MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  repsdf2 Structured version   Visualization version   GIF version

Theorem repsdf2 14813
Description: Alternative definition of a "repeated symbol word". (Contributed by AV, 7-Nov-2018.)
Assertion
Ref Expression
repsdf2 ((𝑆𝑉𝑁 ∈ ℕ0) → (𝑊 = (𝑆 repeatS 𝑁) ↔ (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑁)(𝑊𝑖) = 𝑆)))
Distinct variable groups:   𝑖,𝑁   𝑆,𝑖   𝑖,𝑊
Allowed substitution hint:   𝑉(𝑖)

Proof of Theorem repsdf2
StepHypRef Expression
1 repsconst 14807 . . 3 ((𝑆𝑉𝑁 ∈ ℕ0) → (𝑆 repeatS 𝑁) = ((0..^𝑁) × {𝑆}))
21eqeq2d 2746 . 2 ((𝑆𝑉𝑁 ∈ ℕ0) → (𝑊 = (𝑆 repeatS 𝑁) ↔ 𝑊 = ((0..^𝑁) × {𝑆})))
3 fconst2g 7223 . . 3 (𝑆𝑉 → (𝑊:(0..^𝑁)⟶{𝑆} ↔ 𝑊 = ((0..^𝑁) × {𝑆})))
43adantr 480 . 2 ((𝑆𝑉𝑁 ∈ ℕ0) → (𝑊:(0..^𝑁)⟶{𝑆} ↔ 𝑊 = ((0..^𝑁) × {𝑆})))
5 fconstfv 7232 . . . . . . . . 9 (𝑊:(0..^𝑁)⟶{𝑆} ↔ (𝑊 Fn (0..^𝑁) ∧ ∀𝑖 ∈ (0..^𝑁)(𝑊𝑖) = 𝑆))
6 snssi 4813 . . . . . . . . . . . . . 14 (𝑆𝑉 → {𝑆} ⊆ 𝑉)
76adantr 480 . . . . . . . . . . . . 13 ((𝑆𝑉𝑁 ∈ ℕ0) → {𝑆} ⊆ 𝑉)
87anim1ci 616 . . . . . . . . . . . 12 (((𝑆𝑉𝑁 ∈ ℕ0) ∧ 𝑊:(0..^𝑁)⟶{𝑆}) → (𝑊:(0..^𝑁)⟶{𝑆} ∧ {𝑆} ⊆ 𝑉))
9 fss 6753 . . . . . . . . . . . 12 ((𝑊:(0..^𝑁)⟶{𝑆} ∧ {𝑆} ⊆ 𝑉) → 𝑊:(0..^𝑁)⟶𝑉)
10 iswrdi 14553 . . . . . . . . . . . 12 (𝑊:(0..^𝑁)⟶𝑉𝑊 ∈ Word 𝑉)
118, 9, 103syl 18 . . . . . . . . . . 11 (((𝑆𝑉𝑁 ∈ ℕ0) ∧ 𝑊:(0..^𝑁)⟶{𝑆}) → 𝑊 ∈ Word 𝑉)
12 ffzo0hash 14485 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ0𝑊 Fn (0..^𝑁)) → (♯‘𝑊) = 𝑁)
1312expcom 413 . . . . . . . . . . . . . 14 (𝑊 Fn (0..^𝑁) → (𝑁 ∈ ℕ0 → (♯‘𝑊) = 𝑁))
14 ffn 6737 . . . . . . . . . . . . . 14 (𝑊:(0..^𝑁)⟶{𝑆} → 𝑊 Fn (0..^𝑁))
1513, 14syl11 33 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ0 → (𝑊:(0..^𝑁)⟶{𝑆} → (♯‘𝑊) = 𝑁))
1615adantl 481 . . . . . . . . . . . 12 ((𝑆𝑉𝑁 ∈ ℕ0) → (𝑊:(0..^𝑁)⟶{𝑆} → (♯‘𝑊) = 𝑁))
1716imp 406 . . . . . . . . . . 11 (((𝑆𝑉𝑁 ∈ ℕ0) ∧ 𝑊:(0..^𝑁)⟶{𝑆}) → (♯‘𝑊) = 𝑁)
1811, 17jca 511 . . . . . . . . . 10 (((𝑆𝑉𝑁 ∈ ℕ0) ∧ 𝑊:(0..^𝑁)⟶{𝑆}) → (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁))
1918ex 412 . . . . . . . . 9 ((𝑆𝑉𝑁 ∈ ℕ0) → (𝑊:(0..^𝑁)⟶{𝑆} → (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁)))
205, 19biimtrrid 243 . . . . . . . 8 ((𝑆𝑉𝑁 ∈ ℕ0) → ((𝑊 Fn (0..^𝑁) ∧ ∀𝑖 ∈ (0..^𝑁)(𝑊𝑖) = 𝑆) → (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁)))
2120expcomd 416 . . . . . . 7 ((𝑆𝑉𝑁 ∈ ℕ0) → (∀𝑖 ∈ (0..^𝑁)(𝑊𝑖) = 𝑆 → (𝑊 Fn (0..^𝑁) → (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁))))
2221imp 406 . . . . . 6 (((𝑆𝑉𝑁 ∈ ℕ0) ∧ ∀𝑖 ∈ (0..^𝑁)(𝑊𝑖) = 𝑆) → (𝑊 Fn (0..^𝑁) → (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁)))
23 wrdf 14554 . . . . . . . . . 10 (𝑊 ∈ Word 𝑉𝑊:(0..^(♯‘𝑊))⟶𝑉)
24 ffn 6737 . . . . . . . . . 10 (𝑊:(0..^(♯‘𝑊))⟶𝑉𝑊 Fn (0..^(♯‘𝑊)))
25 oveq2 7439 . . . . . . . . . . . . . 14 ((♯‘𝑊) = 𝑁 → (0..^(♯‘𝑊)) = (0..^𝑁))
2625fneq2d 6663 . . . . . . . . . . . . 13 ((♯‘𝑊) = 𝑁 → (𝑊 Fn (0..^(♯‘𝑊)) ↔ 𝑊 Fn (0..^𝑁)))
2726biimpd 229 . . . . . . . . . . . 12 ((♯‘𝑊) = 𝑁 → (𝑊 Fn (0..^(♯‘𝑊)) → 𝑊 Fn (0..^𝑁)))
2827a1d 25 . . . . . . . . . . 11 ((♯‘𝑊) = 𝑁 → ((𝑆𝑉𝑁 ∈ ℕ0) → (𝑊 Fn (0..^(♯‘𝑊)) → 𝑊 Fn (0..^𝑁))))
2928com13 88 . . . . . . . . . 10 (𝑊 Fn (0..^(♯‘𝑊)) → ((𝑆𝑉𝑁 ∈ ℕ0) → ((♯‘𝑊) = 𝑁𝑊 Fn (0..^𝑁))))
3023, 24, 293syl 18 . . . . . . . . 9 (𝑊 ∈ Word 𝑉 → ((𝑆𝑉𝑁 ∈ ℕ0) → ((♯‘𝑊) = 𝑁𝑊 Fn (0..^𝑁))))
3130com12 32 . . . . . . . 8 ((𝑆𝑉𝑁 ∈ ℕ0) → (𝑊 ∈ Word 𝑉 → ((♯‘𝑊) = 𝑁𝑊 Fn (0..^𝑁))))
3231impd 410 . . . . . . 7 ((𝑆𝑉𝑁 ∈ ℕ0) → ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁) → 𝑊 Fn (0..^𝑁)))
3332adantr 480 . . . . . 6 (((𝑆𝑉𝑁 ∈ ℕ0) ∧ ∀𝑖 ∈ (0..^𝑁)(𝑊𝑖) = 𝑆) → ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁) → 𝑊 Fn (0..^𝑁)))
3422, 33impbid 212 . . . . 5 (((𝑆𝑉𝑁 ∈ ℕ0) ∧ ∀𝑖 ∈ (0..^𝑁)(𝑊𝑖) = 𝑆) → (𝑊 Fn (0..^𝑁) ↔ (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁)))
3534ex 412 . . . 4 ((𝑆𝑉𝑁 ∈ ℕ0) → (∀𝑖 ∈ (0..^𝑁)(𝑊𝑖) = 𝑆 → (𝑊 Fn (0..^𝑁) ↔ (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁))))
3635pm5.32rd 578 . . 3 ((𝑆𝑉𝑁 ∈ ℕ0) → ((𝑊 Fn (0..^𝑁) ∧ ∀𝑖 ∈ (0..^𝑁)(𝑊𝑖) = 𝑆) ↔ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁) ∧ ∀𝑖 ∈ (0..^𝑁)(𝑊𝑖) = 𝑆)))
37 df-3an 1088 . . 3 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑁)(𝑊𝑖) = 𝑆) ↔ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁) ∧ ∀𝑖 ∈ (0..^𝑁)(𝑊𝑖) = 𝑆))
3836, 5, 373bitr4g 314 . 2 ((𝑆𝑉𝑁 ∈ ℕ0) → (𝑊:(0..^𝑁)⟶{𝑆} ↔ (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑁)(𝑊𝑖) = 𝑆)))
392, 4, 383bitr2d 307 1 ((𝑆𝑉𝑁 ∈ ℕ0) → (𝑊 = (𝑆 repeatS 𝑁) ↔ (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑁)(𝑊𝑖) = 𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  wral 3059  wss 3963  {csn 4631   × cxp 5687   Fn wfn 6558  wf 6559  cfv 6563  (class class class)co 7431  0cc0 11153  0cn0 12524  ..^cfzo 13691  chash 14366  Word cword 14549   repeatS creps 14803
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-n0 12525  df-z 12612  df-uz 12877  df-fz 13545  df-fzo 13692  df-hash 14367  df-word 14550  df-reps 14804
This theorem is referenced by:  repswsymball  14814  repswsymballbi  14815  cshwrepswhash1  17137
  Copyright terms: Public domain W3C validator