Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  outsideofeu Structured version   Visualization version   GIF version

Theorem outsideofeu 35598
Description: Given a nondegenerate ray, there is a unique point congruent to the segment 𝐡𝐢 lying on the ray 𝐴𝑅. Theorem 6.11 of [Schwabhauser] p. 44. (Contributed by Scott Fenton, 23-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
outsideofeu ((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝑅 ∈ (π”Όβ€˜π‘)) ∧ (𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘))) β†’ ((𝑅 β‰  𝐴 ∧ 𝐡 β‰  𝐢) β†’ βˆƒ!π‘₯ ∈ (π”Όβ€˜π‘)(𝐴OutsideOf⟨π‘₯, π‘…βŸ© ∧ ⟨𝐴, π‘₯⟩Cgr⟨𝐡, 𝐢⟩)))
Distinct variable groups:   π‘₯,𝐴   π‘₯,𝐡   π‘₯,𝐢   π‘₯,𝑁   π‘₯,𝑅

Proof of Theorem outsideofeu
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 segcon2 35572 . . . . 5 ((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝑅 ∈ (π”Όβ€˜π‘)) ∧ (𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘))) β†’ βˆƒπ‘₯ ∈ (π”Όβ€˜π‘)((𝑅 Btwn ⟨𝐴, π‘₯⟩ ∨ π‘₯ Btwn ⟨𝐴, π‘…βŸ©) ∧ ⟨𝐴, π‘₯⟩Cgr⟨𝐡, 𝐢⟩))
21adantr 480 . . . 4 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝑅 ∈ (π”Όβ€˜π‘)) ∧ (𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘))) ∧ (𝑅 β‰  𝐴 ∧ 𝐡 β‰  𝐢)) β†’ βˆƒπ‘₯ ∈ (π”Όβ€˜π‘)((𝑅 Btwn ⟨𝐴, π‘₯⟩ ∨ π‘₯ Btwn ⟨𝐴, π‘…βŸ©) ∧ ⟨𝐴, π‘₯⟩Cgr⟨𝐡, 𝐢⟩))
3 simpl1 1188 . . . . . . . . . . . 12 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝑅 ∈ (π”Όβ€˜π‘)) ∧ (𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘))) ∧ π‘₯ ∈ (π”Όβ€˜π‘)) β†’ 𝑁 ∈ β„•)
4 simpl2l 1223 . . . . . . . . . . . 12 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝑅 ∈ (π”Όβ€˜π‘)) ∧ (𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘))) ∧ π‘₯ ∈ (π”Όβ€˜π‘)) β†’ 𝐴 ∈ (π”Όβ€˜π‘))
5 simpr 484 . . . . . . . . . . . 12 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝑅 ∈ (π”Όβ€˜π‘)) ∧ (𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘))) ∧ π‘₯ ∈ (π”Όβ€˜π‘)) β†’ π‘₯ ∈ (π”Όβ€˜π‘))
6 simpl2r 1224 . . . . . . . . . . . 12 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝑅 ∈ (π”Όβ€˜π‘)) ∧ (𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘))) ∧ π‘₯ ∈ (π”Όβ€˜π‘)) β†’ 𝑅 ∈ (π”Όβ€˜π‘))
7 broutsideof2 35589 . . . . . . . . . . . 12 ((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ π‘₯ ∈ (π”Όβ€˜π‘) ∧ 𝑅 ∈ (π”Όβ€˜π‘))) β†’ (𝐴OutsideOf⟨π‘₯, π‘…βŸ© ↔ (π‘₯ β‰  𝐴 ∧ 𝑅 β‰  𝐴 ∧ (π‘₯ Btwn ⟨𝐴, π‘…βŸ© ∨ 𝑅 Btwn ⟨𝐴, π‘₯⟩))))
83, 4, 5, 6, 7syl13anc 1369 . . . . . . . . . . 11 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝑅 ∈ (π”Όβ€˜π‘)) ∧ (𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘))) ∧ π‘₯ ∈ (π”Όβ€˜π‘)) β†’ (𝐴OutsideOf⟨π‘₯, π‘…βŸ© ↔ (π‘₯ β‰  𝐴 ∧ 𝑅 β‰  𝐴 ∧ (π‘₯ Btwn ⟨𝐴, π‘…βŸ© ∨ 𝑅 Btwn ⟨𝐴, π‘₯⟩))))
98adantr 480 . . . . . . . . . 10 ((((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝑅 ∈ (π”Όβ€˜π‘)) ∧ (𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘))) ∧ π‘₯ ∈ (π”Όβ€˜π‘)) ∧ ((𝑅 β‰  𝐴 ∧ 𝐡 β‰  𝐢) ∧ ⟨𝐴, π‘₯⟩Cgr⟨𝐡, 𝐢⟩)) β†’ (𝐴OutsideOf⟨π‘₯, π‘…βŸ© ↔ (π‘₯ β‰  𝐴 ∧ 𝑅 β‰  𝐴 ∧ (π‘₯ Btwn ⟨𝐴, π‘…βŸ© ∨ 𝑅 Btwn ⟨𝐴, π‘₯⟩))))
10 simp3 1135 . . . . . . . . . . 11 ((π‘₯ β‰  𝐴 ∧ 𝑅 β‰  𝐴 ∧ (π‘₯ Btwn ⟨𝐴, π‘…βŸ© ∨ 𝑅 Btwn ⟨𝐴, π‘₯⟩)) β†’ (π‘₯ Btwn ⟨𝐴, π‘…βŸ© ∨ 𝑅 Btwn ⟨𝐴, π‘₯⟩))
11 simpllr 773 . . . . . . . . . . . . . . . 16 ((((𝑅 β‰  𝐴 ∧ 𝐡 β‰  𝐢) ∧ ⟨𝐴, π‘₯⟩Cgr⟨𝐡, 𝐢⟩) ∧ (π‘₯ Btwn ⟨𝐴, π‘…βŸ© ∨ 𝑅 Btwn ⟨𝐴, π‘₯⟩)) β†’ 𝐡 β‰  𝐢)
1211adantl 481 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝑅 ∈ (π”Όβ€˜π‘)) ∧ (𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘))) ∧ π‘₯ ∈ (π”Όβ€˜π‘)) ∧ (((𝑅 β‰  𝐴 ∧ 𝐡 β‰  𝐢) ∧ ⟨𝐴, π‘₯⟩Cgr⟨𝐡, 𝐢⟩) ∧ (π‘₯ Btwn ⟨𝐴, π‘…βŸ© ∨ 𝑅 Btwn ⟨𝐴, π‘₯⟩))) β†’ 𝐡 β‰  𝐢)
13 simprlr 777 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝑅 ∈ (π”Όβ€˜π‘)) ∧ (𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘))) ∧ π‘₯ ∈ (π”Όβ€˜π‘)) ∧ (((𝑅 β‰  𝐴 ∧ 𝐡 β‰  𝐢) ∧ ⟨𝐴, π‘₯⟩Cgr⟨𝐡, 𝐢⟩) ∧ (π‘₯ Btwn ⟨𝐴, π‘…βŸ© ∨ 𝑅 Btwn ⟨𝐴, π‘₯⟩))) β†’ ⟨𝐴, π‘₯⟩Cgr⟨𝐡, 𝐢⟩)
14 simp2l 1196 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝑅 ∈ (π”Όβ€˜π‘)) ∧ (𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘))) β†’ 𝐴 ∈ (π”Όβ€˜π‘))
1514anim1i 614 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝑅 ∈ (π”Όβ€˜π‘)) ∧ (𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘))) ∧ π‘₯ ∈ (π”Όβ€˜π‘)) β†’ (𝐴 ∈ (π”Όβ€˜π‘) ∧ π‘₯ ∈ (π”Όβ€˜π‘)))
16 simpl3 1190 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝑅 ∈ (π”Όβ€˜π‘)) ∧ (𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘))) ∧ π‘₯ ∈ (π”Όβ€˜π‘)) β†’ (𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)))
17 cgrdegen 35471 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ π‘₯ ∈ (π”Όβ€˜π‘)) ∧ (𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘))) β†’ (⟨𝐴, π‘₯⟩Cgr⟨𝐡, 𝐢⟩ β†’ (𝐴 = π‘₯ ↔ 𝐡 = 𝐢)))
183, 15, 16, 17syl3anc 1368 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝑅 ∈ (π”Όβ€˜π‘)) ∧ (𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘))) ∧ π‘₯ ∈ (π”Όβ€˜π‘)) β†’ (⟨𝐴, π‘₯⟩Cgr⟨𝐡, 𝐢⟩ β†’ (𝐴 = π‘₯ ↔ 𝐡 = 𝐢)))
1918adantr 480 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝑅 ∈ (π”Όβ€˜π‘)) ∧ (𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘))) ∧ π‘₯ ∈ (π”Όβ€˜π‘)) ∧ (((𝑅 β‰  𝐴 ∧ 𝐡 β‰  𝐢) ∧ ⟨𝐴, π‘₯⟩Cgr⟨𝐡, 𝐢⟩) ∧ (π‘₯ Btwn ⟨𝐴, π‘…βŸ© ∨ 𝑅 Btwn ⟨𝐴, π‘₯⟩))) β†’ (⟨𝐴, π‘₯⟩Cgr⟨𝐡, 𝐢⟩ β†’ (𝐴 = π‘₯ ↔ 𝐡 = 𝐢)))
2013, 19mpd 15 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝑅 ∈ (π”Όβ€˜π‘)) ∧ (𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘))) ∧ π‘₯ ∈ (π”Όβ€˜π‘)) ∧ (((𝑅 β‰  𝐴 ∧ 𝐡 β‰  𝐢) ∧ ⟨𝐴, π‘₯⟩Cgr⟨𝐡, 𝐢⟩) ∧ (π‘₯ Btwn ⟨𝐴, π‘…βŸ© ∨ 𝑅 Btwn ⟨𝐴, π‘₯⟩))) β†’ (𝐴 = π‘₯ ↔ 𝐡 = 𝐢))
2120necon3bid 2977 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝑅 ∈ (π”Όβ€˜π‘)) ∧ (𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘))) ∧ π‘₯ ∈ (π”Όβ€˜π‘)) ∧ (((𝑅 β‰  𝐴 ∧ 𝐡 β‰  𝐢) ∧ ⟨𝐴, π‘₯⟩Cgr⟨𝐡, 𝐢⟩) ∧ (π‘₯ Btwn ⟨𝐴, π‘…βŸ© ∨ 𝑅 Btwn ⟨𝐴, π‘₯⟩))) β†’ (𝐴 β‰  π‘₯ ↔ 𝐡 β‰  𝐢))
2212, 21mpbird 257 . . . . . . . . . . . . . 14 ((((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝑅 ∈ (π”Όβ€˜π‘)) ∧ (𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘))) ∧ π‘₯ ∈ (π”Όβ€˜π‘)) ∧ (((𝑅 β‰  𝐴 ∧ 𝐡 β‰  𝐢) ∧ ⟨𝐴, π‘₯⟩Cgr⟨𝐡, 𝐢⟩) ∧ (π‘₯ Btwn ⟨𝐴, π‘…βŸ© ∨ 𝑅 Btwn ⟨𝐴, π‘₯⟩))) β†’ 𝐴 β‰  π‘₯)
2322necomd 2988 . . . . . . . . . . . . 13 ((((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝑅 ∈ (π”Όβ€˜π‘)) ∧ (𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘))) ∧ π‘₯ ∈ (π”Όβ€˜π‘)) ∧ (((𝑅 β‰  𝐴 ∧ 𝐡 β‰  𝐢) ∧ ⟨𝐴, π‘₯⟩Cgr⟨𝐡, 𝐢⟩) ∧ (π‘₯ Btwn ⟨𝐴, π‘…βŸ© ∨ 𝑅 Btwn ⟨𝐴, π‘₯⟩))) β†’ π‘₯ β‰  𝐴)
24 simplll 772 . . . . . . . . . . . . . 14 ((((𝑅 β‰  𝐴 ∧ 𝐡 β‰  𝐢) ∧ ⟨𝐴, π‘₯⟩Cgr⟨𝐡, 𝐢⟩) ∧ (π‘₯ Btwn ⟨𝐴, π‘…βŸ© ∨ 𝑅 Btwn ⟨𝐴, π‘₯⟩)) β†’ 𝑅 β‰  𝐴)
2524adantl 481 . . . . . . . . . . . . 13 ((((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝑅 ∈ (π”Όβ€˜π‘)) ∧ (𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘))) ∧ π‘₯ ∈ (π”Όβ€˜π‘)) ∧ (((𝑅 β‰  𝐴 ∧ 𝐡 β‰  𝐢) ∧ ⟨𝐴, π‘₯⟩Cgr⟨𝐡, 𝐢⟩) ∧ (π‘₯ Btwn ⟨𝐴, π‘…βŸ© ∨ 𝑅 Btwn ⟨𝐴, π‘₯⟩))) β†’ 𝑅 β‰  𝐴)
26 simprr 770 . . . . . . . . . . . . 13 ((((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝑅 ∈ (π”Όβ€˜π‘)) ∧ (𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘))) ∧ π‘₯ ∈ (π”Όβ€˜π‘)) ∧ (((𝑅 β‰  𝐴 ∧ 𝐡 β‰  𝐢) ∧ ⟨𝐴, π‘₯⟩Cgr⟨𝐡, 𝐢⟩) ∧ (π‘₯ Btwn ⟨𝐴, π‘…βŸ© ∨ 𝑅 Btwn ⟨𝐴, π‘₯⟩))) β†’ (π‘₯ Btwn ⟨𝐴, π‘…βŸ© ∨ 𝑅 Btwn ⟨𝐴, π‘₯⟩))
2723, 25, 263jca 1125 . . . . . . . . . . . 12 ((((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝑅 ∈ (π”Όβ€˜π‘)) ∧ (𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘))) ∧ π‘₯ ∈ (π”Όβ€˜π‘)) ∧ (((𝑅 β‰  𝐴 ∧ 𝐡 β‰  𝐢) ∧ ⟨𝐴, π‘₯⟩Cgr⟨𝐡, 𝐢⟩) ∧ (π‘₯ Btwn ⟨𝐴, π‘…βŸ© ∨ 𝑅 Btwn ⟨𝐴, π‘₯⟩))) β†’ (π‘₯ β‰  𝐴 ∧ 𝑅 β‰  𝐴 ∧ (π‘₯ Btwn ⟨𝐴, π‘…βŸ© ∨ 𝑅 Btwn ⟨𝐴, π‘₯⟩)))
2827expr 456 . . . . . . . . . . 11 ((((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝑅 ∈ (π”Όβ€˜π‘)) ∧ (𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘))) ∧ π‘₯ ∈ (π”Όβ€˜π‘)) ∧ ((𝑅 β‰  𝐴 ∧ 𝐡 β‰  𝐢) ∧ ⟨𝐴, π‘₯⟩Cgr⟨𝐡, 𝐢⟩)) β†’ ((π‘₯ Btwn ⟨𝐴, π‘…βŸ© ∨ 𝑅 Btwn ⟨𝐴, π‘₯⟩) β†’ (π‘₯ β‰  𝐴 ∧ 𝑅 β‰  𝐴 ∧ (π‘₯ Btwn ⟨𝐴, π‘…βŸ© ∨ 𝑅 Btwn ⟨𝐴, π‘₯⟩))))
2910, 28impbid2 225 . . . . . . . . . 10 ((((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝑅 ∈ (π”Όβ€˜π‘)) ∧ (𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘))) ∧ π‘₯ ∈ (π”Όβ€˜π‘)) ∧ ((𝑅 β‰  𝐴 ∧ 𝐡 β‰  𝐢) ∧ ⟨𝐴, π‘₯⟩Cgr⟨𝐡, 𝐢⟩)) β†’ ((π‘₯ β‰  𝐴 ∧ 𝑅 β‰  𝐴 ∧ (π‘₯ Btwn ⟨𝐴, π‘…βŸ© ∨ 𝑅 Btwn ⟨𝐴, π‘₯⟩)) ↔ (π‘₯ Btwn ⟨𝐴, π‘…βŸ© ∨ 𝑅 Btwn ⟨𝐴, π‘₯⟩)))
309, 29bitrd 279 . . . . . . . . 9 ((((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝑅 ∈ (π”Όβ€˜π‘)) ∧ (𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘))) ∧ π‘₯ ∈ (π”Όβ€˜π‘)) ∧ ((𝑅 β‰  𝐴 ∧ 𝐡 β‰  𝐢) ∧ ⟨𝐴, π‘₯⟩Cgr⟨𝐡, 𝐢⟩)) β†’ (𝐴OutsideOf⟨π‘₯, π‘…βŸ© ↔ (π‘₯ Btwn ⟨𝐴, π‘…βŸ© ∨ 𝑅 Btwn ⟨𝐴, π‘₯⟩)))
31 orcom 867 . . . . . . . . 9 ((π‘₯ Btwn ⟨𝐴, π‘…βŸ© ∨ 𝑅 Btwn ⟨𝐴, π‘₯⟩) ↔ (𝑅 Btwn ⟨𝐴, π‘₯⟩ ∨ π‘₯ Btwn ⟨𝐴, π‘…βŸ©))
3230, 31bitrdi 287 . . . . . . . 8 ((((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝑅 ∈ (π”Όβ€˜π‘)) ∧ (𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘))) ∧ π‘₯ ∈ (π”Όβ€˜π‘)) ∧ ((𝑅 β‰  𝐴 ∧ 𝐡 β‰  𝐢) ∧ ⟨𝐴, π‘₯⟩Cgr⟨𝐡, 𝐢⟩)) β†’ (𝐴OutsideOf⟨π‘₯, π‘…βŸ© ↔ (𝑅 Btwn ⟨𝐴, π‘₯⟩ ∨ π‘₯ Btwn ⟨𝐴, π‘…βŸ©)))
3332expr 456 . . . . . . 7 ((((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝑅 ∈ (π”Όβ€˜π‘)) ∧ (𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘))) ∧ π‘₯ ∈ (π”Όβ€˜π‘)) ∧ (𝑅 β‰  𝐴 ∧ 𝐡 β‰  𝐢)) β†’ (⟨𝐴, π‘₯⟩Cgr⟨𝐡, 𝐢⟩ β†’ (𝐴OutsideOf⟨π‘₯, π‘…βŸ© ↔ (𝑅 Btwn ⟨𝐴, π‘₯⟩ ∨ π‘₯ Btwn ⟨𝐴, π‘…βŸ©))))
3433pm5.32rd 577 . . . . . 6 ((((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝑅 ∈ (π”Όβ€˜π‘)) ∧ (𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘))) ∧ π‘₯ ∈ (π”Όβ€˜π‘)) ∧ (𝑅 β‰  𝐴 ∧ 𝐡 β‰  𝐢)) β†’ ((𝐴OutsideOf⟨π‘₯, π‘…βŸ© ∧ ⟨𝐴, π‘₯⟩Cgr⟨𝐡, 𝐢⟩) ↔ ((𝑅 Btwn ⟨𝐴, π‘₯⟩ ∨ π‘₯ Btwn ⟨𝐴, π‘…βŸ©) ∧ ⟨𝐴, π‘₯⟩Cgr⟨𝐡, 𝐢⟩)))
3534an32s 649 . . . . 5 ((((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝑅 ∈ (π”Όβ€˜π‘)) ∧ (𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘))) ∧ (𝑅 β‰  𝐴 ∧ 𝐡 β‰  𝐢)) ∧ π‘₯ ∈ (π”Όβ€˜π‘)) β†’ ((𝐴OutsideOf⟨π‘₯, π‘…βŸ© ∧ ⟨𝐴, π‘₯⟩Cgr⟨𝐡, 𝐢⟩) ↔ ((𝑅 Btwn ⟨𝐴, π‘₯⟩ ∨ π‘₯ Btwn ⟨𝐴, π‘…βŸ©) ∧ ⟨𝐴, π‘₯⟩Cgr⟨𝐡, 𝐢⟩)))
3635rexbidva 3168 . . . 4 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝑅 ∈ (π”Όβ€˜π‘)) ∧ (𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘))) ∧ (𝑅 β‰  𝐴 ∧ 𝐡 β‰  𝐢)) β†’ (βˆƒπ‘₯ ∈ (π”Όβ€˜π‘)(𝐴OutsideOf⟨π‘₯, π‘…βŸ© ∧ ⟨𝐴, π‘₯⟩Cgr⟨𝐡, 𝐢⟩) ↔ βˆƒπ‘₯ ∈ (π”Όβ€˜π‘)((𝑅 Btwn ⟨𝐴, π‘₯⟩ ∨ π‘₯ Btwn ⟨𝐴, π‘…βŸ©) ∧ ⟨𝐴, π‘₯⟩Cgr⟨𝐡, 𝐢⟩)))
372, 36mpbird 257 . . 3 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝑅 ∈ (π”Όβ€˜π‘)) ∧ (𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘))) ∧ (𝑅 β‰  𝐴 ∧ 𝐡 β‰  𝐢)) β†’ βˆƒπ‘₯ ∈ (π”Όβ€˜π‘)(𝐴OutsideOf⟨π‘₯, π‘…βŸ© ∧ ⟨𝐴, π‘₯⟩Cgr⟨𝐡, 𝐢⟩))
38 simpl1 1188 . . . . . . . 8 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝑅 ∈ (π”Όβ€˜π‘)) ∧ (𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘))) ∧ (π‘₯ ∈ (π”Όβ€˜π‘) ∧ 𝑦 ∈ (π”Όβ€˜π‘))) β†’ 𝑁 ∈ β„•)
39 simpl2l 1223 . . . . . . . . 9 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝑅 ∈ (π”Όβ€˜π‘)) ∧ (𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘))) ∧ (π‘₯ ∈ (π”Όβ€˜π‘) ∧ 𝑦 ∈ (π”Όβ€˜π‘))) β†’ 𝐴 ∈ (π”Όβ€˜π‘))
40 simpl2r 1224 . . . . . . . . 9 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝑅 ∈ (π”Όβ€˜π‘)) ∧ (𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘))) ∧ (π‘₯ ∈ (π”Όβ€˜π‘) ∧ 𝑦 ∈ (π”Όβ€˜π‘))) β†’ 𝑅 ∈ (π”Όβ€˜π‘))
41 simpl3l 1225 . . . . . . . . 9 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝑅 ∈ (π”Όβ€˜π‘)) ∧ (𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘))) ∧ (π‘₯ ∈ (π”Όβ€˜π‘) ∧ 𝑦 ∈ (π”Όβ€˜π‘))) β†’ 𝐡 ∈ (π”Όβ€˜π‘))
4239, 40, 413jca 1125 . . . . . . . 8 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝑅 ∈ (π”Όβ€˜π‘)) ∧ (𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘))) ∧ (π‘₯ ∈ (π”Όβ€˜π‘) ∧ 𝑦 ∈ (π”Όβ€˜π‘))) β†’ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝑅 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘)))
43 simpl3r 1226 . . . . . . . . 9 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝑅 ∈ (π”Όβ€˜π‘)) ∧ (𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘))) ∧ (π‘₯ ∈ (π”Όβ€˜π‘) ∧ 𝑦 ∈ (π”Όβ€˜π‘))) β†’ 𝐢 ∈ (π”Όβ€˜π‘))
44 simprl 768 . . . . . . . . 9 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝑅 ∈ (π”Όβ€˜π‘)) ∧ (𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘))) ∧ (π‘₯ ∈ (π”Όβ€˜π‘) ∧ 𝑦 ∈ (π”Όβ€˜π‘))) β†’ π‘₯ ∈ (π”Όβ€˜π‘))
45 simprr 770 . . . . . . . . 9 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝑅 ∈ (π”Όβ€˜π‘)) ∧ (𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘))) ∧ (π‘₯ ∈ (π”Όβ€˜π‘) ∧ 𝑦 ∈ (π”Όβ€˜π‘))) β†’ 𝑦 ∈ (π”Όβ€˜π‘))
4643, 44, 453jca 1125 . . . . . . . 8 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝑅 ∈ (π”Όβ€˜π‘)) ∧ (𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘))) ∧ (π‘₯ ∈ (π”Όβ€˜π‘) ∧ 𝑦 ∈ (π”Όβ€˜π‘))) β†’ (𝐢 ∈ (π”Όβ€˜π‘) ∧ π‘₯ ∈ (π”Όβ€˜π‘) ∧ 𝑦 ∈ (π”Όβ€˜π‘)))
4738, 42, 463jca 1125 . . . . . . 7 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝑅 ∈ (π”Όβ€˜π‘)) ∧ (𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘))) ∧ (π‘₯ ∈ (π”Όβ€˜π‘) ∧ 𝑦 ∈ (π”Όβ€˜π‘))) β†’ (𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝑅 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘)) ∧ (𝐢 ∈ (π”Όβ€˜π‘) ∧ π‘₯ ∈ (π”Όβ€˜π‘) ∧ 𝑦 ∈ (π”Όβ€˜π‘))))
48 simpr 484 . . . . . . 7 (((𝑅 β‰  𝐴 ∧ 𝐡 β‰  𝐢) ∧ ((𝐴OutsideOf⟨π‘₯, π‘…βŸ© ∧ ⟨𝐴, π‘₯⟩Cgr⟨𝐡, 𝐢⟩) ∧ (𝐴OutsideOfβŸ¨π‘¦, π‘…βŸ© ∧ ⟨𝐴, π‘¦βŸ©Cgr⟨𝐡, 𝐢⟩))) β†’ ((𝐴OutsideOf⟨π‘₯, π‘…βŸ© ∧ ⟨𝐴, π‘₯⟩Cgr⟨𝐡, 𝐢⟩) ∧ (𝐴OutsideOfβŸ¨π‘¦, π‘…βŸ© ∧ ⟨𝐴, π‘¦βŸ©Cgr⟨𝐡, 𝐢⟩)))
49 outsideofeq 35597 . . . . . . . 8 ((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝑅 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘)) ∧ (𝐢 ∈ (π”Όβ€˜π‘) ∧ π‘₯ ∈ (π”Όβ€˜π‘) ∧ 𝑦 ∈ (π”Όβ€˜π‘))) β†’ (((𝐴OutsideOf⟨π‘₯, π‘…βŸ© ∧ ⟨𝐴, π‘₯⟩Cgr⟨𝐡, 𝐢⟩) ∧ (𝐴OutsideOfβŸ¨π‘¦, π‘…βŸ© ∧ ⟨𝐴, π‘¦βŸ©Cgr⟨𝐡, 𝐢⟩)) β†’ π‘₯ = 𝑦))
5049imp 406 . . . . . . 7 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝑅 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘)) ∧ (𝐢 ∈ (π”Όβ€˜π‘) ∧ π‘₯ ∈ (π”Όβ€˜π‘) ∧ 𝑦 ∈ (π”Όβ€˜π‘))) ∧ ((𝐴OutsideOf⟨π‘₯, π‘…βŸ© ∧ ⟨𝐴, π‘₯⟩Cgr⟨𝐡, 𝐢⟩) ∧ (𝐴OutsideOfβŸ¨π‘¦, π‘…βŸ© ∧ ⟨𝐴, π‘¦βŸ©Cgr⟨𝐡, 𝐢⟩))) β†’ π‘₯ = 𝑦)
5147, 48, 50syl2an 595 . . . . . 6 ((((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝑅 ∈ (π”Όβ€˜π‘)) ∧ (𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘))) ∧ (π‘₯ ∈ (π”Όβ€˜π‘) ∧ 𝑦 ∈ (π”Όβ€˜π‘))) ∧ ((𝑅 β‰  𝐴 ∧ 𝐡 β‰  𝐢) ∧ ((𝐴OutsideOf⟨π‘₯, π‘…βŸ© ∧ ⟨𝐴, π‘₯⟩Cgr⟨𝐡, 𝐢⟩) ∧ (𝐴OutsideOfβŸ¨π‘¦, π‘…βŸ© ∧ ⟨𝐴, π‘¦βŸ©Cgr⟨𝐡, 𝐢⟩)))) β†’ π‘₯ = 𝑦)
5251an4s 657 . . . . 5 ((((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝑅 ∈ (π”Όβ€˜π‘)) ∧ (𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘))) ∧ (𝑅 β‰  𝐴 ∧ 𝐡 β‰  𝐢)) ∧ ((π‘₯ ∈ (π”Όβ€˜π‘) ∧ 𝑦 ∈ (π”Όβ€˜π‘)) ∧ ((𝐴OutsideOf⟨π‘₯, π‘…βŸ© ∧ ⟨𝐴, π‘₯⟩Cgr⟨𝐡, 𝐢⟩) ∧ (𝐴OutsideOfβŸ¨π‘¦, π‘…βŸ© ∧ ⟨𝐴, π‘¦βŸ©Cgr⟨𝐡, 𝐢⟩)))) β†’ π‘₯ = 𝑦)
5352exp32 420 . . . 4 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝑅 ∈ (π”Όβ€˜π‘)) ∧ (𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘))) ∧ (𝑅 β‰  𝐴 ∧ 𝐡 β‰  𝐢)) β†’ ((π‘₯ ∈ (π”Όβ€˜π‘) ∧ 𝑦 ∈ (π”Όβ€˜π‘)) β†’ (((𝐴OutsideOf⟨π‘₯, π‘…βŸ© ∧ ⟨𝐴, π‘₯⟩Cgr⟨𝐡, 𝐢⟩) ∧ (𝐴OutsideOfβŸ¨π‘¦, π‘…βŸ© ∧ ⟨𝐴, π‘¦βŸ©Cgr⟨𝐡, 𝐢⟩)) β†’ π‘₯ = 𝑦)))
5453ralrimivv 3190 . . 3 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝑅 ∈ (π”Όβ€˜π‘)) ∧ (𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘))) ∧ (𝑅 β‰  𝐴 ∧ 𝐡 β‰  𝐢)) β†’ βˆ€π‘₯ ∈ (π”Όβ€˜π‘)βˆ€π‘¦ ∈ (π”Όβ€˜π‘)(((𝐴OutsideOf⟨π‘₯, π‘…βŸ© ∧ ⟨𝐴, π‘₯⟩Cgr⟨𝐡, 𝐢⟩) ∧ (𝐴OutsideOfβŸ¨π‘¦, π‘…βŸ© ∧ ⟨𝐴, π‘¦βŸ©Cgr⟨𝐡, 𝐢⟩)) β†’ π‘₯ = 𝑦))
55 opeq1 4865 . . . . . 6 (π‘₯ = 𝑦 β†’ ⟨π‘₯, π‘…βŸ© = βŸ¨π‘¦, π‘…βŸ©)
5655breq2d 5150 . . . . 5 (π‘₯ = 𝑦 β†’ (𝐴OutsideOf⟨π‘₯, π‘…βŸ© ↔ 𝐴OutsideOfβŸ¨π‘¦, π‘…βŸ©))
57 opeq2 4866 . . . . . 6 (π‘₯ = 𝑦 β†’ ⟨𝐴, π‘₯⟩ = ⟨𝐴, π‘¦βŸ©)
5857breq1d 5148 . . . . 5 (π‘₯ = 𝑦 β†’ (⟨𝐴, π‘₯⟩Cgr⟨𝐡, 𝐢⟩ ↔ ⟨𝐴, π‘¦βŸ©Cgr⟨𝐡, 𝐢⟩))
5956, 58anbi12d 630 . . . 4 (π‘₯ = 𝑦 β†’ ((𝐴OutsideOf⟨π‘₯, π‘…βŸ© ∧ ⟨𝐴, π‘₯⟩Cgr⟨𝐡, 𝐢⟩) ↔ (𝐴OutsideOfβŸ¨π‘¦, π‘…βŸ© ∧ ⟨𝐴, π‘¦βŸ©Cgr⟨𝐡, 𝐢⟩)))
6059reu4 3719 . . 3 (βˆƒ!π‘₯ ∈ (π”Όβ€˜π‘)(𝐴OutsideOf⟨π‘₯, π‘…βŸ© ∧ ⟨𝐴, π‘₯⟩Cgr⟨𝐡, 𝐢⟩) ↔ (βˆƒπ‘₯ ∈ (π”Όβ€˜π‘)(𝐴OutsideOf⟨π‘₯, π‘…βŸ© ∧ ⟨𝐴, π‘₯⟩Cgr⟨𝐡, 𝐢⟩) ∧ βˆ€π‘₯ ∈ (π”Όβ€˜π‘)βˆ€π‘¦ ∈ (π”Όβ€˜π‘)(((𝐴OutsideOf⟨π‘₯, π‘…βŸ© ∧ ⟨𝐴, π‘₯⟩Cgr⟨𝐡, 𝐢⟩) ∧ (𝐴OutsideOfβŸ¨π‘¦, π‘…βŸ© ∧ ⟨𝐴, π‘¦βŸ©Cgr⟨𝐡, 𝐢⟩)) β†’ π‘₯ = 𝑦)))
6137, 54, 60sylanbrc 582 . 2 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝑅 ∈ (π”Όβ€˜π‘)) ∧ (𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘))) ∧ (𝑅 β‰  𝐴 ∧ 𝐡 β‰  𝐢)) β†’ βˆƒ!π‘₯ ∈ (π”Όβ€˜π‘)(𝐴OutsideOf⟨π‘₯, π‘…βŸ© ∧ ⟨𝐴, π‘₯⟩Cgr⟨𝐡, 𝐢⟩))
6261ex 412 1 ((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝑅 ∈ (π”Όβ€˜π‘)) ∧ (𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘))) β†’ ((𝑅 β‰  𝐴 ∧ 𝐡 β‰  𝐢) β†’ βˆƒ!π‘₯ ∈ (π”Όβ€˜π‘)(𝐴OutsideOf⟨π‘₯, π‘…βŸ© ∧ ⟨𝐴, π‘₯⟩Cgr⟨𝐡, 𝐢⟩)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 395   ∨ wo 844   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098   β‰  wne 2932  βˆ€wral 3053  βˆƒwrex 3062  βˆƒ!wreu 3366  βŸ¨cop 4626   class class class wbr 5138  β€˜cfv 6533  β„•cn 12209  π”Όcee 28615   Btwn cbtwn 28616  Cgrccgr 28617  OutsideOfcoutsideof 35586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-inf2 9632  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-int 4941  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-se 5622  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-isom 6542  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-om 7849  df-1st 7968  df-2nd 7969  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-1o 8461  df-er 8699  df-map 8818  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-sup 9433  df-oi 9501  df-card 9930  df-pnf 11247  df-mnf 11248  df-xr 11249  df-ltxr 11250  df-le 11251  df-sub 11443  df-neg 11444  df-div 11869  df-nn 12210  df-2 12272  df-3 12273  df-n0 12470  df-z 12556  df-uz 12820  df-rp 12972  df-ico 13327  df-icc 13328  df-fz 13482  df-fzo 13625  df-seq 13964  df-exp 14025  df-hash 14288  df-cj 15043  df-re 15044  df-im 15045  df-sqrt 15179  df-abs 15180  df-clim 15429  df-sum 15630  df-ee 28618  df-btwn 28619  df-cgr 28620  df-ofs 35450  df-colinear 35506  df-ifs 35507  df-cgr3 35508  df-fs 35509  df-outsideof 35587
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator