Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  outsideofeu Structured version   Visualization version   GIF version

Theorem outsideofeu 32682
Description: Given a nondegenerate ray, there is a unique point congruent to the segment 𝐵𝐶 lying on the ray 𝐴𝑅. Theorem 6.11 of [Schwabhauser] p. 44. (Contributed by Scott Fenton, 23-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
outsideofeu ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → ((𝑅𝐴𝐵𝐶) → ∃!𝑥 ∈ (𝔼‘𝑁)(𝐴OutsideOf⟨𝑥, 𝑅⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐵, 𝐶⟩)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝑁   𝑥,𝑅

Proof of Theorem outsideofeu
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 segcon2 32656 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → ∃𝑥 ∈ (𝔼‘𝑁)((𝑅 Btwn ⟨𝐴, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝐴, 𝑅⟩) ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐵, 𝐶⟩))
21adantr 472 . . . 4 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝑅𝐴𝐵𝐶)) → ∃𝑥 ∈ (𝔼‘𝑁)((𝑅 Btwn ⟨𝐴, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝐴, 𝑅⟩) ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐵, 𝐶⟩))
3 simpl1 1242 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) → 𝑁 ∈ ℕ)
4 simpl2l 1297 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) → 𝐴 ∈ (𝔼‘𝑁))
5 simpr 477 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) → 𝑥 ∈ (𝔼‘𝑁))
6 simpl2r 1299 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) → 𝑅 ∈ (𝔼‘𝑁))
7 broutsideof2 32673 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) → (𝐴OutsideOf⟨𝑥, 𝑅⟩ ↔ (𝑥𝐴𝑅𝐴 ∧ (𝑥 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑥⟩))))
83, 4, 5, 6, 7syl13anc 1491 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) → (𝐴OutsideOf⟨𝑥, 𝑅⟩ ↔ (𝑥𝐴𝑅𝐴 ∧ (𝑥 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑥⟩))))
98adantr 472 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ ((𝑅𝐴𝐵𝐶) ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐵, 𝐶⟩)) → (𝐴OutsideOf⟨𝑥, 𝑅⟩ ↔ (𝑥𝐴𝑅𝐴 ∧ (𝑥 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑥⟩))))
10 simp3 1168 . . . . . . . . . . 11 ((𝑥𝐴𝑅𝐴 ∧ (𝑥 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑥⟩)) → (𝑥 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑥⟩))
11 simpllr 793 . . . . . . . . . . . . . . . 16 ((((𝑅𝐴𝐵𝐶) ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐵, 𝐶⟩) ∧ (𝑥 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑥⟩)) → 𝐵𝐶)
1211adantl 473 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (((𝑅𝐴𝐵𝐶) ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐵, 𝐶⟩) ∧ (𝑥 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑥⟩))) → 𝐵𝐶)
13 simprlr 798 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (((𝑅𝐴𝐵𝐶) ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐵, 𝐶⟩) ∧ (𝑥 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑥⟩))) → ⟨𝐴, 𝑥⟩Cgr⟨𝐵, 𝐶⟩)
14 simp2l 1256 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → 𝐴 ∈ (𝔼‘𝑁))
1514anim1i 608 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) → (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁)))
16 simpl3 1246 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) → (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)))
17 cgrdegen 32555 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (⟨𝐴, 𝑥⟩Cgr⟨𝐵, 𝐶⟩ → (𝐴 = 𝑥𝐵 = 𝐶)))
183, 15, 16, 17syl3anc 1490 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) → (⟨𝐴, 𝑥⟩Cgr⟨𝐵, 𝐶⟩ → (𝐴 = 𝑥𝐵 = 𝐶)))
1918adantr 472 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (((𝑅𝐴𝐵𝐶) ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐵, 𝐶⟩) ∧ (𝑥 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑥⟩))) → (⟨𝐴, 𝑥⟩Cgr⟨𝐵, 𝐶⟩ → (𝐴 = 𝑥𝐵 = 𝐶)))
2013, 19mpd 15 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (((𝑅𝐴𝐵𝐶) ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐵, 𝐶⟩) ∧ (𝑥 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑥⟩))) → (𝐴 = 𝑥𝐵 = 𝐶))
2120necon3bid 2981 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (((𝑅𝐴𝐵𝐶) ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐵, 𝐶⟩) ∧ (𝑥 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑥⟩))) → (𝐴𝑥𝐵𝐶))
2212, 21mpbird 248 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (((𝑅𝐴𝐵𝐶) ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐵, 𝐶⟩) ∧ (𝑥 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑥⟩))) → 𝐴𝑥)
2322necomd 2992 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (((𝑅𝐴𝐵𝐶) ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐵, 𝐶⟩) ∧ (𝑥 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑥⟩))) → 𝑥𝐴)
24 simplll 791 . . . . . . . . . . . . . 14 ((((𝑅𝐴𝐵𝐶) ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐵, 𝐶⟩) ∧ (𝑥 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑥⟩)) → 𝑅𝐴)
2524adantl 473 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (((𝑅𝐴𝐵𝐶) ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐵, 𝐶⟩) ∧ (𝑥 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑥⟩))) → 𝑅𝐴)
26 simprr 789 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (((𝑅𝐴𝐵𝐶) ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐵, 𝐶⟩) ∧ (𝑥 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑥⟩))) → (𝑥 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑥⟩))
2723, 25, 263jca 1158 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (((𝑅𝐴𝐵𝐶) ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐵, 𝐶⟩) ∧ (𝑥 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑥⟩))) → (𝑥𝐴𝑅𝐴 ∧ (𝑥 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑥⟩)))
2827expr 448 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ ((𝑅𝐴𝐵𝐶) ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐵, 𝐶⟩)) → ((𝑥 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑥⟩) → (𝑥𝐴𝑅𝐴 ∧ (𝑥 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑥⟩))))
2910, 28impbid2 217 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ ((𝑅𝐴𝐵𝐶) ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐵, 𝐶⟩)) → ((𝑥𝐴𝑅𝐴 ∧ (𝑥 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑥⟩)) ↔ (𝑥 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑥⟩)))
309, 29bitrd 270 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ ((𝑅𝐴𝐵𝐶) ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐵, 𝐶⟩)) → (𝐴OutsideOf⟨𝑥, 𝑅⟩ ↔ (𝑥 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑥⟩)))
31 orcom 896 . . . . . . . . 9 ((𝑥 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑥⟩) ↔ (𝑅 Btwn ⟨𝐴, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝐴, 𝑅⟩))
3230, 31syl6bb 278 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ ((𝑅𝐴𝐵𝐶) ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐵, 𝐶⟩)) → (𝐴OutsideOf⟨𝑥, 𝑅⟩ ↔ (𝑅 Btwn ⟨𝐴, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝐴, 𝑅⟩)))
3332expr 448 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑅𝐴𝐵𝐶)) → (⟨𝐴, 𝑥⟩Cgr⟨𝐵, 𝐶⟩ → (𝐴OutsideOf⟨𝑥, 𝑅⟩ ↔ (𝑅 Btwn ⟨𝐴, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝐴, 𝑅⟩))))
3433pm5.32rd 573 . . . . . 6 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑅𝐴𝐵𝐶)) → ((𝐴OutsideOf⟨𝑥, 𝑅⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐵, 𝐶⟩) ↔ ((𝑅 Btwn ⟨𝐴, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝐴, 𝑅⟩) ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐵, 𝐶⟩)))
3534an32s 642 . . . . 5 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝑅𝐴𝐵𝐶)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → ((𝐴OutsideOf⟨𝑥, 𝑅⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐵, 𝐶⟩) ↔ ((𝑅 Btwn ⟨𝐴, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝐴, 𝑅⟩) ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐵, 𝐶⟩)))
3635rexbidva 3196 . . . 4 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝑅𝐴𝐵𝐶)) → (∃𝑥 ∈ (𝔼‘𝑁)(𝐴OutsideOf⟨𝑥, 𝑅⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐵, 𝐶⟩) ↔ ∃𝑥 ∈ (𝔼‘𝑁)((𝑅 Btwn ⟨𝐴, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝐴, 𝑅⟩) ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐵, 𝐶⟩)))
372, 36mpbird 248 . . 3 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝑅𝐴𝐵𝐶)) → ∃𝑥 ∈ (𝔼‘𝑁)(𝐴OutsideOf⟨𝑥, 𝑅⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐵, 𝐶⟩))
38 simpl1 1242 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁))) → 𝑁 ∈ ℕ)
39 simpl2l 1297 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁))) → 𝐴 ∈ (𝔼‘𝑁))
40 simpl2r 1299 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁))) → 𝑅 ∈ (𝔼‘𝑁))
41 simpl3l 1301 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁))) → 𝐵 ∈ (𝔼‘𝑁))
4239, 40, 413jca 1158 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁))) → (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)))
43 simpl3r 1303 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁))) → 𝐶 ∈ (𝔼‘𝑁))
44 simprl 787 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁))) → 𝑥 ∈ (𝔼‘𝑁))
45 simprr 789 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁))) → 𝑦 ∈ (𝔼‘𝑁))
4643, 44, 453jca 1158 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁))) → (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁)))
4738, 42, 463jca 1158 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁))) → (𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁))))
48 simpr 477 . . . . . . 7 (((𝑅𝐴𝐵𝐶) ∧ ((𝐴OutsideOf⟨𝑥, 𝑅⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐵, 𝐶⟩) ∧ (𝐴OutsideOf⟨𝑦, 𝑅⟩ ∧ ⟨𝐴, 𝑦⟩Cgr⟨𝐵, 𝐶⟩))) → ((𝐴OutsideOf⟨𝑥, 𝑅⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐵, 𝐶⟩) ∧ (𝐴OutsideOf⟨𝑦, 𝑅⟩ ∧ ⟨𝐴, 𝑦⟩Cgr⟨𝐵, 𝐶⟩)))
49 outsideofeq 32681 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁))) → (((𝐴OutsideOf⟨𝑥, 𝑅⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐵, 𝐶⟩) ∧ (𝐴OutsideOf⟨𝑦, 𝑅⟩ ∧ ⟨𝐴, 𝑦⟩Cgr⟨𝐵, 𝐶⟩)) → 𝑥 = 𝑦))
5049imp 395 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁))) ∧ ((𝐴OutsideOf⟨𝑥, 𝑅⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐵, 𝐶⟩) ∧ (𝐴OutsideOf⟨𝑦, 𝑅⟩ ∧ ⟨𝐴, 𝑦⟩Cgr⟨𝐵, 𝐶⟩))) → 𝑥 = 𝑦)
5147, 48, 50syl2an 589 . . . . . 6 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁))) ∧ ((𝑅𝐴𝐵𝐶) ∧ ((𝐴OutsideOf⟨𝑥, 𝑅⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐵, 𝐶⟩) ∧ (𝐴OutsideOf⟨𝑦, 𝑅⟩ ∧ ⟨𝐴, 𝑦⟩Cgr⟨𝐵, 𝐶⟩)))) → 𝑥 = 𝑦)
5251an4s 650 . . . . 5 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝑅𝐴𝐵𝐶)) ∧ ((𝑥 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ ((𝐴OutsideOf⟨𝑥, 𝑅⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐵, 𝐶⟩) ∧ (𝐴OutsideOf⟨𝑦, 𝑅⟩ ∧ ⟨𝐴, 𝑦⟩Cgr⟨𝐵, 𝐶⟩)))) → 𝑥 = 𝑦)
5352exp32 411 . . . 4 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝑅𝐴𝐵𝐶)) → ((𝑥 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁)) → (((𝐴OutsideOf⟨𝑥, 𝑅⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐵, 𝐶⟩) ∧ (𝐴OutsideOf⟨𝑦, 𝑅⟩ ∧ ⟨𝐴, 𝑦⟩Cgr⟨𝐵, 𝐶⟩)) → 𝑥 = 𝑦)))
5453ralrimivv 3117 . . 3 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝑅𝐴𝐵𝐶)) → ∀𝑥 ∈ (𝔼‘𝑁)∀𝑦 ∈ (𝔼‘𝑁)(((𝐴OutsideOf⟨𝑥, 𝑅⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐵, 𝐶⟩) ∧ (𝐴OutsideOf⟨𝑦, 𝑅⟩ ∧ ⟨𝐴, 𝑦⟩Cgr⟨𝐵, 𝐶⟩)) → 𝑥 = 𝑦))
55 opeq1 4559 . . . . . 6 (𝑥 = 𝑦 → ⟨𝑥, 𝑅⟩ = ⟨𝑦, 𝑅⟩)
5655breq2d 4821 . . . . 5 (𝑥 = 𝑦 → (𝐴OutsideOf⟨𝑥, 𝑅⟩ ↔ 𝐴OutsideOf⟨𝑦, 𝑅⟩))
57 opeq2 4560 . . . . . 6 (𝑥 = 𝑦 → ⟨𝐴, 𝑥⟩ = ⟨𝐴, 𝑦⟩)
5857breq1d 4819 . . . . 5 (𝑥 = 𝑦 → (⟨𝐴, 𝑥⟩Cgr⟨𝐵, 𝐶⟩ ↔ ⟨𝐴, 𝑦⟩Cgr⟨𝐵, 𝐶⟩))
5956, 58anbi12d 624 . . . 4 (𝑥 = 𝑦 → ((𝐴OutsideOf⟨𝑥, 𝑅⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐵, 𝐶⟩) ↔ (𝐴OutsideOf⟨𝑦, 𝑅⟩ ∧ ⟨𝐴, 𝑦⟩Cgr⟨𝐵, 𝐶⟩)))
6059reu4 3559 . . 3 (∃!𝑥 ∈ (𝔼‘𝑁)(𝐴OutsideOf⟨𝑥, 𝑅⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐵, 𝐶⟩) ↔ (∃𝑥 ∈ (𝔼‘𝑁)(𝐴OutsideOf⟨𝑥, 𝑅⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐵, 𝐶⟩) ∧ ∀𝑥 ∈ (𝔼‘𝑁)∀𝑦 ∈ (𝔼‘𝑁)(((𝐴OutsideOf⟨𝑥, 𝑅⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐵, 𝐶⟩) ∧ (𝐴OutsideOf⟨𝑦, 𝑅⟩ ∧ ⟨𝐴, 𝑦⟩Cgr⟨𝐵, 𝐶⟩)) → 𝑥 = 𝑦)))
6137, 54, 60sylanbrc 578 . 2 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝑅𝐴𝐵𝐶)) → ∃!𝑥 ∈ (𝔼‘𝑁)(𝐴OutsideOf⟨𝑥, 𝑅⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐵, 𝐶⟩))
6261ex 401 1 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → ((𝑅𝐴𝐵𝐶) → ∃!𝑥 ∈ (𝔼‘𝑁)(𝐴OutsideOf⟨𝑥, 𝑅⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐵, 𝐶⟩)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384  wo 873  w3a 1107   = wceq 1652  wcel 2155  wne 2937  wral 3055  wrex 3056  ∃!wreu 3057  cop 4340   class class class wbr 4809  cfv 6068  cn 11274  𝔼cee 26059   Btwn cbtwn 26060  Cgrccgr 26061  OutsideOfcoutsideof 32670
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-inf2 8753  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266  ax-pre-sup 10267
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-fal 1666  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-int 4634  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-se 5237  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-isom 6077  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-om 7264  df-1st 7366  df-2nd 7367  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-1o 7764  df-oadd 7768  df-er 7947  df-map 8062  df-en 8161  df-dom 8162  df-sdom 8163  df-fin 8164  df-sup 8555  df-oi 8622  df-card 9016  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-div 10939  df-nn 11275  df-2 11335  df-3 11336  df-n0 11539  df-z 11625  df-uz 11887  df-rp 12029  df-ico 12383  df-icc 12384  df-fz 12534  df-fzo 12674  df-seq 13009  df-exp 13068  df-hash 13322  df-cj 14124  df-re 14125  df-im 14126  df-sqrt 14260  df-abs 14261  df-clim 14504  df-sum 14702  df-ee 26062  df-btwn 26063  df-cgr 26064  df-ofs 32534  df-colinear 32590  df-ifs 32591  df-cgr3 32592  df-fs 32593  df-outsideof 32671
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator