MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  repsdf2 Structured version   Visualization version   GIF version

Theorem repsdf2 14702
Description: Alternative definition of a "repeated symbol word". (Contributed by AV, 7-Nov-2018.)
Assertion
Ref Expression
repsdf2 ((𝑆𝑉𝑁 ∈ ℕ0) → (𝑊 = (𝑆 repeatS 𝑁) ↔ (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑁)(𝑊𝑖) = 𝑆)))
Distinct variable groups:   𝑖,𝑁   𝑆,𝑖   𝑖,𝑊
Allowed substitution hint:   𝑉(𝑖)

Proof of Theorem repsdf2
StepHypRef Expression
1 repsconst 14696 . . 3 ((𝑆𝑉𝑁 ∈ ℕ0) → (𝑆 repeatS 𝑁) = ((0..^𝑁) × {𝑆}))
21eqeq2d 2740 . 2 ((𝑆𝑉𝑁 ∈ ℕ0) → (𝑊 = (𝑆 repeatS 𝑁) ↔ 𝑊 = ((0..^𝑁) × {𝑆})))
3 fconst2g 7143 . . 3 (𝑆𝑉 → (𝑊:(0..^𝑁)⟶{𝑆} ↔ 𝑊 = ((0..^𝑁) × {𝑆})))
43adantr 480 . 2 ((𝑆𝑉𝑁 ∈ ℕ0) → (𝑊:(0..^𝑁)⟶{𝑆} ↔ 𝑊 = ((0..^𝑁) × {𝑆})))
5 fconstfv 7152 . . . . . . . . 9 (𝑊:(0..^𝑁)⟶{𝑆} ↔ (𝑊 Fn (0..^𝑁) ∧ ∀𝑖 ∈ (0..^𝑁)(𝑊𝑖) = 𝑆))
6 snssi 4762 . . . . . . . . . . . . . 14 (𝑆𝑉 → {𝑆} ⊆ 𝑉)
76adantr 480 . . . . . . . . . . . . 13 ((𝑆𝑉𝑁 ∈ ℕ0) → {𝑆} ⊆ 𝑉)
87anim1ci 616 . . . . . . . . . . . 12 (((𝑆𝑉𝑁 ∈ ℕ0) ∧ 𝑊:(0..^𝑁)⟶{𝑆}) → (𝑊:(0..^𝑁)⟶{𝑆} ∧ {𝑆} ⊆ 𝑉))
9 fss 6672 . . . . . . . . . . . 12 ((𝑊:(0..^𝑁)⟶{𝑆} ∧ {𝑆} ⊆ 𝑉) → 𝑊:(0..^𝑁)⟶𝑉)
10 iswrdi 14442 . . . . . . . . . . . 12 (𝑊:(0..^𝑁)⟶𝑉𝑊 ∈ Word 𝑉)
118, 9, 103syl 18 . . . . . . . . . . 11 (((𝑆𝑉𝑁 ∈ ℕ0) ∧ 𝑊:(0..^𝑁)⟶{𝑆}) → 𝑊 ∈ Word 𝑉)
12 ffzo0hash 14374 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ0𝑊 Fn (0..^𝑁)) → (♯‘𝑊) = 𝑁)
1312expcom 413 . . . . . . . . . . . . . 14 (𝑊 Fn (0..^𝑁) → (𝑁 ∈ ℕ0 → (♯‘𝑊) = 𝑁))
14 ffn 6656 . . . . . . . . . . . . . 14 (𝑊:(0..^𝑁)⟶{𝑆} → 𝑊 Fn (0..^𝑁))
1513, 14syl11 33 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ0 → (𝑊:(0..^𝑁)⟶{𝑆} → (♯‘𝑊) = 𝑁))
1615adantl 481 . . . . . . . . . . . 12 ((𝑆𝑉𝑁 ∈ ℕ0) → (𝑊:(0..^𝑁)⟶{𝑆} → (♯‘𝑊) = 𝑁))
1716imp 406 . . . . . . . . . . 11 (((𝑆𝑉𝑁 ∈ ℕ0) ∧ 𝑊:(0..^𝑁)⟶{𝑆}) → (♯‘𝑊) = 𝑁)
1811, 17jca 511 . . . . . . . . . 10 (((𝑆𝑉𝑁 ∈ ℕ0) ∧ 𝑊:(0..^𝑁)⟶{𝑆}) → (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁))
1918ex 412 . . . . . . . . 9 ((𝑆𝑉𝑁 ∈ ℕ0) → (𝑊:(0..^𝑁)⟶{𝑆} → (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁)))
205, 19biimtrrid 243 . . . . . . . 8 ((𝑆𝑉𝑁 ∈ ℕ0) → ((𝑊 Fn (0..^𝑁) ∧ ∀𝑖 ∈ (0..^𝑁)(𝑊𝑖) = 𝑆) → (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁)))
2120expcomd 416 . . . . . . 7 ((𝑆𝑉𝑁 ∈ ℕ0) → (∀𝑖 ∈ (0..^𝑁)(𝑊𝑖) = 𝑆 → (𝑊 Fn (0..^𝑁) → (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁))))
2221imp 406 . . . . . 6 (((𝑆𝑉𝑁 ∈ ℕ0) ∧ ∀𝑖 ∈ (0..^𝑁)(𝑊𝑖) = 𝑆) → (𝑊 Fn (0..^𝑁) → (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁)))
23 wrdf 14443 . . . . . . . . . 10 (𝑊 ∈ Word 𝑉𝑊:(0..^(♯‘𝑊))⟶𝑉)
24 ffn 6656 . . . . . . . . . 10 (𝑊:(0..^(♯‘𝑊))⟶𝑉𝑊 Fn (0..^(♯‘𝑊)))
25 oveq2 7361 . . . . . . . . . . . . . 14 ((♯‘𝑊) = 𝑁 → (0..^(♯‘𝑊)) = (0..^𝑁))
2625fneq2d 6580 . . . . . . . . . . . . 13 ((♯‘𝑊) = 𝑁 → (𝑊 Fn (0..^(♯‘𝑊)) ↔ 𝑊 Fn (0..^𝑁)))
2726biimpd 229 . . . . . . . . . . . 12 ((♯‘𝑊) = 𝑁 → (𝑊 Fn (0..^(♯‘𝑊)) → 𝑊 Fn (0..^𝑁)))
2827a1d 25 . . . . . . . . . . 11 ((♯‘𝑊) = 𝑁 → ((𝑆𝑉𝑁 ∈ ℕ0) → (𝑊 Fn (0..^(♯‘𝑊)) → 𝑊 Fn (0..^𝑁))))
2928com13 88 . . . . . . . . . 10 (𝑊 Fn (0..^(♯‘𝑊)) → ((𝑆𝑉𝑁 ∈ ℕ0) → ((♯‘𝑊) = 𝑁𝑊 Fn (0..^𝑁))))
3023, 24, 293syl 18 . . . . . . . . 9 (𝑊 ∈ Word 𝑉 → ((𝑆𝑉𝑁 ∈ ℕ0) → ((♯‘𝑊) = 𝑁𝑊 Fn (0..^𝑁))))
3130com12 32 . . . . . . . 8 ((𝑆𝑉𝑁 ∈ ℕ0) → (𝑊 ∈ Word 𝑉 → ((♯‘𝑊) = 𝑁𝑊 Fn (0..^𝑁))))
3231impd 410 . . . . . . 7 ((𝑆𝑉𝑁 ∈ ℕ0) → ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁) → 𝑊 Fn (0..^𝑁)))
3332adantr 480 . . . . . 6 (((𝑆𝑉𝑁 ∈ ℕ0) ∧ ∀𝑖 ∈ (0..^𝑁)(𝑊𝑖) = 𝑆) → ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁) → 𝑊 Fn (0..^𝑁)))
3422, 33impbid 212 . . . . 5 (((𝑆𝑉𝑁 ∈ ℕ0) ∧ ∀𝑖 ∈ (0..^𝑁)(𝑊𝑖) = 𝑆) → (𝑊 Fn (0..^𝑁) ↔ (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁)))
3534ex 412 . . . 4 ((𝑆𝑉𝑁 ∈ ℕ0) → (∀𝑖 ∈ (0..^𝑁)(𝑊𝑖) = 𝑆 → (𝑊 Fn (0..^𝑁) ↔ (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁))))
3635pm5.32rd 578 . . 3 ((𝑆𝑉𝑁 ∈ ℕ0) → ((𝑊 Fn (0..^𝑁) ∧ ∀𝑖 ∈ (0..^𝑁)(𝑊𝑖) = 𝑆) ↔ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁) ∧ ∀𝑖 ∈ (0..^𝑁)(𝑊𝑖) = 𝑆)))
37 df-3an 1088 . . 3 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑁)(𝑊𝑖) = 𝑆) ↔ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁) ∧ ∀𝑖 ∈ (0..^𝑁)(𝑊𝑖) = 𝑆))
3836, 5, 373bitr4g 314 . 2 ((𝑆𝑉𝑁 ∈ ℕ0) → (𝑊:(0..^𝑁)⟶{𝑆} ↔ (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑁)(𝑊𝑖) = 𝑆)))
392, 4, 383bitr2d 307 1 ((𝑆𝑉𝑁 ∈ ℕ0) → (𝑊 = (𝑆 repeatS 𝑁) ↔ (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑁)(𝑊𝑖) = 𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wss 3905  {csn 4579   × cxp 5621   Fn wfn 6481  wf 6482  cfv 6486  (class class class)co 7353  0cc0 11028  0cn0 12402  ..^cfzo 13575  chash 14255  Word cword 14438   repeatS creps 14692
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-n0 12403  df-z 12490  df-uz 12754  df-fz 13429  df-fzo 13576  df-hash 14256  df-word 14439  df-reps 14693
This theorem is referenced by:  repswsymball  14703  repswsymballbi  14704  cshwrepswhash1  17032
  Copyright terms: Public domain W3C validator