Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > omord | Structured version Visualization version GIF version |
Description: Ordering property of ordinal multiplication. Proposition 8.19 of [TakeutiZaring] p. 63. (Contributed by NM, 14-Dec-2004.) |
Ref | Expression |
---|---|
omord | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐶) ↔ (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omord2 8295 | . . . 4 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ ∅ ∈ 𝐶) → (𝐴 ∈ 𝐵 ↔ (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵))) | |
2 | 1 | ex 416 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (∅ ∈ 𝐶 → (𝐴 ∈ 𝐵 ↔ (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵)))) |
3 | 2 | pm5.32rd 581 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐶) ↔ ((𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵) ∧ ∅ ∈ 𝐶))) |
4 | simpl 486 | . . 3 ⊢ (((𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵) ∧ ∅ ∈ 𝐶) → (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵)) | |
5 | ne0i 4249 | . . . . . . . 8 ⊢ ((𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵) → (𝐶 ·o 𝐵) ≠ ∅) | |
6 | om0r 8266 | . . . . . . . . . 10 ⊢ (𝐵 ∈ On → (∅ ·o 𝐵) = ∅) | |
7 | oveq1 7220 | . . . . . . . . . . 11 ⊢ (𝐶 = ∅ → (𝐶 ·o 𝐵) = (∅ ·o 𝐵)) | |
8 | 7 | eqeq1d 2739 | . . . . . . . . . 10 ⊢ (𝐶 = ∅ → ((𝐶 ·o 𝐵) = ∅ ↔ (∅ ·o 𝐵) = ∅)) |
9 | 6, 8 | syl5ibrcom 250 | . . . . . . . . 9 ⊢ (𝐵 ∈ On → (𝐶 = ∅ → (𝐶 ·o 𝐵) = ∅)) |
10 | 9 | necon3d 2961 | . . . . . . . 8 ⊢ (𝐵 ∈ On → ((𝐶 ·o 𝐵) ≠ ∅ → 𝐶 ≠ ∅)) |
11 | 5, 10 | syl5 34 | . . . . . . 7 ⊢ (𝐵 ∈ On → ((𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵) → 𝐶 ≠ ∅)) |
12 | 11 | adantr 484 | . . . . . 6 ⊢ ((𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵) → 𝐶 ≠ ∅)) |
13 | on0eln0 6268 | . . . . . . 7 ⊢ (𝐶 ∈ On → (∅ ∈ 𝐶 ↔ 𝐶 ≠ ∅)) | |
14 | 13 | adantl 485 | . . . . . 6 ⊢ ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (∅ ∈ 𝐶 ↔ 𝐶 ≠ ∅)) |
15 | 12, 14 | sylibrd 262 | . . . . 5 ⊢ ((𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵) → ∅ ∈ 𝐶)) |
16 | 15 | 3adant1 1132 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵) → ∅ ∈ 𝐶)) |
17 | 16 | ancld 554 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵) → ((𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵) ∧ ∅ ∈ 𝐶))) |
18 | 4, 17 | impbid2 229 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (((𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵) ∧ ∅ ∈ 𝐶) ↔ (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵))) |
19 | 3, 18 | bitrd 282 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐶) ↔ (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 ∧ w3a 1089 = wceq 1543 ∈ wcel 2110 ≠ wne 2940 ∅c0 4237 Oncon0 6213 (class class class)co 7213 ·o comu 8200 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pr 5322 ax-un 7523 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-ov 7216 df-oprab 7217 df-mpo 7218 df-om 7645 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-oadd 8206 df-omul 8207 |
This theorem is referenced by: omlimcl 8306 oneo 8309 |
Copyright terms: Public domain | W3C validator |