MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isclwwlknx Structured version   Visualization version   GIF version

Theorem isclwwlknx 29890
Description: Characterization of a word representing a closed walk of a fixed length, definition of ClWWalks expanded. (Contributed by AV, 25-Apr-2021.) (Proof shortened by AV, 22-Mar-2022.)
Hypotheses
Ref Expression
isclwwlknx.v 𝑉 = (Vtxβ€˜πΊ)
isclwwlknx.e 𝐸 = (Edgβ€˜πΊ)
Assertion
Ref Expression
isclwwlknx (𝑁 ∈ β„• β†’ (π‘Š ∈ (𝑁 ClWWalksN 𝐺) ↔ ((π‘Š ∈ Word 𝑉 ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘Š) βˆ’ 1)){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ 𝐸 ∧ {(lastSβ€˜π‘Š), (π‘Šβ€˜0)} ∈ 𝐸) ∧ (β™―β€˜π‘Š) = 𝑁)))
Distinct variable groups:   𝑖,𝐺   𝑖,π‘Š
Allowed substitution hints:   𝐸(𝑖)   𝑁(𝑖)   𝑉(𝑖)

Proof of Theorem isclwwlknx
StepHypRef Expression
1 eleq1 2813 . . . . . . . . . 10 ((β™―β€˜π‘Š) = 𝑁 β†’ ((β™―β€˜π‘Š) ∈ β„• ↔ 𝑁 ∈ β„•))
2 len0nnbi 14533 . . . . . . . . . . 11 (π‘Š ∈ Word 𝑉 β†’ (π‘Š β‰  βˆ… ↔ (β™―β€˜π‘Š) ∈ β„•))
32biimprcd 249 . . . . . . . . . 10 ((β™―β€˜π‘Š) ∈ β„• β†’ (π‘Š ∈ Word 𝑉 β†’ π‘Š β‰  βˆ…))
41, 3syl6bir 253 . . . . . . . . 9 ((β™―β€˜π‘Š) = 𝑁 β†’ (𝑁 ∈ β„• β†’ (π‘Š ∈ Word 𝑉 β†’ π‘Š β‰  βˆ…)))
54impcom 406 . . . . . . . 8 ((𝑁 ∈ β„• ∧ (β™―β€˜π‘Š) = 𝑁) β†’ (π‘Š ∈ Word 𝑉 β†’ π‘Š β‰  βˆ…))
65imp 405 . . . . . . 7 (((𝑁 ∈ β„• ∧ (β™―β€˜π‘Š) = 𝑁) ∧ π‘Š ∈ Word 𝑉) β†’ π‘Š β‰  βˆ…)
76biantrurd 531 . . . . . 6 (((𝑁 ∈ β„• ∧ (β™―β€˜π‘Š) = 𝑁) ∧ π‘Š ∈ Word 𝑉) β†’ ((βˆ€π‘– ∈ (0..^((β™―β€˜π‘Š) βˆ’ 1)){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ 𝐸 ∧ {(lastSβ€˜π‘Š), (π‘Šβ€˜0)} ∈ 𝐸) ↔ (π‘Š β‰  βˆ… ∧ (βˆ€π‘– ∈ (0..^((β™―β€˜π‘Š) βˆ’ 1)){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ 𝐸 ∧ {(lastSβ€˜π‘Š), (π‘Šβ€˜0)} ∈ 𝐸))))
87bicomd 222 . . . . 5 (((𝑁 ∈ β„• ∧ (β™―β€˜π‘Š) = 𝑁) ∧ π‘Š ∈ Word 𝑉) β†’ ((π‘Š β‰  βˆ… ∧ (βˆ€π‘– ∈ (0..^((β™―β€˜π‘Š) βˆ’ 1)){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ 𝐸 ∧ {(lastSβ€˜π‘Š), (π‘Šβ€˜0)} ∈ 𝐸)) ↔ (βˆ€π‘– ∈ (0..^((β™―β€˜π‘Š) βˆ’ 1)){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ 𝐸 ∧ {(lastSβ€˜π‘Š), (π‘Šβ€˜0)} ∈ 𝐸)))
98pm5.32da 577 . . . 4 ((𝑁 ∈ β„• ∧ (β™―β€˜π‘Š) = 𝑁) β†’ ((π‘Š ∈ Word 𝑉 ∧ (π‘Š β‰  βˆ… ∧ (βˆ€π‘– ∈ (0..^((β™―β€˜π‘Š) βˆ’ 1)){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ 𝐸 ∧ {(lastSβ€˜π‘Š), (π‘Šβ€˜0)} ∈ 𝐸))) ↔ (π‘Š ∈ Word 𝑉 ∧ (βˆ€π‘– ∈ (0..^((β™―β€˜π‘Š) βˆ’ 1)){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ 𝐸 ∧ {(lastSβ€˜π‘Š), (π‘Šβ€˜0)} ∈ 𝐸))))
109ex 411 . . 3 (𝑁 ∈ β„• β†’ ((β™―β€˜π‘Š) = 𝑁 β†’ ((π‘Š ∈ Word 𝑉 ∧ (π‘Š β‰  βˆ… ∧ (βˆ€π‘– ∈ (0..^((β™―β€˜π‘Š) βˆ’ 1)){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ 𝐸 ∧ {(lastSβ€˜π‘Š), (π‘Šβ€˜0)} ∈ 𝐸))) ↔ (π‘Š ∈ Word 𝑉 ∧ (βˆ€π‘– ∈ (0..^((β™―β€˜π‘Š) βˆ’ 1)){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ 𝐸 ∧ {(lastSβ€˜π‘Š), (π‘Šβ€˜0)} ∈ 𝐸)))))
1110pm5.32rd 576 . 2 (𝑁 ∈ β„• β†’ (((π‘Š ∈ Word 𝑉 ∧ (π‘Š β‰  βˆ… ∧ (βˆ€π‘– ∈ (0..^((β™―β€˜π‘Š) βˆ’ 1)){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ 𝐸 ∧ {(lastSβ€˜π‘Š), (π‘Šβ€˜0)} ∈ 𝐸))) ∧ (β™―β€˜π‘Š) = 𝑁) ↔ ((π‘Š ∈ Word 𝑉 ∧ (βˆ€π‘– ∈ (0..^((β™―β€˜π‘Š) βˆ’ 1)){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ 𝐸 ∧ {(lastSβ€˜π‘Š), (π‘Šβ€˜0)} ∈ 𝐸)) ∧ (β™―β€˜π‘Š) = 𝑁)))
12 isclwwlkn 29881 . . 3 (π‘Š ∈ (𝑁 ClWWalksN 𝐺) ↔ (π‘Š ∈ (ClWWalksβ€˜πΊ) ∧ (β™―β€˜π‘Š) = 𝑁))
13 isclwwlknx.v . . . . . 6 𝑉 = (Vtxβ€˜πΊ)
14 isclwwlknx.e . . . . . 6 𝐸 = (Edgβ€˜πΊ)
1513, 14isclwwlk 29838 . . . . 5 (π‘Š ∈ (ClWWalksβ€˜πΊ) ↔ ((π‘Š ∈ Word 𝑉 ∧ π‘Š β‰  βˆ…) ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘Š) βˆ’ 1)){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ 𝐸 ∧ {(lastSβ€˜π‘Š), (π‘Šβ€˜0)} ∈ 𝐸))
16 3anass 1092 . . . . . 6 (((π‘Š ∈ Word 𝑉 ∧ π‘Š β‰  βˆ…) ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘Š) βˆ’ 1)){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ 𝐸 ∧ {(lastSβ€˜π‘Š), (π‘Šβ€˜0)} ∈ 𝐸) ↔ ((π‘Š ∈ Word 𝑉 ∧ π‘Š β‰  βˆ…) ∧ (βˆ€π‘– ∈ (0..^((β™―β€˜π‘Š) βˆ’ 1)){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ 𝐸 ∧ {(lastSβ€˜π‘Š), (π‘Šβ€˜0)} ∈ 𝐸)))
17 anass 467 . . . . . 6 (((π‘Š ∈ Word 𝑉 ∧ π‘Š β‰  βˆ…) ∧ (βˆ€π‘– ∈ (0..^((β™―β€˜π‘Š) βˆ’ 1)){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ 𝐸 ∧ {(lastSβ€˜π‘Š), (π‘Šβ€˜0)} ∈ 𝐸)) ↔ (π‘Š ∈ Word 𝑉 ∧ (π‘Š β‰  βˆ… ∧ (βˆ€π‘– ∈ (0..^((β™―β€˜π‘Š) βˆ’ 1)){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ 𝐸 ∧ {(lastSβ€˜π‘Š), (π‘Šβ€˜0)} ∈ 𝐸))))
1816, 17bitri 274 . . . . 5 (((π‘Š ∈ Word 𝑉 ∧ π‘Š β‰  βˆ…) ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘Š) βˆ’ 1)){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ 𝐸 ∧ {(lastSβ€˜π‘Š), (π‘Šβ€˜0)} ∈ 𝐸) ↔ (π‘Š ∈ Word 𝑉 ∧ (π‘Š β‰  βˆ… ∧ (βˆ€π‘– ∈ (0..^((β™―β€˜π‘Š) βˆ’ 1)){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ 𝐸 ∧ {(lastSβ€˜π‘Š), (π‘Šβ€˜0)} ∈ 𝐸))))
1915, 18bitri 274 . . . 4 (π‘Š ∈ (ClWWalksβ€˜πΊ) ↔ (π‘Š ∈ Word 𝑉 ∧ (π‘Š β‰  βˆ… ∧ (βˆ€π‘– ∈ (0..^((β™―β€˜π‘Š) βˆ’ 1)){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ 𝐸 ∧ {(lastSβ€˜π‘Š), (π‘Šβ€˜0)} ∈ 𝐸))))
2019anbi1i 622 . . 3 ((π‘Š ∈ (ClWWalksβ€˜πΊ) ∧ (β™―β€˜π‘Š) = 𝑁) ↔ ((π‘Š ∈ Word 𝑉 ∧ (π‘Š β‰  βˆ… ∧ (βˆ€π‘– ∈ (0..^((β™―β€˜π‘Š) βˆ’ 1)){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ 𝐸 ∧ {(lastSβ€˜π‘Š), (π‘Šβ€˜0)} ∈ 𝐸))) ∧ (β™―β€˜π‘Š) = 𝑁))
2112, 20bitri 274 . 2 (π‘Š ∈ (𝑁 ClWWalksN 𝐺) ↔ ((π‘Š ∈ Word 𝑉 ∧ (π‘Š β‰  βˆ… ∧ (βˆ€π‘– ∈ (0..^((β™―β€˜π‘Š) βˆ’ 1)){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ 𝐸 ∧ {(lastSβ€˜π‘Š), (π‘Šβ€˜0)} ∈ 𝐸))) ∧ (β™―β€˜π‘Š) = 𝑁))
22 3anass 1092 . . 3 ((π‘Š ∈ Word 𝑉 ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘Š) βˆ’ 1)){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ 𝐸 ∧ {(lastSβ€˜π‘Š), (π‘Šβ€˜0)} ∈ 𝐸) ↔ (π‘Š ∈ Word 𝑉 ∧ (βˆ€π‘– ∈ (0..^((β™―β€˜π‘Š) βˆ’ 1)){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ 𝐸 ∧ {(lastSβ€˜π‘Š), (π‘Šβ€˜0)} ∈ 𝐸)))
2322anbi1i 622 . 2 (((π‘Š ∈ Word 𝑉 ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘Š) βˆ’ 1)){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ 𝐸 ∧ {(lastSβ€˜π‘Š), (π‘Šβ€˜0)} ∈ 𝐸) ∧ (β™―β€˜π‘Š) = 𝑁) ↔ ((π‘Š ∈ Word 𝑉 ∧ (βˆ€π‘– ∈ (0..^((β™―β€˜π‘Š) βˆ’ 1)){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ 𝐸 ∧ {(lastSβ€˜π‘Š), (π‘Šβ€˜0)} ∈ 𝐸)) ∧ (β™―β€˜π‘Š) = 𝑁))
2411, 21, 233bitr4g 313 1 (𝑁 ∈ β„• β†’ (π‘Š ∈ (𝑁 ClWWalksN 𝐺) ↔ ((π‘Š ∈ Word 𝑉 ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘Š) βˆ’ 1)){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ 𝐸 ∧ {(lastSβ€˜π‘Š), (π‘Šβ€˜0)} ∈ 𝐸) ∧ (β™―β€˜π‘Š) = 𝑁)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 394   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098   β‰  wne 2930  βˆ€wral 3051  βˆ…c0 4318  {cpr 4626  β€˜cfv 6543  (class class class)co 7416  0cc0 11138  1c1 11139   + caddc 11141   βˆ’ cmin 11474  β„•cn 12242  ..^cfzo 13659  β™―chash 14321  Word cword 14496  lastSclsw 14544  Vtxcvtx 28853  Edgcedg 28904  ClWWalkscclwwlk 29835   ClWWalksN cclwwlkn 29878
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7738  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3769  df-csb 3885  df-dif 3942  df-un 3944  df-in 3946  df-ss 3956  df-pss 3959  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7372  df-ov 7419  df-oprab 7420  df-mpo 7421  df-om 7869  df-1st 7991  df-2nd 7992  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8723  df-map 8845  df-en 8963  df-dom 8964  df-sdom 8965  df-fin 8966  df-card 9962  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11476  df-neg 11477  df-nn 12243  df-n0 12503  df-xnn0 12575  df-z 12589  df-uz 12853  df-fz 13517  df-fzo 13660  df-hash 14322  df-word 14497  df-clwwlk 29836  df-clwwlkn 29879
This theorem is referenced by:  clwwlknp  29891  clwwlkn1  29895  clwwlkn2  29898  clwwlkf  29901  clwwlkext2edg  29910  wwlksext2clwwlk  29911  clwwlknonex2  29963
  Copyright terms: Public domain W3C validator