062  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3286  df-rab 3287  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-int 4887  df-iun 4933  df-br 5082  df-opab 5144  df-mpt 5165  df-tr 5199  df-id 5500  df-eprel 5506  df-po 5514  df-so 5515  df-fr 5555  df-we 5557  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-pred 6217  df-ord 6284  df-on 6285  df-lim 6286  df-suc 6287  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-riota 7264  df-ov 7310  df-oprab 7311  df-mpo 7312  df-om 7745  df-1st 7863  df-2nd 7864  df-frecs 8128  df-wrecs 8159  df-recs 8233  df-rdg 8272  df-1o 8328  df-2o 8329  df-oadd 8332  df-er 8529  df-map 8648  df-pm 8649  df-en 8765  df-dom 8766  df-sdom 8767  df-fin 8768  df-dju 9703  df-card 9741  df-pnf 11057  df-mnf 11058  df-xr 11059  df-ltxr 11060  df-le 11061  df-sub 11253  df-neg 11254  df-nn 12020  df-2 12082  df-n0 12280  df-xnn0 12352  df-z 12366  df-uz 12629  df-fz 13286  df-fzo 13429  df-hash 14091  df-word 14263  df-edg 27463  df-uhgr 27473  df-upgr 27497  df-wlks 28011  df-trls 28105  df-spths 28130
This theorem is referenced by:  upgrwlkdvspth  28152
  Copyright terms: Public domain W3C validator