Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > omord | Structured version Visualization version GIF version |
Description: Ordering property of ordinal multiplication. Proposition 8.19 of [TakeutiZaring] p. 63. (Contributed by NM, 14-Dec-2004.) |
Ref | Expression |
---|---|
omord | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐶) ↔ (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omord2 8446 | . . . 4 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ ∅ ∈ 𝐶) → (𝐴 ∈ 𝐵 ↔ (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵))) | |
2 | 1 | ex 413 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (∅ ∈ 𝐶 → (𝐴 ∈ 𝐵 ↔ (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵)))) |
3 | 2 | pm5.32rd 578 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐶) ↔ ((𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵) ∧ ∅ ∈ 𝐶))) |
4 | simpl 483 | . . 3 ⊢ (((𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵) ∧ ∅ ∈ 𝐶) → (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵)) | |
5 | ne0i 4279 | . . . . . . . 8 ⊢ ((𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵) → (𝐶 ·o 𝐵) ≠ ∅) | |
6 | om0r 8417 | . . . . . . . . . 10 ⊢ (𝐵 ∈ On → (∅ ·o 𝐵) = ∅) | |
7 | oveq1 7322 | . . . . . . . . . . 11 ⊢ (𝐶 = ∅ → (𝐶 ·o 𝐵) = (∅ ·o 𝐵)) | |
8 | 7 | eqeq1d 2739 | . . . . . . . . . 10 ⊢ (𝐶 = ∅ → ((𝐶 ·o 𝐵) = ∅ ↔ (∅ ·o 𝐵) = ∅)) |
9 | 6, 8 | syl5ibrcom 246 | . . . . . . . . 9 ⊢ (𝐵 ∈ On → (𝐶 = ∅ → (𝐶 ·o 𝐵) = ∅)) |
10 | 9 | necon3d 2962 | . . . . . . . 8 ⊢ (𝐵 ∈ On → ((𝐶 ·o 𝐵) ≠ ∅ → 𝐶 ≠ ∅)) |
11 | 5, 10 | syl5 34 | . . . . . . 7 ⊢ (𝐵 ∈ On → ((𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵) → 𝐶 ≠ ∅)) |
12 | 11 | adantr 481 | . . . . . 6 ⊢ ((𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵) → 𝐶 ≠ ∅)) |
13 | on0eln0 6343 | . . . . . . 7 ⊢ (𝐶 ∈ On → (∅ ∈ 𝐶 ↔ 𝐶 ≠ ∅)) | |
14 | 13 | adantl 482 | . . . . . 6 ⊢ ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (∅ ∈ 𝐶 ↔ 𝐶 ≠ ∅)) |
15 | 12, 14 | sylibrd 258 | . . . . 5 ⊢ ((𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵) → ∅ ∈ 𝐶)) |
16 | 15 | 3adant1 1129 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵) → ∅ ∈ 𝐶)) |
17 | 16 | ancld 551 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵) → ((𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵) ∧ ∅ ∈ 𝐶))) |
18 | 4, 17 | impbid2 225 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (((𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵) ∧ ∅ ∈ 𝐶) ↔ (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵))) |
19 | 3, 18 | bitrd 278 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐶) ↔ (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ≠ wne 2941 ∅c0 4267 Oncon0 6288 (class class class)co 7315 ·o comu 8342 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-rep 5224 ax-sep 5238 ax-nul 5245 ax-pr 5367 ax-un 7628 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4268 df-if 4472 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4851 df-iun 4939 df-br 5088 df-opab 5150 df-mpt 5171 df-tr 5205 df-id 5507 df-eprel 5513 df-po 5521 df-so 5522 df-fr 5562 df-we 5564 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-pred 6224 df-ord 6291 df-on 6292 df-lim 6293 df-suc 6294 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-ov 7318 df-oprab 7319 df-mpo 7320 df-om 7758 df-2nd 7877 df-frecs 8144 df-wrecs 8175 df-recs 8249 df-rdg 8288 df-oadd 8348 df-omul 8349 |
This theorem is referenced by: omlimcl 8457 oneo 8460 |
Copyright terms: Public domain | W3C validator |