MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isspthonpth Structured version   Visualization version   GIF version

Theorem isspthonpth 29686
Description: A pair of functions is a simple path between two given vertices iff it is a simple path starting and ending at the two vertices. (Contributed by Alexander van der Vekens, 9-Mar-2018.) (Revised by AV, 17-Jan-2021.)
Hypothesis
Ref Expression
isspthonpth.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
isspthonpth (((𝐴𝑉𝐵𝑉) ∧ (𝐹𝑊𝑃𝑍)) → (𝐹(𝐴(SPathsOn‘𝐺)𝐵)𝑃 ↔ (𝐹(SPaths‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵)))

Proof of Theorem isspthonpth
StepHypRef Expression
1 isspthonpth.v . . 3 𝑉 = (Vtx‘𝐺)
21isspthson 29680 . 2 (((𝐴𝑉𝐵𝑉) ∧ (𝐹𝑊𝑃𝑍)) → (𝐹(𝐴(SPathsOn‘𝐺)𝐵)𝑃 ↔ (𝐹(𝐴(TrailsOn‘𝐺)𝐵)𝑃𝐹(SPaths‘𝐺)𝑃)))
31istrlson 29642 . . . . . . 7 (((𝐴𝑉𝐵𝑉) ∧ (𝐹𝑊𝑃𝑍)) → (𝐹(𝐴(TrailsOn‘𝐺)𝐵)𝑃 ↔ (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃𝐹(Trails‘𝐺)𝑃)))
43adantr 480 . . . . . 6 ((((𝐴𝑉𝐵𝑉) ∧ (𝐹𝑊𝑃𝑍)) ∧ 𝐹(SPaths‘𝐺)𝑃) → (𝐹(𝐴(TrailsOn‘𝐺)𝐵)𝑃 ↔ (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃𝐹(Trails‘𝐺)𝑃)))
5 spthispth 29661 . . . . . . . . 9 (𝐹(SPaths‘𝐺)𝑃𝐹(Paths‘𝐺)𝑃)
6 pthistrl 29660 . . . . . . . . 9 (𝐹(Paths‘𝐺)𝑃𝐹(Trails‘𝐺)𝑃)
75, 6syl 17 . . . . . . . 8 (𝐹(SPaths‘𝐺)𝑃𝐹(Trails‘𝐺)𝑃)
87adantl 481 . . . . . . 7 ((((𝐴𝑉𝐵𝑉) ∧ (𝐹𝑊𝑃𝑍)) ∧ 𝐹(SPaths‘𝐺)𝑃) → 𝐹(Trails‘𝐺)𝑃)
98biantrud 531 . . . . . 6 ((((𝐴𝑉𝐵𝑉) ∧ (𝐹𝑊𝑃𝑍)) ∧ 𝐹(SPaths‘𝐺)𝑃) → (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃 ↔ (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃𝐹(Trails‘𝐺)𝑃)))
10 spthiswlk 29663 . . . . . . . 8 (𝐹(SPaths‘𝐺)𝑃𝐹(Walks‘𝐺)𝑃)
1110adantl 481 . . . . . . 7 ((((𝐴𝑉𝐵𝑉) ∧ (𝐹𝑊𝑃𝑍)) ∧ 𝐹(SPaths‘𝐺)𝑃) → 𝐹(Walks‘𝐺)𝑃)
121iswlkon 29592 . . . . . . . . 9 (((𝐴𝑉𝐵𝑉) ∧ (𝐹𝑊𝑃𝑍)) → (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵)))
13 3anass 1094 . . . . . . . . 9 ((𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵) ↔ (𝐹(Walks‘𝐺)𝑃 ∧ ((𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵)))
1412, 13bitrdi 287 . . . . . . . 8 (((𝐴𝑉𝐵𝑉) ∧ (𝐹𝑊𝑃𝑍)) → (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ ((𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵))))
1514adantr 480 . . . . . . 7 ((((𝐴𝑉𝐵𝑉) ∧ (𝐹𝑊𝑃𝑍)) ∧ 𝐹(SPaths‘𝐺)𝑃) → (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ ((𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵))))
1611, 15mpbirand 707 . . . . . 6 ((((𝐴𝑉𝐵𝑉) ∧ (𝐹𝑊𝑃𝑍)) ∧ 𝐹(SPaths‘𝐺)𝑃) → (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃 ↔ ((𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵)))
174, 9, 163bitr2d 307 . . . . 5 ((((𝐴𝑉𝐵𝑉) ∧ (𝐹𝑊𝑃𝑍)) ∧ 𝐹(SPaths‘𝐺)𝑃) → (𝐹(𝐴(TrailsOn‘𝐺)𝐵)𝑃 ↔ ((𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵)))
1817ex 412 . . . 4 (((𝐴𝑉𝐵𝑉) ∧ (𝐹𝑊𝑃𝑍)) → (𝐹(SPaths‘𝐺)𝑃 → (𝐹(𝐴(TrailsOn‘𝐺)𝐵)𝑃 ↔ ((𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵))))
1918pm5.32rd 578 . . 3 (((𝐴𝑉𝐵𝑉) ∧ (𝐹𝑊𝑃𝑍)) → ((𝐹(𝐴(TrailsOn‘𝐺)𝐵)𝑃𝐹(SPaths‘𝐺)𝑃) ↔ (((𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵) ∧ 𝐹(SPaths‘𝐺)𝑃)))
20 3anass 1094 . . . 4 ((𝐹(SPaths‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵) ↔ (𝐹(SPaths‘𝐺)𝑃 ∧ ((𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵)))
21 ancom 460 . . . 4 ((𝐹(SPaths‘𝐺)𝑃 ∧ ((𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵)) ↔ (((𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵) ∧ 𝐹(SPaths‘𝐺)𝑃))
2220, 21bitr2i 276 . . 3 ((((𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵) ∧ 𝐹(SPaths‘𝐺)𝑃) ↔ (𝐹(SPaths‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵))
2319, 22bitrdi 287 . 2 (((𝐴𝑉𝐵𝑉) ∧ (𝐹𝑊𝑃𝑍)) → ((𝐹(𝐴(TrailsOn‘𝐺)𝐵)𝑃𝐹(SPaths‘𝐺)𝑃) ↔ (𝐹(SPaths‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵)))
242, 23bitrd 279 1 (((𝐴𝑉𝐵𝑉) ∧ (𝐹𝑊𝑃𝑍)) → (𝐹(𝐴(SPathsOn‘𝐺)𝐵)𝑃 ↔ (𝐹(SPaths‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5110  cfv 6514  (class class class)co 7390  0cc0 11075  chash 14302  Vtxcvtx 28930  Walkscwlks 29531  WalksOncwlkson 29532  Trailsctrls 29625  TrailsOnctrlson 29626  Pathscpths 29647  SPathscspths 29648  SPathsOncspthson 29650
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-n0 12450  df-z 12537  df-uz 12801  df-fz 13476  df-fzo 13623  df-wlks 29534  df-wlkson 29535  df-trls 29627  df-trlson 29628  df-pths 29651  df-spths 29652  df-spthson 29654
This theorem is referenced by:  uhgrwkspth  29692  usgr2wlkspth  29696  wspthsnwspthsnon  29853  elwspths2spth  29904
  Copyright terms: Public domain W3C validator