Proof of Theorem repsdf2
| Step | Hyp | Ref
| Expression |
| 1 | | repsconst 14795 |
. . 3
⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑆 repeatS 𝑁) = ((0..^𝑁) × {𝑆})) |
| 2 | 1 | eqeq2d 2747 |
. 2
⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑊 = (𝑆 repeatS 𝑁) ↔ 𝑊 = ((0..^𝑁) × {𝑆}))) |
| 3 | | fconst2g 7200 |
. . 3
⊢ (𝑆 ∈ 𝑉 → (𝑊:(0..^𝑁)⟶{𝑆} ↔ 𝑊 = ((0..^𝑁) × {𝑆}))) |
| 4 | 3 | adantr 480 |
. 2
⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑊:(0..^𝑁)⟶{𝑆} ↔ 𝑊 = ((0..^𝑁) × {𝑆}))) |
| 5 | | fconstfv 7209 |
. . . . . . . . 9
⊢ (𝑊:(0..^𝑁)⟶{𝑆} ↔ (𝑊 Fn (0..^𝑁) ∧ ∀𝑖 ∈ (0..^𝑁)(𝑊‘𝑖) = 𝑆)) |
| 6 | | snssi 4789 |
. . . . . . . . . . . . . 14
⊢ (𝑆 ∈ 𝑉 → {𝑆} ⊆ 𝑉) |
| 7 | 6 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → {𝑆} ⊆ 𝑉) |
| 8 | 7 | anim1ci 616 |
. . . . . . . . . . . 12
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) ∧ 𝑊:(0..^𝑁)⟶{𝑆}) → (𝑊:(0..^𝑁)⟶{𝑆} ∧ {𝑆} ⊆ 𝑉)) |
| 9 | | fss 6727 |
. . . . . . . . . . . 12
⊢ ((𝑊:(0..^𝑁)⟶{𝑆} ∧ {𝑆} ⊆ 𝑉) → 𝑊:(0..^𝑁)⟶𝑉) |
| 10 | | iswrdi 14540 |
. . . . . . . . . . . 12
⊢ (𝑊:(0..^𝑁)⟶𝑉 → 𝑊 ∈ Word 𝑉) |
| 11 | 8, 9, 10 | 3syl 18 |
. . . . . . . . . . 11
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) ∧ 𝑊:(0..^𝑁)⟶{𝑆}) → 𝑊 ∈ Word 𝑉) |
| 12 | | ffzo0hash 14472 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 ∈ ℕ0
∧ 𝑊 Fn (0..^𝑁)) → (♯‘𝑊) = 𝑁) |
| 13 | 12 | expcom 413 |
. . . . . . . . . . . . . 14
⊢ (𝑊 Fn (0..^𝑁) → (𝑁 ∈ ℕ0 →
(♯‘𝑊) = 𝑁)) |
| 14 | | ffn 6711 |
. . . . . . . . . . . . . 14
⊢ (𝑊:(0..^𝑁)⟶{𝑆} → 𝑊 Fn (0..^𝑁)) |
| 15 | 13, 14 | syl11 33 |
. . . . . . . . . . . . 13
⊢ (𝑁 ∈ ℕ0
→ (𝑊:(0..^𝑁)⟶{𝑆} → (♯‘𝑊) = 𝑁)) |
| 16 | 15 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑊:(0..^𝑁)⟶{𝑆} → (♯‘𝑊) = 𝑁)) |
| 17 | 16 | imp 406 |
. . . . . . . . . . 11
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) ∧ 𝑊:(0..^𝑁)⟶{𝑆}) → (♯‘𝑊) = 𝑁) |
| 18 | 11, 17 | jca 511 |
. . . . . . . . . 10
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) ∧ 𝑊:(0..^𝑁)⟶{𝑆}) → (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁)) |
| 19 | 18 | ex 412 |
. . . . . . . . 9
⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑊:(0..^𝑁)⟶{𝑆} → (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁))) |
| 20 | 5, 19 | biimtrrid 243 |
. . . . . . . 8
⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → ((𝑊 Fn (0..^𝑁) ∧ ∀𝑖 ∈ (0..^𝑁)(𝑊‘𝑖) = 𝑆) → (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁))) |
| 21 | 20 | expcomd 416 |
. . . . . . 7
⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) →
(∀𝑖 ∈
(0..^𝑁)(𝑊‘𝑖) = 𝑆 → (𝑊 Fn (0..^𝑁) → (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁)))) |
| 22 | 21 | imp 406 |
. . . . . 6
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) ∧
∀𝑖 ∈ (0..^𝑁)(𝑊‘𝑖) = 𝑆) → (𝑊 Fn (0..^𝑁) → (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁))) |
| 23 | | wrdf 14541 |
. . . . . . . . . 10
⊢ (𝑊 ∈ Word 𝑉 → 𝑊:(0..^(♯‘𝑊))⟶𝑉) |
| 24 | | ffn 6711 |
. . . . . . . . . 10
⊢ (𝑊:(0..^(♯‘𝑊))⟶𝑉 → 𝑊 Fn (0..^(♯‘𝑊))) |
| 25 | | oveq2 7418 |
. . . . . . . . . . . . . 14
⊢
((♯‘𝑊) =
𝑁 →
(0..^(♯‘𝑊)) =
(0..^𝑁)) |
| 26 | 25 | fneq2d 6637 |
. . . . . . . . . . . . 13
⊢
((♯‘𝑊) =
𝑁 → (𝑊 Fn (0..^(♯‘𝑊)) ↔ 𝑊 Fn (0..^𝑁))) |
| 27 | 26 | biimpd 229 |
. . . . . . . . . . . 12
⊢
((♯‘𝑊) =
𝑁 → (𝑊 Fn (0..^(♯‘𝑊)) → 𝑊 Fn (0..^𝑁))) |
| 28 | 27 | a1d 25 |
. . . . . . . . . . 11
⊢
((♯‘𝑊) =
𝑁 → ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑊 Fn (0..^(♯‘𝑊)) → 𝑊 Fn (0..^𝑁)))) |
| 29 | 28 | com13 88 |
. . . . . . . . . 10
⊢ (𝑊 Fn (0..^(♯‘𝑊)) → ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) →
((♯‘𝑊) = 𝑁 → 𝑊 Fn (0..^𝑁)))) |
| 30 | 23, 24, 29 | 3syl 18 |
. . . . . . . . 9
⊢ (𝑊 ∈ Word 𝑉 → ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) →
((♯‘𝑊) = 𝑁 → 𝑊 Fn (0..^𝑁)))) |
| 31 | 30 | com12 32 |
. . . . . . . 8
⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑊 ∈ Word 𝑉 → ((♯‘𝑊) = 𝑁 → 𝑊 Fn (0..^𝑁)))) |
| 32 | 31 | impd 410 |
. . . . . . 7
⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁) → 𝑊 Fn (0..^𝑁))) |
| 33 | 32 | adantr 480 |
. . . . . 6
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) ∧
∀𝑖 ∈ (0..^𝑁)(𝑊‘𝑖) = 𝑆) → ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁) → 𝑊 Fn (0..^𝑁))) |
| 34 | 22, 33 | impbid 212 |
. . . . 5
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) ∧
∀𝑖 ∈ (0..^𝑁)(𝑊‘𝑖) = 𝑆) → (𝑊 Fn (0..^𝑁) ↔ (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁))) |
| 35 | 34 | ex 412 |
. . . 4
⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) →
(∀𝑖 ∈
(0..^𝑁)(𝑊‘𝑖) = 𝑆 → (𝑊 Fn (0..^𝑁) ↔ (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁)))) |
| 36 | 35 | pm5.32rd 578 |
. . 3
⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → ((𝑊 Fn (0..^𝑁) ∧ ∀𝑖 ∈ (0..^𝑁)(𝑊‘𝑖) = 𝑆) ↔ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁) ∧ ∀𝑖 ∈ (0..^𝑁)(𝑊‘𝑖) = 𝑆))) |
| 37 | | df-3an 1088 |
. . 3
⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑁)(𝑊‘𝑖) = 𝑆) ↔ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁) ∧ ∀𝑖 ∈ (0..^𝑁)(𝑊‘𝑖) = 𝑆)) |
| 38 | 36, 5, 37 | 3bitr4g 314 |
. 2
⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑊:(0..^𝑁)⟶{𝑆} ↔ (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑁)(𝑊‘𝑖) = 𝑆))) |
| 39 | 2, 4, 38 | 3bitr2d 307 |
1
⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑊 = (𝑆 repeatS 𝑁) ↔ (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑁)(𝑊‘𝑖) = 𝑆))) |