MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isspthonpth Structured version   Visualization version   GIF version

Theorem isspthonpth 29769
Description: A pair of functions is a simple path between two given vertices iff it is a simple path starting and ending at the two vertices. (Contributed by Alexander van der Vekens, 9-Mar-2018.) (Revised by AV, 17-Jan-2021.)
Hypothesis
Ref Expression
isspthonpth.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
isspthonpth (((𝐴𝑉𝐵𝑉) ∧ (𝐹𝑊𝑃𝑍)) → (𝐹(𝐴(SPathsOn‘𝐺)𝐵)𝑃 ↔ (𝐹(SPaths‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵)))

Proof of Theorem isspthonpth
StepHypRef Expression
1 isspthonpth.v . . 3 𝑉 = (Vtx‘𝐺)
21isspthson 29763 . 2 (((𝐴𝑉𝐵𝑉) ∧ (𝐹𝑊𝑃𝑍)) → (𝐹(𝐴(SPathsOn‘𝐺)𝐵)𝑃 ↔ (𝐹(𝐴(TrailsOn‘𝐺)𝐵)𝑃𝐹(SPaths‘𝐺)𝑃)))
31istrlson 29725 . . . . . . 7 (((𝐴𝑉𝐵𝑉) ∧ (𝐹𝑊𝑃𝑍)) → (𝐹(𝐴(TrailsOn‘𝐺)𝐵)𝑃 ↔ (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃𝐹(Trails‘𝐺)𝑃)))
43adantr 480 . . . . . 6 ((((𝐴𝑉𝐵𝑉) ∧ (𝐹𝑊𝑃𝑍)) ∧ 𝐹(SPaths‘𝐺)𝑃) → (𝐹(𝐴(TrailsOn‘𝐺)𝐵)𝑃 ↔ (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃𝐹(Trails‘𝐺)𝑃)))
5 spthispth 29744 . . . . . . . . 9 (𝐹(SPaths‘𝐺)𝑃𝐹(Paths‘𝐺)𝑃)
6 pthistrl 29743 . . . . . . . . 9 (𝐹(Paths‘𝐺)𝑃𝐹(Trails‘𝐺)𝑃)
75, 6syl 17 . . . . . . . 8 (𝐹(SPaths‘𝐺)𝑃𝐹(Trails‘𝐺)𝑃)
87adantl 481 . . . . . . 7 ((((𝐴𝑉𝐵𝑉) ∧ (𝐹𝑊𝑃𝑍)) ∧ 𝐹(SPaths‘𝐺)𝑃) → 𝐹(Trails‘𝐺)𝑃)
98biantrud 531 . . . . . 6 ((((𝐴𝑉𝐵𝑉) ∧ (𝐹𝑊𝑃𝑍)) ∧ 𝐹(SPaths‘𝐺)𝑃) → (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃 ↔ (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃𝐹(Trails‘𝐺)𝑃)))
10 spthiswlk 29746 . . . . . . . 8 (𝐹(SPaths‘𝐺)𝑃𝐹(Walks‘𝐺)𝑃)
1110adantl 481 . . . . . . 7 ((((𝐴𝑉𝐵𝑉) ∧ (𝐹𝑊𝑃𝑍)) ∧ 𝐹(SPaths‘𝐺)𝑃) → 𝐹(Walks‘𝐺)𝑃)
121iswlkon 29675 . . . . . . . . 9 (((𝐴𝑉𝐵𝑉) ∧ (𝐹𝑊𝑃𝑍)) → (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵)))
13 3anass 1095 . . . . . . . . 9 ((𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵) ↔ (𝐹(Walks‘𝐺)𝑃 ∧ ((𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵)))
1412, 13bitrdi 287 . . . . . . . 8 (((𝐴𝑉𝐵𝑉) ∧ (𝐹𝑊𝑃𝑍)) → (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ ((𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵))))
1514adantr 480 . . . . . . 7 ((((𝐴𝑉𝐵𝑉) ∧ (𝐹𝑊𝑃𝑍)) ∧ 𝐹(SPaths‘𝐺)𝑃) → (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ ((𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵))))
1611, 15mpbirand 707 . . . . . 6 ((((𝐴𝑉𝐵𝑉) ∧ (𝐹𝑊𝑃𝑍)) ∧ 𝐹(SPaths‘𝐺)𝑃) → (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃 ↔ ((𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵)))
174, 9, 163bitr2d 307 . . . . 5 ((((𝐴𝑉𝐵𝑉) ∧ (𝐹𝑊𝑃𝑍)) ∧ 𝐹(SPaths‘𝐺)𝑃) → (𝐹(𝐴(TrailsOn‘𝐺)𝐵)𝑃 ↔ ((𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵)))
1817ex 412 . . . 4 (((𝐴𝑉𝐵𝑉) ∧ (𝐹𝑊𝑃𝑍)) → (𝐹(SPaths‘𝐺)𝑃 → (𝐹(𝐴(TrailsOn‘𝐺)𝐵)𝑃 ↔ ((𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵))))
1918pm5.32rd 578 . . 3 (((𝐴𝑉𝐵𝑉) ∧ (𝐹𝑊𝑃𝑍)) → ((𝐹(𝐴(TrailsOn‘𝐺)𝐵)𝑃𝐹(SPaths‘𝐺)𝑃) ↔ (((𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵) ∧ 𝐹(SPaths‘𝐺)𝑃)))
20 3anass 1095 . . . 4 ((𝐹(SPaths‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵) ↔ (𝐹(SPaths‘𝐺)𝑃 ∧ ((𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵)))
21 ancom 460 . . . 4 ((𝐹(SPaths‘𝐺)𝑃 ∧ ((𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵)) ↔ (((𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵) ∧ 𝐹(SPaths‘𝐺)𝑃))
2220, 21bitr2i 276 . . 3 ((((𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵) ∧ 𝐹(SPaths‘𝐺)𝑃) ↔ (𝐹(SPaths‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵))
2319, 22bitrdi 287 . 2 (((𝐴𝑉𝐵𝑉) ∧ (𝐹𝑊𝑃𝑍)) → ((𝐹(𝐴(TrailsOn‘𝐺)𝐵)𝑃𝐹(SPaths‘𝐺)𝑃) ↔ (𝐹(SPaths‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵)))
242, 23bitrd 279 1 (((𝐴𝑉𝐵𝑉) ∧ (𝐹𝑊𝑃𝑍)) → (𝐹(𝐴(SPathsOn‘𝐺)𝐵)𝑃 ↔ (𝐹(SPaths‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108   class class class wbr 5143  cfv 6561  (class class class)co 7431  0cc0 11155  chash 14369  Vtxcvtx 29013  Walkscwlks 29614  WalksOncwlkson 29615  Trailsctrls 29708  TrailsOnctrlson 29709  Pathscpths 29730  SPathscspths 29731  SPathsOncspthson 29733
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-n0 12527  df-z 12614  df-uz 12879  df-fz 13548  df-fzo 13695  df-wlks 29617  df-wlkson 29618  df-trls 29710  df-trlson 29711  df-pths 29734  df-spths 29735  df-spthson 29737
This theorem is referenced by:  uhgrwkspth  29775  usgr2wlkspth  29779  wspthsnwspthsnon  29936  elwspths2spth  29987
  Copyright terms: Public domain W3C validator