MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isclwwlknx Structured version   Visualization version   GIF version

Theorem isclwwlknx 28091
Description: Characterization of a word representing a closed walk of a fixed length, definition of ClWWalks expanded. (Contributed by AV, 25-Apr-2021.) (Proof shortened by AV, 22-Mar-2022.)
Hypotheses
Ref Expression
isclwwlknx.v 𝑉 = (Vtx‘𝐺)
isclwwlknx.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
isclwwlknx (𝑁 ∈ ℕ → (𝑊 ∈ (𝑁 ClWWalksN 𝐺) ↔ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = 𝑁)))
Distinct variable groups:   𝑖,𝐺   𝑖,𝑊
Allowed substitution hints:   𝐸(𝑖)   𝑁(𝑖)   𝑉(𝑖)

Proof of Theorem isclwwlknx
StepHypRef Expression
1 eleq1 2821 . . . . . . . . . 10 ((♯‘𝑊) = 𝑁 → ((♯‘𝑊) ∈ ℕ ↔ 𝑁 ∈ ℕ))
2 len0nnbi 14089 . . . . . . . . . . 11 (𝑊 ∈ Word 𝑉 → (𝑊 ≠ ∅ ↔ (♯‘𝑊) ∈ ℕ))
32biimprcd 253 . . . . . . . . . 10 ((♯‘𝑊) ∈ ℕ → (𝑊 ∈ Word 𝑉𝑊 ≠ ∅))
41, 3syl6bir 257 . . . . . . . . 9 ((♯‘𝑊) = 𝑁 → (𝑁 ∈ ℕ → (𝑊 ∈ Word 𝑉𝑊 ≠ ∅)))
54impcom 411 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (♯‘𝑊) = 𝑁) → (𝑊 ∈ Word 𝑉𝑊 ≠ ∅))
65imp 410 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (♯‘𝑊) = 𝑁) ∧ 𝑊 ∈ Word 𝑉) → 𝑊 ≠ ∅)
76biantrurd 536 . . . . . 6 (((𝑁 ∈ ℕ ∧ (♯‘𝑊) = 𝑁) ∧ 𝑊 ∈ Word 𝑉) → ((∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ↔ (𝑊 ≠ ∅ ∧ (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸))))
87bicomd 226 . . . . 5 (((𝑁 ∈ ℕ ∧ (♯‘𝑊) = 𝑁) ∧ 𝑊 ∈ Word 𝑉) → ((𝑊 ≠ ∅ ∧ (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸)) ↔ (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸)))
98pm5.32da 582 . . . 4 ((𝑁 ∈ ℕ ∧ (♯‘𝑊) = 𝑁) → ((𝑊 ∈ Word 𝑉 ∧ (𝑊 ≠ ∅ ∧ (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸))) ↔ (𝑊 ∈ Word 𝑉 ∧ (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸))))
109ex 416 . . 3 (𝑁 ∈ ℕ → ((♯‘𝑊) = 𝑁 → ((𝑊 ∈ Word 𝑉 ∧ (𝑊 ≠ ∅ ∧ (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸))) ↔ (𝑊 ∈ Word 𝑉 ∧ (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸)))))
1110pm5.32rd 581 . 2 (𝑁 ∈ ℕ → (((𝑊 ∈ Word 𝑉 ∧ (𝑊 ≠ ∅ ∧ (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸))) ∧ (♯‘𝑊) = 𝑁) ↔ ((𝑊 ∈ Word 𝑉 ∧ (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸)) ∧ (♯‘𝑊) = 𝑁)))
12 isclwwlkn 28082 . . 3 (𝑊 ∈ (𝑁 ClWWalksN 𝐺) ↔ (𝑊 ∈ (ClWWalks‘𝐺) ∧ (♯‘𝑊) = 𝑁))
13 isclwwlknx.v . . . . . 6 𝑉 = (Vtx‘𝐺)
14 isclwwlknx.e . . . . . 6 𝐸 = (Edg‘𝐺)
1513, 14isclwwlk 28039 . . . . 5 (𝑊 ∈ (ClWWalks‘𝐺) ↔ ((𝑊 ∈ Word 𝑉𝑊 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸))
16 3anass 1097 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑊 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ↔ ((𝑊 ∈ Word 𝑉𝑊 ≠ ∅) ∧ (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸)))
17 anass 472 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑊 ≠ ∅) ∧ (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸)) ↔ (𝑊 ∈ Word 𝑉 ∧ (𝑊 ≠ ∅ ∧ (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸))))
1816, 17bitri 278 . . . . 5 (((𝑊 ∈ Word 𝑉𝑊 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ↔ (𝑊 ∈ Word 𝑉 ∧ (𝑊 ≠ ∅ ∧ (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸))))
1915, 18bitri 278 . . . 4 (𝑊 ∈ (ClWWalks‘𝐺) ↔ (𝑊 ∈ Word 𝑉 ∧ (𝑊 ≠ ∅ ∧ (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸))))
2019anbi1i 627 . . 3 ((𝑊 ∈ (ClWWalks‘𝐺) ∧ (♯‘𝑊) = 𝑁) ↔ ((𝑊 ∈ Word 𝑉 ∧ (𝑊 ≠ ∅ ∧ (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸))) ∧ (♯‘𝑊) = 𝑁))
2112, 20bitri 278 . 2 (𝑊 ∈ (𝑁 ClWWalksN 𝐺) ↔ ((𝑊 ∈ Word 𝑉 ∧ (𝑊 ≠ ∅ ∧ (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸))) ∧ (♯‘𝑊) = 𝑁))
22 3anass 1097 . . 3 ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ↔ (𝑊 ∈ Word 𝑉 ∧ (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸)))
2322anbi1i 627 . 2 (((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = 𝑁) ↔ ((𝑊 ∈ Word 𝑉 ∧ (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸)) ∧ (♯‘𝑊) = 𝑁))
2411, 21, 233bitr4g 317 1 (𝑁 ∈ ℕ → (𝑊 ∈ (𝑁 ClWWalksN 𝐺) ↔ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2110  wne 2935  wral 3054  c0 4227  {cpr 4533  cfv 6369  (class class class)co 7202  0cc0 10712  1c1 10713   + caddc 10715  cmin 11045  cn 11813  ..^cfzo 13221  chash 13879  Word cword 14052  lastSclsw 14100  Vtxcvtx 27059  Edgcedg 27110  ClWWalkscclwwlk 28036   ClWWalksN cclwwlkn 28079
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-rep 5168  ax-sep 5181  ax-nul 5188  ax-pow 5247  ax-pr 5311  ax-un 7512  ax-cnex 10768  ax-resscn 10769  ax-1cn 10770  ax-icn 10771  ax-addcl 10772  ax-addrcl 10773  ax-mulcl 10774  ax-mulrcl 10775  ax-mulcom 10776  ax-addass 10777  ax-mulass 10778  ax-distr 10779  ax-i2m1 10780  ax-1ne0 10781  ax-1rid 10782  ax-rnegex 10783  ax-rrecex 10784  ax-cnre 10785  ax-pre-lttri 10786  ax-pre-lttrn 10787  ax-pre-ltadd 10788  ax-pre-mulgt0 10789
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2726  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rab 3063  df-v 3403  df-sbc 3688  df-csb 3803  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-pss 3876  df-nul 4228  df-if 4430  df-pw 4505  df-sn 4532  df-pr 4534  df-tp 4536  df-op 4538  df-uni 4810  df-int 4850  df-iun 4896  df-br 5044  df-opab 5106  df-mpt 5125  df-tr 5151  df-id 5444  df-eprel 5449  df-po 5457  df-so 5458  df-fr 5498  df-we 5500  df-xp 5546  df-rel 5547  df-cnv 5548  df-co 5549  df-dm 5550  df-rn 5551  df-res 5552  df-ima 5553  df-pred 6149  df-ord 6205  df-on 6206  df-lim 6207  df-suc 6208  df-iota 6327  df-fun 6371  df-fn 6372  df-f 6373  df-f1 6374  df-fo 6375  df-f1o 6376  df-fv 6377  df-riota 7159  df-ov 7205  df-oprab 7206  df-mpo 7207  df-om 7634  df-1st 7750  df-2nd 7751  df-wrecs 8036  df-recs 8097  df-rdg 8135  df-1o 8191  df-er 8380  df-map 8499  df-en 8616  df-dom 8617  df-sdom 8618  df-fin 8619  df-card 9538  df-pnf 10852  df-mnf 10853  df-xr 10854  df-ltxr 10855  df-le 10856  df-sub 11047  df-neg 11048  df-nn 11814  df-n0 12074  df-xnn0 12146  df-z 12160  df-uz 12422  df-fz 13079  df-fzo 13222  df-hash 13880  df-word 14053  df-clwwlk 28037  df-clwwlkn 28080
This theorem is referenced by:  clwwlknp  28092  clwwlkn1  28096  clwwlkn2  28099  clwwlkf  28102  clwwlkext2edg  28111  wwlksext2clwwlk  28112  clwwlknonex2  28164
  Copyright terms: Public domain W3C validator