MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  upgr2wlk Structured version   Visualization version   GIF version

Theorem upgr2wlk 29554
Description: Properties of a pair of functions to be a walk of length 2 in a pseudograph. Note that the vertices need not to be distinct and the edges can be loops or multiedges. (Contributed by Alexander van der Vekens, 16-Feb-2018.) (Revised by AV, 3-Jan-2021.) (Revised by AV, 28-Oct-2021.)
Hypotheses
Ref Expression
upgr2wlk.v 𝑉 = (Vtx‘𝐺)
upgr2wlk.i 𝐼 = (iEdg‘𝐺)
Assertion
Ref Expression
upgr2wlk (𝐺 ∈ UPGraph → ((𝐹(Walks‘𝐺)𝑃 ∧ (♯‘𝐹) = 2) ↔ (𝐹:(0..^2)⟶dom 𝐼𝑃:(0...2)⟶𝑉 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))))

Proof of Theorem upgr2wlk
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 upgr2wlk.v . . . 4 𝑉 = (Vtx‘𝐺)
2 upgr2wlk.i . . . 4 𝐼 = (iEdg‘𝐺)
31, 2upgriswlk 29527 . . 3 (𝐺 ∈ UPGraph → (𝐹(Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})))
43anbi1d 629 . 2 (𝐺 ∈ UPGraph → ((𝐹(Walks‘𝐺)𝑃 ∧ (♯‘𝐹) = 2) ↔ ((𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}) ∧ (♯‘𝐹) = 2)))
5 iswrdb 14506 . . . . . . . . 9 (𝐹 ∈ Word dom 𝐼𝐹:(0..^(♯‘𝐹))⟶dom 𝐼)
6 oveq2 7427 . . . . . . . . . 10 ((♯‘𝐹) = 2 → (0..^(♯‘𝐹)) = (0..^2))
76feq2d 6709 . . . . . . . . 9 ((♯‘𝐹) = 2 → (𝐹:(0..^(♯‘𝐹))⟶dom 𝐼𝐹:(0..^2)⟶dom 𝐼))
85, 7bitrid 282 . . . . . . . 8 ((♯‘𝐹) = 2 → (𝐹 ∈ Word dom 𝐼𝐹:(0..^2)⟶dom 𝐼))
9 oveq2 7427 . . . . . . . . 9 ((♯‘𝐹) = 2 → (0...(♯‘𝐹)) = (0...2))
109feq2d 6709 . . . . . . . 8 ((♯‘𝐹) = 2 → (𝑃:(0...(♯‘𝐹))⟶𝑉𝑃:(0...2)⟶𝑉))
11 fzo0to2pr 13752 . . . . . . . . . . 11 (0..^2) = {0, 1}
126, 11eqtrdi 2781 . . . . . . . . . 10 ((♯‘𝐹) = 2 → (0..^(♯‘𝐹)) = {0, 1})
1312raleqdv 3314 . . . . . . . . 9 ((♯‘𝐹) = 2 → (∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ↔ ∀𝑘 ∈ {0, 1} (𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}))
14 2wlklem 29553 . . . . . . . . 9 (∀𝑘 ∈ {0, 1} (𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ↔ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))
1513, 14bitrdi 286 . . . . . . . 8 ((♯‘𝐹) = 2 → (∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ↔ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})))
168, 10, 153anbi123d 1432 . . . . . . 7 ((♯‘𝐹) = 2 → ((𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}) ↔ (𝐹:(0..^2)⟶dom 𝐼𝑃:(0...2)⟶𝑉 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))))
1716adantl 480 . . . . . 6 ((𝐺 ∈ UPGraph ∧ (♯‘𝐹) = 2) → ((𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}) ↔ (𝐹:(0..^2)⟶dom 𝐼𝑃:(0...2)⟶𝑉 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))))
18 3anass 1092 . . . . . 6 ((𝐹:(0..^2)⟶dom 𝐼𝑃:(0...2)⟶𝑉 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) ↔ (𝐹:(0..^2)⟶dom 𝐼 ∧ (𝑃:(0...2)⟶𝑉 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))))
1917, 18bitrdi 286 . . . . 5 ((𝐺 ∈ UPGraph ∧ (♯‘𝐹) = 2) → ((𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}) ↔ (𝐹:(0..^2)⟶dom 𝐼 ∧ (𝑃:(0...2)⟶𝑉 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})))))
2019ex 411 . . . 4 (𝐺 ∈ UPGraph → ((♯‘𝐹) = 2 → ((𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}) ↔ (𝐹:(0..^2)⟶dom 𝐼 ∧ (𝑃:(0...2)⟶𝑉 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))))))
2120pm5.32rd 576 . . 3 (𝐺 ∈ UPGraph → (((𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}) ∧ (♯‘𝐹) = 2) ↔ ((𝐹:(0..^2)⟶dom 𝐼 ∧ (𝑃:(0...2)⟶𝑉 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))) ∧ (♯‘𝐹) = 2)))
22 3anass 1092 . . . 4 (((𝐹:(0..^2)⟶dom 𝐼 ∧ (♯‘𝐹) = 2) ∧ 𝑃:(0...2)⟶𝑉 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) ↔ ((𝐹:(0..^2)⟶dom 𝐼 ∧ (♯‘𝐹) = 2) ∧ (𝑃:(0...2)⟶𝑉 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))))
23 an32 644 . . . 4 (((𝐹:(0..^2)⟶dom 𝐼 ∧ (♯‘𝐹) = 2) ∧ (𝑃:(0...2)⟶𝑉 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))) ↔ ((𝐹:(0..^2)⟶dom 𝐼 ∧ (𝑃:(0...2)⟶𝑉 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))) ∧ (♯‘𝐹) = 2))
2422, 23bitri 274 . . 3 (((𝐹:(0..^2)⟶dom 𝐼 ∧ (♯‘𝐹) = 2) ∧ 𝑃:(0...2)⟶𝑉 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) ↔ ((𝐹:(0..^2)⟶dom 𝐼 ∧ (𝑃:(0...2)⟶𝑉 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))) ∧ (♯‘𝐹) = 2))
2521, 24bitr4di 288 . 2 (𝐺 ∈ UPGraph → (((𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}) ∧ (♯‘𝐹) = 2) ↔ ((𝐹:(0..^2)⟶dom 𝐼 ∧ (♯‘𝐹) = 2) ∧ 𝑃:(0...2)⟶𝑉 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))))
26 2nn0 12522 . . . . . . 7 2 ∈ ℕ0
27 fnfzo0hash 14445 . . . . . . 7 ((2 ∈ ℕ0𝐹:(0..^2)⟶dom 𝐼) → (♯‘𝐹) = 2)
2826, 27mpan 688 . . . . . 6 (𝐹:(0..^2)⟶dom 𝐼 → (♯‘𝐹) = 2)
2928pm4.71i 558 . . . . 5 (𝐹:(0..^2)⟶dom 𝐼 ↔ (𝐹:(0..^2)⟶dom 𝐼 ∧ (♯‘𝐹) = 2))
3029bicomi 223 . . . 4 ((𝐹:(0..^2)⟶dom 𝐼 ∧ (♯‘𝐹) = 2) ↔ 𝐹:(0..^2)⟶dom 𝐼)
3130a1i 11 . . 3 (𝐺 ∈ UPGraph → ((𝐹:(0..^2)⟶dom 𝐼 ∧ (♯‘𝐹) = 2) ↔ 𝐹:(0..^2)⟶dom 𝐼))
32313anbi1d 1436 . 2 (𝐺 ∈ UPGraph → (((𝐹:(0..^2)⟶dom 𝐼 ∧ (♯‘𝐹) = 2) ∧ 𝑃:(0...2)⟶𝑉 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) ↔ (𝐹:(0..^2)⟶dom 𝐼𝑃:(0...2)⟶𝑉 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))))
334, 25, 323bitrd 304 1 (𝐺 ∈ UPGraph → ((𝐹(Walks‘𝐺)𝑃 ∧ (♯‘𝐹) = 2) ↔ (𝐹:(0..^2)⟶dom 𝐼𝑃:(0...2)⟶𝑉 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084   = wceq 1533  wcel 2098  wral 3050  {cpr 4632   class class class wbr 5149  dom cdm 5678  wf 6545  cfv 6549  (class class class)co 7419  0cc0 11140  1c1 11141   + caddc 11143  2c2 12300  0cn0 12505  ...cfz 13519  ..^cfzo 13662  chash 14325  Word cword 14500  Vtxcvtx 28881  iEdgciedg 28882  UPGraphcupgr 28965  Walkscwlks 29482
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-ifp 1061  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-int 4951  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-1st 7994  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-2o 8488  df-oadd 8491  df-er 8725  df-map 8847  df-pm 8848  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-dju 9926  df-card 9964  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-nn 12246  df-2 12308  df-n0 12506  df-xnn0 12578  df-z 12592  df-uz 12856  df-fz 13520  df-fzo 13663  df-hash 14326  df-word 14501  df-edg 28933  df-uhgr 28943  df-upgr 28967  df-wlks 29485
This theorem is referenced by:  umgrwwlks2on  29840
  Copyright terms: Public domain W3C validator