MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  repsdf2 Structured version   Visualization version   GIF version

Theorem repsdf2 14728
Description: Alternative definition of a "repeated symbol word". (Contributed by AV, 7-Nov-2018.)
Assertion
Ref Expression
repsdf2 ((𝑆𝑉𝑁 ∈ ℕ0) → (𝑊 = (𝑆 repeatS 𝑁) ↔ (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑁)(𝑊𝑖) = 𝑆)))
Distinct variable groups:   𝑖,𝑁   𝑆,𝑖   𝑖,𝑊
Allowed substitution hint:   𝑉(𝑖)

Proof of Theorem repsdf2
StepHypRef Expression
1 repsconst 14722 . . 3 ((𝑆𝑉𝑁 ∈ ℕ0) → (𝑆 repeatS 𝑁) = ((0..^𝑁) × {𝑆}))
21eqeq2d 2744 . 2 ((𝑆𝑉𝑁 ∈ ℕ0) → (𝑊 = (𝑆 repeatS 𝑁) ↔ 𝑊 = ((0..^𝑁) × {𝑆})))
3 fconst2g 7204 . . 3 (𝑆𝑉 → (𝑊:(0..^𝑁)⟶{𝑆} ↔ 𝑊 = ((0..^𝑁) × {𝑆})))
43adantr 482 . 2 ((𝑆𝑉𝑁 ∈ ℕ0) → (𝑊:(0..^𝑁)⟶{𝑆} ↔ 𝑊 = ((0..^𝑁) × {𝑆})))
5 fconstfv 7214 . . . . . . . . 9 (𝑊:(0..^𝑁)⟶{𝑆} ↔ (𝑊 Fn (0..^𝑁) ∧ ∀𝑖 ∈ (0..^𝑁)(𝑊𝑖) = 𝑆))
6 snssi 4812 . . . . . . . . . . . . . 14 (𝑆𝑉 → {𝑆} ⊆ 𝑉)
76adantr 482 . . . . . . . . . . . . 13 ((𝑆𝑉𝑁 ∈ ℕ0) → {𝑆} ⊆ 𝑉)
87anim1ci 617 . . . . . . . . . . . 12 (((𝑆𝑉𝑁 ∈ ℕ0) ∧ 𝑊:(0..^𝑁)⟶{𝑆}) → (𝑊:(0..^𝑁)⟶{𝑆} ∧ {𝑆} ⊆ 𝑉))
9 fss 6735 . . . . . . . . . . . 12 ((𝑊:(0..^𝑁)⟶{𝑆} ∧ {𝑆} ⊆ 𝑉) → 𝑊:(0..^𝑁)⟶𝑉)
10 iswrdi 14468 . . . . . . . . . . . 12 (𝑊:(0..^𝑁)⟶𝑉𝑊 ∈ Word 𝑉)
118, 9, 103syl 18 . . . . . . . . . . 11 (((𝑆𝑉𝑁 ∈ ℕ0) ∧ 𝑊:(0..^𝑁)⟶{𝑆}) → 𝑊 ∈ Word 𝑉)
12 ffzo0hash 14408 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ0𝑊 Fn (0..^𝑁)) → (♯‘𝑊) = 𝑁)
1312expcom 415 . . . . . . . . . . . . . 14 (𝑊 Fn (0..^𝑁) → (𝑁 ∈ ℕ0 → (♯‘𝑊) = 𝑁))
14 ffn 6718 . . . . . . . . . . . . . 14 (𝑊:(0..^𝑁)⟶{𝑆} → 𝑊 Fn (0..^𝑁))
1513, 14syl11 33 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ0 → (𝑊:(0..^𝑁)⟶{𝑆} → (♯‘𝑊) = 𝑁))
1615adantl 483 . . . . . . . . . . . 12 ((𝑆𝑉𝑁 ∈ ℕ0) → (𝑊:(0..^𝑁)⟶{𝑆} → (♯‘𝑊) = 𝑁))
1716imp 408 . . . . . . . . . . 11 (((𝑆𝑉𝑁 ∈ ℕ0) ∧ 𝑊:(0..^𝑁)⟶{𝑆}) → (♯‘𝑊) = 𝑁)
1811, 17jca 513 . . . . . . . . . 10 (((𝑆𝑉𝑁 ∈ ℕ0) ∧ 𝑊:(0..^𝑁)⟶{𝑆}) → (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁))
1918ex 414 . . . . . . . . 9 ((𝑆𝑉𝑁 ∈ ℕ0) → (𝑊:(0..^𝑁)⟶{𝑆} → (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁)))
205, 19biimtrrid 242 . . . . . . . 8 ((𝑆𝑉𝑁 ∈ ℕ0) → ((𝑊 Fn (0..^𝑁) ∧ ∀𝑖 ∈ (0..^𝑁)(𝑊𝑖) = 𝑆) → (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁)))
2120expcomd 418 . . . . . . 7 ((𝑆𝑉𝑁 ∈ ℕ0) → (∀𝑖 ∈ (0..^𝑁)(𝑊𝑖) = 𝑆 → (𝑊 Fn (0..^𝑁) → (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁))))
2221imp 408 . . . . . 6 (((𝑆𝑉𝑁 ∈ ℕ0) ∧ ∀𝑖 ∈ (0..^𝑁)(𝑊𝑖) = 𝑆) → (𝑊 Fn (0..^𝑁) → (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁)))
23 wrdf 14469 . . . . . . . . . 10 (𝑊 ∈ Word 𝑉𝑊:(0..^(♯‘𝑊))⟶𝑉)
24 ffn 6718 . . . . . . . . . 10 (𝑊:(0..^(♯‘𝑊))⟶𝑉𝑊 Fn (0..^(♯‘𝑊)))
25 oveq2 7417 . . . . . . . . . . . . . 14 ((♯‘𝑊) = 𝑁 → (0..^(♯‘𝑊)) = (0..^𝑁))
2625fneq2d 6644 . . . . . . . . . . . . 13 ((♯‘𝑊) = 𝑁 → (𝑊 Fn (0..^(♯‘𝑊)) ↔ 𝑊 Fn (0..^𝑁)))
2726biimpd 228 . . . . . . . . . . . 12 ((♯‘𝑊) = 𝑁 → (𝑊 Fn (0..^(♯‘𝑊)) → 𝑊 Fn (0..^𝑁)))
2827a1d 25 . . . . . . . . . . 11 ((♯‘𝑊) = 𝑁 → ((𝑆𝑉𝑁 ∈ ℕ0) → (𝑊 Fn (0..^(♯‘𝑊)) → 𝑊 Fn (0..^𝑁))))
2928com13 88 . . . . . . . . . 10 (𝑊 Fn (0..^(♯‘𝑊)) → ((𝑆𝑉𝑁 ∈ ℕ0) → ((♯‘𝑊) = 𝑁𝑊 Fn (0..^𝑁))))
3023, 24, 293syl 18 . . . . . . . . 9 (𝑊 ∈ Word 𝑉 → ((𝑆𝑉𝑁 ∈ ℕ0) → ((♯‘𝑊) = 𝑁𝑊 Fn (0..^𝑁))))
3130com12 32 . . . . . . . 8 ((𝑆𝑉𝑁 ∈ ℕ0) → (𝑊 ∈ Word 𝑉 → ((♯‘𝑊) = 𝑁𝑊 Fn (0..^𝑁))))
3231impd 412 . . . . . . 7 ((𝑆𝑉𝑁 ∈ ℕ0) → ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁) → 𝑊 Fn (0..^𝑁)))
3332adantr 482 . . . . . 6 (((𝑆𝑉𝑁 ∈ ℕ0) ∧ ∀𝑖 ∈ (0..^𝑁)(𝑊𝑖) = 𝑆) → ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁) → 𝑊 Fn (0..^𝑁)))
3422, 33impbid 211 . . . . 5 (((𝑆𝑉𝑁 ∈ ℕ0) ∧ ∀𝑖 ∈ (0..^𝑁)(𝑊𝑖) = 𝑆) → (𝑊 Fn (0..^𝑁) ↔ (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁)))
3534ex 414 . . . 4 ((𝑆𝑉𝑁 ∈ ℕ0) → (∀𝑖 ∈ (0..^𝑁)(𝑊𝑖) = 𝑆 → (𝑊 Fn (0..^𝑁) ↔ (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁))))
3635pm5.32rd 579 . . 3 ((𝑆𝑉𝑁 ∈ ℕ0) → ((𝑊 Fn (0..^𝑁) ∧ ∀𝑖 ∈ (0..^𝑁)(𝑊𝑖) = 𝑆) ↔ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁) ∧ ∀𝑖 ∈ (0..^𝑁)(𝑊𝑖) = 𝑆)))
37 df-3an 1090 . . 3 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑁)(𝑊𝑖) = 𝑆) ↔ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁) ∧ ∀𝑖 ∈ (0..^𝑁)(𝑊𝑖) = 𝑆))
3836, 5, 373bitr4g 314 . 2 ((𝑆𝑉𝑁 ∈ ℕ0) → (𝑊:(0..^𝑁)⟶{𝑆} ↔ (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑁)(𝑊𝑖) = 𝑆)))
392, 4, 383bitr2d 307 1 ((𝑆𝑉𝑁 ∈ ℕ0) → (𝑊 = (𝑆 repeatS 𝑁) ↔ (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑁)(𝑊𝑖) = 𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3a 1088   = wceq 1542  wcel 2107  wral 3062  wss 3949  {csn 4629   × cxp 5675   Fn wfn 6539  wf 6540  cfv 6544  (class class class)co 7409  0cc0 11110  0cn0 12472  ..^cfzo 13627  chash 14290  Word cword 14464   repeatS creps 14718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-1st 7975  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-1o 8466  df-er 8703  df-en 8940  df-dom 8941  df-sdom 8942  df-fin 8943  df-card 9934  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-nn 12213  df-n0 12473  df-z 12559  df-uz 12823  df-fz 13485  df-fzo 13628  df-hash 14291  df-word 14465  df-reps 14719
This theorem is referenced by:  repswsymball  14729  repswsymballbi  14730  cshwrepswhash1  17036
  Copyright terms: Public domain W3C validator