Step | Hyp | Ref
| Expression |
1 | | isspthonpth.v |
. . 3
β’ π = (VtxβπΊ) |
2 | 1 | isspthson 29268 |
. 2
β’ (((π΄ β π β§ π΅ β π) β§ (πΉ β π β§ π β π)) β (πΉ(π΄(SPathsOnβπΊ)π΅)π β (πΉ(π΄(TrailsOnβπΊ)π΅)π β§ πΉ(SPathsβπΊ)π))) |
3 | 1 | istrlson 29232 |
. . . . . . 7
β’ (((π΄ β π β§ π΅ β π) β§ (πΉ β π β§ π β π)) β (πΉ(π΄(TrailsOnβπΊ)π΅)π β (πΉ(π΄(WalksOnβπΊ)π΅)π β§ πΉ(TrailsβπΊ)π))) |
4 | 3 | adantr 480 |
. . . . . 6
β’ ((((π΄ β π β§ π΅ β π) β§ (πΉ β π β§ π β π)) β§ πΉ(SPathsβπΊ)π) β (πΉ(π΄(TrailsOnβπΊ)π΅)π β (πΉ(π΄(WalksOnβπΊ)π΅)π β§ πΉ(TrailsβπΊ)π))) |
5 | | spthispth 29251 |
. . . . . . . . 9
β’ (πΉ(SPathsβπΊ)π β πΉ(PathsβπΊ)π) |
6 | | pthistrl 29250 |
. . . . . . . . 9
β’ (πΉ(PathsβπΊ)π β πΉ(TrailsβπΊ)π) |
7 | 5, 6 | syl 17 |
. . . . . . . 8
β’ (πΉ(SPathsβπΊ)π β πΉ(TrailsβπΊ)π) |
8 | 7 | adantl 481 |
. . . . . . 7
β’ ((((π΄ β π β§ π΅ β π) β§ (πΉ β π β§ π β π)) β§ πΉ(SPathsβπΊ)π) β πΉ(TrailsβπΊ)π) |
9 | 8 | biantrud 531 |
. . . . . 6
β’ ((((π΄ β π β§ π΅ β π) β§ (πΉ β π β§ π β π)) β§ πΉ(SPathsβπΊ)π) β (πΉ(π΄(WalksOnβπΊ)π΅)π β (πΉ(π΄(WalksOnβπΊ)π΅)π β§ πΉ(TrailsβπΊ)π))) |
10 | | spthiswlk 29253 |
. . . . . . . 8
β’ (πΉ(SPathsβπΊ)π β πΉ(WalksβπΊ)π) |
11 | 10 | adantl 481 |
. . . . . . 7
β’ ((((π΄ β π β§ π΅ β π) β§ (πΉ β π β§ π β π)) β§ πΉ(SPathsβπΊ)π) β πΉ(WalksβπΊ)π) |
12 | 1 | iswlkon 29182 |
. . . . . . . . 9
β’ (((π΄ β π β§ π΅ β π) β§ (πΉ β π β§ π β π)) β (πΉ(π΄(WalksOnβπΊ)π΅)π β (πΉ(WalksβπΊ)π β§ (πβ0) = π΄ β§ (πβ(β―βπΉ)) = π΅))) |
13 | | 3anass 1094 |
. . . . . . . . 9
β’ ((πΉ(WalksβπΊ)π β§ (πβ0) = π΄ β§ (πβ(β―βπΉ)) = π΅) β (πΉ(WalksβπΊ)π β§ ((πβ0) = π΄ β§ (πβ(β―βπΉ)) = π΅))) |
14 | 12, 13 | bitrdi 287 |
. . . . . . . 8
β’ (((π΄ β π β§ π΅ β π) β§ (πΉ β π β§ π β π)) β (πΉ(π΄(WalksOnβπΊ)π΅)π β (πΉ(WalksβπΊ)π β§ ((πβ0) = π΄ β§ (πβ(β―βπΉ)) = π΅)))) |
15 | 14 | adantr 480 |
. . . . . . 7
β’ ((((π΄ β π β§ π΅ β π) β§ (πΉ β π β§ π β π)) β§ πΉ(SPathsβπΊ)π) β (πΉ(π΄(WalksOnβπΊ)π΅)π β (πΉ(WalksβπΊ)π β§ ((πβ0) = π΄ β§ (πβ(β―βπΉ)) = π΅)))) |
16 | 11, 15 | mpbirand 704 |
. . . . . 6
β’ ((((π΄ β π β§ π΅ β π) β§ (πΉ β π β§ π β π)) β§ πΉ(SPathsβπΊ)π) β (πΉ(π΄(WalksOnβπΊ)π΅)π β ((πβ0) = π΄ β§ (πβ(β―βπΉ)) = π΅))) |
17 | 4, 9, 16 | 3bitr2d 307 |
. . . . 5
β’ ((((π΄ β π β§ π΅ β π) β§ (πΉ β π β§ π β π)) β§ πΉ(SPathsβπΊ)π) β (πΉ(π΄(TrailsOnβπΊ)π΅)π β ((πβ0) = π΄ β§ (πβ(β―βπΉ)) = π΅))) |
18 | 17 | ex 412 |
. . . 4
β’ (((π΄ β π β§ π΅ β π) β§ (πΉ β π β§ π β π)) β (πΉ(SPathsβπΊ)π β (πΉ(π΄(TrailsOnβπΊ)π΅)π β ((πβ0) = π΄ β§ (πβ(β―βπΉ)) = π΅)))) |
19 | 18 | pm5.32rd 577 |
. . 3
β’ (((π΄ β π β§ π΅ β π) β§ (πΉ β π β§ π β π)) β ((πΉ(π΄(TrailsOnβπΊ)π΅)π β§ πΉ(SPathsβπΊ)π) β (((πβ0) = π΄ β§ (πβ(β―βπΉ)) = π΅) β§ πΉ(SPathsβπΊ)π))) |
20 | | 3anass 1094 |
. . . 4
β’ ((πΉ(SPathsβπΊ)π β§ (πβ0) = π΄ β§ (πβ(β―βπΉ)) = π΅) β (πΉ(SPathsβπΊ)π β§ ((πβ0) = π΄ β§ (πβ(β―βπΉ)) = π΅))) |
21 | | ancom 460 |
. . . 4
β’ ((πΉ(SPathsβπΊ)π β§ ((πβ0) = π΄ β§ (πβ(β―βπΉ)) = π΅)) β (((πβ0) = π΄ β§ (πβ(β―βπΉ)) = π΅) β§ πΉ(SPathsβπΊ)π)) |
22 | 20, 21 | bitr2i 276 |
. . 3
β’ ((((πβ0) = π΄ β§ (πβ(β―βπΉ)) = π΅) β§ πΉ(SPathsβπΊ)π) β (πΉ(SPathsβπΊ)π β§ (πβ0) = π΄ β§ (πβ(β―βπΉ)) = π΅)) |
23 | 19, 22 | bitrdi 287 |
. 2
β’ (((π΄ β π β§ π΅ β π) β§ (πΉ β π β§ π β π)) β ((πΉ(π΄(TrailsOnβπΊ)π΅)π β§ πΉ(SPathsβπΊ)π) β (πΉ(SPathsβπΊ)π β§ (πβ0) = π΄ β§ (πβ(β―βπΉ)) = π΅))) |
24 | 2, 23 | bitrd 279 |
1
β’ (((π΄ β π β§ π΅ β π) β§ (πΉ β π β§ π β π)) β (πΉ(π΄(SPathsOnβπΊ)π΅)π β (πΉ(SPathsβπΊ)π β§ (πβ0) = π΄ β§ (πβ(β―βπΉ)) = π΅))) |