![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > omord | Structured version Visualization version GIF version |
Description: Ordering property of ordinal multiplication. Proposition 8.19 of [TakeutiZaring] p. 63. Theorem 3.16 of [Schloeder] p. 9. (Contributed by NM, 14-Dec-2004.) |
Ref | Expression |
---|---|
omord | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐶) ↔ (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omord2 8623 | . . . 4 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ ∅ ∈ 𝐶) → (𝐴 ∈ 𝐵 ↔ (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵))) | |
2 | 1 | ex 412 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (∅ ∈ 𝐶 → (𝐴 ∈ 𝐵 ↔ (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵)))) |
3 | 2 | pm5.32rd 577 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐶) ↔ ((𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵) ∧ ∅ ∈ 𝐶))) |
4 | simpl 482 | . . 3 ⊢ (((𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵) ∧ ∅ ∈ 𝐶) → (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵)) | |
5 | ne0i 4364 | . . . . . . . 8 ⊢ ((𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵) → (𝐶 ·o 𝐵) ≠ ∅) | |
6 | om0r 8595 | . . . . . . . . . 10 ⊢ (𝐵 ∈ On → (∅ ·o 𝐵) = ∅) | |
7 | oveq1 7455 | . . . . . . . . . . 11 ⊢ (𝐶 = ∅ → (𝐶 ·o 𝐵) = (∅ ·o 𝐵)) | |
8 | 7 | eqeq1d 2742 | . . . . . . . . . 10 ⊢ (𝐶 = ∅ → ((𝐶 ·o 𝐵) = ∅ ↔ (∅ ·o 𝐵) = ∅)) |
9 | 6, 8 | syl5ibrcom 247 | . . . . . . . . 9 ⊢ (𝐵 ∈ On → (𝐶 = ∅ → (𝐶 ·o 𝐵) = ∅)) |
10 | 9 | necon3d 2967 | . . . . . . . 8 ⊢ (𝐵 ∈ On → ((𝐶 ·o 𝐵) ≠ ∅ → 𝐶 ≠ ∅)) |
11 | 5, 10 | syl5 34 | . . . . . . 7 ⊢ (𝐵 ∈ On → ((𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵) → 𝐶 ≠ ∅)) |
12 | 11 | adantr 480 | . . . . . 6 ⊢ ((𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵) → 𝐶 ≠ ∅)) |
13 | on0eln0 6451 | . . . . . . 7 ⊢ (𝐶 ∈ On → (∅ ∈ 𝐶 ↔ 𝐶 ≠ ∅)) | |
14 | 13 | adantl 481 | . . . . . 6 ⊢ ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (∅ ∈ 𝐶 ↔ 𝐶 ≠ ∅)) |
15 | 12, 14 | sylibrd 259 | . . . . 5 ⊢ ((𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵) → ∅ ∈ 𝐶)) |
16 | 15 | 3adant1 1130 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵) → ∅ ∈ 𝐶)) |
17 | 16 | ancld 550 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵) → ((𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵) ∧ ∅ ∈ 𝐶))) |
18 | 4, 17 | impbid2 226 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (((𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵) ∧ ∅ ∈ 𝐶) ↔ (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵))) |
19 | 3, 18 | bitrd 279 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐶) ↔ (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∅c0 4352 Oncon0 6395 (class class class)co 7448 ·o comu 8520 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-oadd 8526 df-omul 8527 |
This theorem is referenced by: omlimcl 8634 oneo 8637 omord2lim 43262 omord2com 43264 |
Copyright terms: Public domain | W3C validator |