MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  upgr2wlk Structured version   Visualization version   GIF version

Theorem upgr2wlk 28016
Description: Properties of a pair of functions to be a walk of length 2 in a pseudograph. Note that the vertices need not to be distinct and the edges can be loops or multiedges. (Contributed by Alexander van der Vekens, 16-Feb-2018.) (Revised by AV, 3-Jan-2021.) (Revised by AV, 28-Oct-2021.)
Hypotheses
Ref Expression
upgr2wlk.v 𝑉 = (Vtx‘𝐺)
upgr2wlk.i 𝐼 = (iEdg‘𝐺)
Assertion
Ref Expression
upgr2wlk (𝐺 ∈ UPGraph → ((𝐹(Walks‘𝐺)𝑃 ∧ (♯‘𝐹) = 2) ↔ (𝐹:(0..^2)⟶dom 𝐼𝑃:(0...2)⟶𝑉 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))))

Proof of Theorem upgr2wlk
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 upgr2wlk.v . . . 4 𝑉 = (Vtx‘𝐺)
2 upgr2wlk.i . . . 4 𝐼 = (iEdg‘𝐺)
31, 2upgriswlk 27988 . . 3 (𝐺 ∈ UPGraph → (𝐹(Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})))
43anbi1d 629 . 2 (𝐺 ∈ UPGraph → ((𝐹(Walks‘𝐺)𝑃 ∧ (♯‘𝐹) = 2) ↔ ((𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}) ∧ (♯‘𝐹) = 2)))
5 iswrdb 14204 . . . . . . . . 9 (𝐹 ∈ Word dom 𝐼𝐹:(0..^(♯‘𝐹))⟶dom 𝐼)
6 oveq2 7276 . . . . . . . . . 10 ((♯‘𝐹) = 2 → (0..^(♯‘𝐹)) = (0..^2))
76feq2d 6582 . . . . . . . . 9 ((♯‘𝐹) = 2 → (𝐹:(0..^(♯‘𝐹))⟶dom 𝐼𝐹:(0..^2)⟶dom 𝐼))
85, 7syl5bb 282 . . . . . . . 8 ((♯‘𝐹) = 2 → (𝐹 ∈ Word dom 𝐼𝐹:(0..^2)⟶dom 𝐼))
9 oveq2 7276 . . . . . . . . 9 ((♯‘𝐹) = 2 → (0...(♯‘𝐹)) = (0...2))
109feq2d 6582 . . . . . . . 8 ((♯‘𝐹) = 2 → (𝑃:(0...(♯‘𝐹))⟶𝑉𝑃:(0...2)⟶𝑉))
11 fzo0to2pr 13453 . . . . . . . . . . 11 (0..^2) = {0, 1}
126, 11eqtrdi 2795 . . . . . . . . . 10 ((♯‘𝐹) = 2 → (0..^(♯‘𝐹)) = {0, 1})
1312raleqdv 3346 . . . . . . . . 9 ((♯‘𝐹) = 2 → (∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ↔ ∀𝑘 ∈ {0, 1} (𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}))
14 2wlklem 28015 . . . . . . . . 9 (∀𝑘 ∈ {0, 1} (𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ↔ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))
1513, 14bitrdi 286 . . . . . . . 8 ((♯‘𝐹) = 2 → (∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ↔ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})))
168, 10, 153anbi123d 1434 . . . . . . 7 ((♯‘𝐹) = 2 → ((𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}) ↔ (𝐹:(0..^2)⟶dom 𝐼𝑃:(0...2)⟶𝑉 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))))
1716adantl 481 . . . . . 6 ((𝐺 ∈ UPGraph ∧ (♯‘𝐹) = 2) → ((𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}) ↔ (𝐹:(0..^2)⟶dom 𝐼𝑃:(0...2)⟶𝑉 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))))
18 3anass 1093 . . . . . 6 ((𝐹:(0..^2)⟶dom 𝐼𝑃:(0...2)⟶𝑉 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) ↔ (𝐹:(0..^2)⟶dom 𝐼 ∧ (𝑃:(0...2)⟶𝑉 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))))
1917, 18bitrdi 286 . . . . 5 ((𝐺 ∈ UPGraph ∧ (♯‘𝐹) = 2) → ((𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}) ↔ (𝐹:(0..^2)⟶dom 𝐼 ∧ (𝑃:(0...2)⟶𝑉 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})))))
2019ex 412 . . . 4 (𝐺 ∈ UPGraph → ((♯‘𝐹) = 2 → ((𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}) ↔ (𝐹:(0..^2)⟶dom 𝐼 ∧ (𝑃:(0...2)⟶𝑉 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))))))
2120pm5.32rd 577 . . 3 (𝐺 ∈ UPGraph → (((𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}) ∧ (♯‘𝐹) = 2) ↔ ((𝐹:(0..^2)⟶dom 𝐼 ∧ (𝑃:(0...2)⟶𝑉 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))) ∧ (♯‘𝐹) = 2)))
22 3anass 1093 . . . 4 (((𝐹:(0..^2)⟶dom 𝐼 ∧ (♯‘𝐹) = 2) ∧ 𝑃:(0...2)⟶𝑉 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) ↔ ((𝐹:(0..^2)⟶dom 𝐼 ∧ (♯‘𝐹) = 2) ∧ (𝑃:(0...2)⟶𝑉 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))))
23 an32 642 . . . 4 (((𝐹:(0..^2)⟶dom 𝐼 ∧ (♯‘𝐹) = 2) ∧ (𝑃:(0...2)⟶𝑉 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))) ↔ ((𝐹:(0..^2)⟶dom 𝐼 ∧ (𝑃:(0...2)⟶𝑉 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))) ∧ (♯‘𝐹) = 2))
2422, 23bitri 274 . . 3 (((𝐹:(0..^2)⟶dom 𝐼 ∧ (♯‘𝐹) = 2) ∧ 𝑃:(0...2)⟶𝑉 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) ↔ ((𝐹:(0..^2)⟶dom 𝐼 ∧ (𝑃:(0...2)⟶𝑉 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))) ∧ (♯‘𝐹) = 2))
2521, 24bitr4di 288 . 2 (𝐺 ∈ UPGraph → (((𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}) ∧ (♯‘𝐹) = 2) ↔ ((𝐹:(0..^2)⟶dom 𝐼 ∧ (♯‘𝐹) = 2) ∧ 𝑃:(0...2)⟶𝑉 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))))
26 2nn0 12233 . . . . . . 7 2 ∈ ℕ0
27 fnfzo0hash 14143 . . . . . . 7 ((2 ∈ ℕ0𝐹:(0..^2)⟶dom 𝐼) → (♯‘𝐹) = 2)
2826, 27mpan 686 . . . . . 6 (𝐹:(0..^2)⟶dom 𝐼 → (♯‘𝐹) = 2)
2928pm4.71i 559 . . . . 5 (𝐹:(0..^2)⟶dom 𝐼 ↔ (𝐹:(0..^2)⟶dom 𝐼 ∧ (♯‘𝐹) = 2))
3029bicomi 223 . . . 4 ((𝐹:(0..^2)⟶dom 𝐼 ∧ (♯‘𝐹) = 2) ↔ 𝐹:(0..^2)⟶dom 𝐼)
3130a1i 11 . . 3 (𝐺 ∈ UPGraph → ((𝐹:(0..^2)⟶dom 𝐼 ∧ (♯‘𝐹) = 2) ↔ 𝐹:(0..^2)⟶dom 𝐼))
32313anbi1d 1438 . 2 (𝐺 ∈ UPGraph → (((𝐹:(0..^2)⟶dom 𝐼 ∧ (♯‘𝐹) = 2) ∧ 𝑃:(0...2)⟶𝑉 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) ↔ (𝐹:(0..^2)⟶dom 𝐼𝑃:(0...2)⟶𝑉 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))))
334, 25, 323bitrd 304 1 (𝐺 ∈ UPGraph → ((𝐹(Walks‘𝐺)𝑃 ∧ (♯‘𝐹) = 2) ↔ (𝐹:(0..^2)⟶dom 𝐼𝑃:(0...2)⟶𝑉 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1541  wcel 2109  wral 3065  {cpr 4568   class class class wbr 5078  dom cdm 5588  wf 6426  cfv 6430  (class class class)co 7268  0cc0 10855  1c1 10856   + caddc 10858  2c2 12011  0cn0 12216  ...cfz 13221  ..^cfzo 13364  chash 14025  Word cword 14198  Vtxcvtx 27347  iEdgciedg 27348  UPGraphcupgr 27431  Walkscwlks 27944
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-cnex 10911  ax-resscn 10912  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-addrcl 10916  ax-mulcl 10917  ax-mulrcl 10918  ax-mulcom 10919  ax-addass 10920  ax-mulass 10921  ax-distr 10922  ax-i2m1 10923  ax-1ne0 10924  ax-1rid 10925  ax-rnegex 10926  ax-rrecex 10927  ax-cnre 10928  ax-pre-lttri 10929  ax-pre-lttrn 10930  ax-pre-ltadd 10931  ax-pre-mulgt0 10932
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-ifp 1060  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3072  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-int 4885  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-om 7701  df-1st 7817  df-2nd 7818  df-frecs 8081  df-wrecs 8112  df-recs 8186  df-rdg 8225  df-1o 8281  df-2o 8282  df-oadd 8285  df-er 8472  df-map 8591  df-pm 8592  df-en 8708  df-dom 8709  df-sdom 8710  df-fin 8711  df-dju 9643  df-card 9681  df-pnf 10995  df-mnf 10996  df-xr 10997  df-ltxr 10998  df-le 10999  df-sub 11190  df-neg 11191  df-nn 11957  df-2 12019  df-n0 12217  df-xnn0 12289  df-z 12303  df-uz 12565  df-fz 13222  df-fzo 13365  df-hash 14026  df-word 14199  df-edg 27399  df-uhgr 27409  df-upgr 27433  df-wlks 27947
This theorem is referenced by:  umgrwwlks2on  28301
  Copyright terms: Public domain W3C validator