MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  upgr2wlk Structured version   Visualization version   GIF version

Theorem upgr2wlk 26855
Description: Properties of a pair of functions to be a walk of length 2 in a pseudograph. Note that the vertices need not to be distinct and the edges can be loops or multiedges. (Contributed by Alexander van der Vekens, 16-Feb-2018.) (Revised by AV, 3-Jan-2021.) (Revised by AV, 28-Oct-2021.)
Hypotheses
Ref Expression
upgr2wlk.v 𝑉 = (Vtx‘𝐺)
upgr2wlk.i 𝐼 = (iEdg‘𝐺)
Assertion
Ref Expression
upgr2wlk (𝐺 ∈ UPGraph → ((𝐹(Walks‘𝐺)𝑃 ∧ (♯‘𝐹) = 2) ↔ (𝐹:(0..^2)⟶dom 𝐼𝑃:(0...2)⟶𝑉 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))))

Proof of Theorem upgr2wlk
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 upgr2wlk.v . . . 4 𝑉 = (Vtx‘𝐺)
2 upgr2wlk.i . . . 4 𝐼 = (iEdg‘𝐺)
31, 2upgriswlk 26828 . . 3 (𝐺 ∈ UPGraph → (𝐹(Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})))
43anbi1d 623 . 2 (𝐺 ∈ UPGraph → ((𝐹(Walks‘𝐺)𝑃 ∧ (♯‘𝐹) = 2) ↔ ((𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}) ∧ (♯‘𝐹) = 2)))
5 iswrdb 13492 . . . . . . . . 9 (𝐹 ∈ Word dom 𝐼𝐹:(0..^(♯‘𝐹))⟶dom 𝐼)
6 oveq2 6850 . . . . . . . . . 10 ((♯‘𝐹) = 2 → (0..^(♯‘𝐹)) = (0..^2))
76feq2d 6209 . . . . . . . . 9 ((♯‘𝐹) = 2 → (𝐹:(0..^(♯‘𝐹))⟶dom 𝐼𝐹:(0..^2)⟶dom 𝐼))
85, 7syl5bb 274 . . . . . . . 8 ((♯‘𝐹) = 2 → (𝐹 ∈ Word dom 𝐼𝐹:(0..^2)⟶dom 𝐼))
9 oveq2 6850 . . . . . . . . 9 ((♯‘𝐹) = 2 → (0...(♯‘𝐹)) = (0...2))
109feq2d 6209 . . . . . . . 8 ((♯‘𝐹) = 2 → (𝑃:(0...(♯‘𝐹))⟶𝑉𝑃:(0...2)⟶𝑉))
11 fzo0to2pr 12761 . . . . . . . . . . 11 (0..^2) = {0, 1}
126, 11syl6eq 2815 . . . . . . . . . 10 ((♯‘𝐹) = 2 → (0..^(♯‘𝐹)) = {0, 1})
1312raleqdv 3292 . . . . . . . . 9 ((♯‘𝐹) = 2 → (∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ↔ ∀𝑘 ∈ {0, 1} (𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}))
14 2wlklem 26854 . . . . . . . . 9 (∀𝑘 ∈ {0, 1} (𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ↔ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))
1513, 14syl6bb 278 . . . . . . . 8 ((♯‘𝐹) = 2 → (∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ↔ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})))
168, 10, 153anbi123d 1560 . . . . . . 7 ((♯‘𝐹) = 2 → ((𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}) ↔ (𝐹:(0..^2)⟶dom 𝐼𝑃:(0...2)⟶𝑉 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))))
1716adantl 473 . . . . . 6 ((𝐺 ∈ UPGraph ∧ (♯‘𝐹) = 2) → ((𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}) ↔ (𝐹:(0..^2)⟶dom 𝐼𝑃:(0...2)⟶𝑉 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))))
18 3anass 1116 . . . . . 6 ((𝐹:(0..^2)⟶dom 𝐼𝑃:(0...2)⟶𝑉 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) ↔ (𝐹:(0..^2)⟶dom 𝐼 ∧ (𝑃:(0...2)⟶𝑉 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))))
1917, 18syl6bb 278 . . . . 5 ((𝐺 ∈ UPGraph ∧ (♯‘𝐹) = 2) → ((𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}) ↔ (𝐹:(0..^2)⟶dom 𝐼 ∧ (𝑃:(0...2)⟶𝑉 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})))))
2019ex 401 . . . 4 (𝐺 ∈ UPGraph → ((♯‘𝐹) = 2 → ((𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}) ↔ (𝐹:(0..^2)⟶dom 𝐼 ∧ (𝑃:(0...2)⟶𝑉 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))))))
2120pm5.32rd 573 . . 3 (𝐺 ∈ UPGraph → (((𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}) ∧ (♯‘𝐹) = 2) ↔ ((𝐹:(0..^2)⟶dom 𝐼 ∧ (𝑃:(0...2)⟶𝑉 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))) ∧ (♯‘𝐹) = 2)))
22 3anass 1116 . . . 4 (((𝐹:(0..^2)⟶dom 𝐼 ∧ (♯‘𝐹) = 2) ∧ 𝑃:(0...2)⟶𝑉 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) ↔ ((𝐹:(0..^2)⟶dom 𝐼 ∧ (♯‘𝐹) = 2) ∧ (𝑃:(0...2)⟶𝑉 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))))
23 an32 636 . . . 4 (((𝐹:(0..^2)⟶dom 𝐼 ∧ (♯‘𝐹) = 2) ∧ (𝑃:(0...2)⟶𝑉 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))) ↔ ((𝐹:(0..^2)⟶dom 𝐼 ∧ (𝑃:(0...2)⟶𝑉 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))) ∧ (♯‘𝐹) = 2))
2422, 23bitri 266 . . 3 (((𝐹:(0..^2)⟶dom 𝐼 ∧ (♯‘𝐹) = 2) ∧ 𝑃:(0...2)⟶𝑉 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) ↔ ((𝐹:(0..^2)⟶dom 𝐼 ∧ (𝑃:(0...2)⟶𝑉 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))) ∧ (♯‘𝐹) = 2))
2521, 24syl6bbr 280 . 2 (𝐺 ∈ UPGraph → (((𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}) ∧ (♯‘𝐹) = 2) ↔ ((𝐹:(0..^2)⟶dom 𝐼 ∧ (♯‘𝐹) = 2) ∧ 𝑃:(0...2)⟶𝑉 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))))
26 2nn0 11557 . . . . . . 7 2 ∈ ℕ0
27 fnfzo0hash 13435 . . . . . . 7 ((2 ∈ ℕ0𝐹:(0..^2)⟶dom 𝐼) → (♯‘𝐹) = 2)
2826, 27mpan 681 . . . . . 6 (𝐹:(0..^2)⟶dom 𝐼 → (♯‘𝐹) = 2)
2928pm4.71i 555 . . . . 5 (𝐹:(0..^2)⟶dom 𝐼 ↔ (𝐹:(0..^2)⟶dom 𝐼 ∧ (♯‘𝐹) = 2))
3029bicomi 215 . . . 4 ((𝐹:(0..^2)⟶dom 𝐼 ∧ (♯‘𝐹) = 2) ↔ 𝐹:(0..^2)⟶dom 𝐼)
3130a1i 11 . . 3 (𝐺 ∈ UPGraph → ((𝐹:(0..^2)⟶dom 𝐼 ∧ (♯‘𝐹) = 2) ↔ 𝐹:(0..^2)⟶dom 𝐼))
32313anbi1d 1564 . 2 (𝐺 ∈ UPGraph → (((𝐹:(0..^2)⟶dom 𝐼 ∧ (♯‘𝐹) = 2) ∧ 𝑃:(0...2)⟶𝑉 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) ↔ (𝐹:(0..^2)⟶dom 𝐼𝑃:(0...2)⟶𝑉 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))))
334, 25, 323bitrd 296 1 (𝐺 ∈ UPGraph → ((𝐹(Walks‘𝐺)𝑃 ∧ (♯‘𝐹) = 2) ↔ (𝐹:(0..^2)⟶dom 𝐼𝑃:(0...2)⟶𝑉 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384  w3a 1107   = wceq 1652  wcel 2155  wral 3055  {cpr 4336   class class class wbr 4809  dom cdm 5277  wf 6064  cfv 6068  (class class class)co 6842  0cc0 10189  1c1 10190   + caddc 10192  2c2 11327  0cn0 11538  ...cfz 12533  ..^cfzo 12673  chash 13321  Word cword 13486  Vtxcvtx 26165  iEdgciedg 26166  UPGraphcupgr 26252  Walkscwlks 26783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-ifp 1086  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-int 4634  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-om 7264  df-1st 7366  df-2nd 7367  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-1o 7764  df-2o 7765  df-oadd 7768  df-er 7947  df-map 8062  df-pm 8063  df-en 8161  df-dom 8162  df-sdom 8163  df-fin 8164  df-card 9016  df-cda 9243  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-nn 11275  df-2 11335  df-n0 11539  df-xnn0 11611  df-z 11625  df-uz 11887  df-fz 12534  df-fzo 12674  df-hash 13322  df-word 13487  df-edg 26217  df-uhgr 26230  df-upgr 26254  df-wlks 26786
This theorem is referenced by:  umgrwwlks2on  27181
  Copyright terms: Public domain W3C validator