Step | Hyp | Ref
| Expression |
1 | | iswwlksn 29360 |
. 2
β’ (π β β0
β (π β (π WWalksN πΊ) β (π β (WWalksβπΊ) β§ (β―βπ) = (π + 1)))) |
2 | | iswwlksnx.v |
. . . . . . 7
β’ π = (VtxβπΊ) |
3 | | iswwlksnx.e |
. . . . . . 7
β’ πΈ = (EdgβπΊ) |
4 | 2, 3 | iswwlks 29358 |
. . . . . 6
β’ (π β (WWalksβπΊ) β (π β β
β§ π β Word π β§ βπ β (0..^((β―βπ) β 1)){(πβπ), (πβ(π + 1))} β πΈ)) |
5 | | df-3an 1088 |
. . . . . . 7
β’ ((π β β
β§ π β Word π β§ βπ β (0..^((β―βπ) β 1)){(πβπ), (πβ(π + 1))} β πΈ) β ((π β β
β§ π β Word π) β§ βπ β (0..^((β―βπ) β 1)){(πβπ), (πβ(π + 1))} β πΈ)) |
6 | | nn0p1gt0 12506 |
. . . . . . . . . . . . . 14
β’ (π β β0
β 0 < (π +
1)) |
7 | 6 | gt0ne0d 11783 |
. . . . . . . . . . . . 13
β’ (π β β0
β (π + 1) β
0) |
8 | 7 | adantr 480 |
. . . . . . . . . . . 12
β’ ((π β β0
β§ (β―βπ) =
(π + 1)) β (π + 1) β 0) |
9 | | neeq1 3002 |
. . . . . . . . . . . . 13
β’
((β―βπ) =
(π + 1) β
((β―βπ) β 0
β (π + 1) β
0)) |
10 | 9 | adantl 481 |
. . . . . . . . . . . 12
β’ ((π β β0
β§ (β―βπ) =
(π + 1)) β
((β―βπ) β 0
β (π + 1) β
0)) |
11 | 8, 10 | mpbird 257 |
. . . . . . . . . . 11
β’ ((π β β0
β§ (β―βπ) =
(π + 1)) β
(β―βπ) β
0) |
12 | | hasheq0 14328 |
. . . . . . . . . . . 12
β’ (π β Word π β ((β―βπ) = 0 β π = β
)) |
13 | 12 | necon3bid 2984 |
. . . . . . . . . . 11
β’ (π β Word π β ((β―βπ) β 0 β π β β
)) |
14 | 11, 13 | syl5ibcom 244 |
. . . . . . . . . 10
β’ ((π β β0
β§ (β―βπ) =
(π + 1)) β (π β Word π β π β β
)) |
15 | 14 | pm4.71rd 562 |
. . . . . . . . 9
β’ ((π β β0
β§ (β―βπ) =
(π + 1)) β (π β Word π β (π β β
β§ π β Word π))) |
16 | 15 | bicomd 222 |
. . . . . . . 8
β’ ((π β β0
β§ (β―βπ) =
(π + 1)) β ((π β β
β§ π β Word π) β π β Word π)) |
17 | 16 | anbi1d 629 |
. . . . . . 7
β’ ((π β β0
β§ (β―βπ) =
(π + 1)) β (((π β β
β§ π β Word π) β§ βπ β (0..^((β―βπ) β 1)){(πβπ), (πβ(π + 1))} β πΈ) β (π β Word π β§ βπ β (0..^((β―βπ) β 1)){(πβπ), (πβ(π + 1))} β πΈ))) |
18 | 5, 17 | bitrid 283 |
. . . . . 6
β’ ((π β β0
β§ (β―βπ) =
(π + 1)) β ((π β β
β§ π β Word π β§ βπ β (0..^((β―βπ) β 1)){(πβπ), (πβ(π + 1))} β πΈ) β (π β Word π β§ βπ β (0..^((β―βπ) β 1)){(πβπ), (πβ(π + 1))} β πΈ))) |
19 | 4, 18 | bitrid 283 |
. . . . 5
β’ ((π β β0
β§ (β―βπ) =
(π + 1)) β (π β (WWalksβπΊ) β (π β Word π β§ βπ β (0..^((β―βπ) β 1)){(πβπ), (πβ(π + 1))} β πΈ))) |
20 | 19 | ex 412 |
. . . 4
β’ (π β β0
β ((β―βπ) =
(π + 1) β (π β (WWalksβπΊ) β (π β Word π β§ βπ β (0..^((β―βπ) β 1)){(πβπ), (πβ(π + 1))} β πΈ)))) |
21 | 20 | pm5.32rd 577 |
. . 3
β’ (π β β0
β ((π β
(WWalksβπΊ) β§
(β―βπ) = (π + 1)) β ((π β Word π β§ βπ β (0..^((β―βπ) β 1)){(πβπ), (πβ(π + 1))} β πΈ) β§ (β―βπ) = (π + 1)))) |
22 | | df-3an 1088 |
. . 3
β’ ((π β Word π β§ βπ β (0..^((β―βπ) β 1)){(πβπ), (πβ(π + 1))} β πΈ β§ (β―βπ) = (π + 1)) β ((π β Word π β§ βπ β (0..^((β―βπ) β 1)){(πβπ), (πβ(π + 1))} β πΈ) β§ (β―βπ) = (π + 1))) |
23 | 21, 22 | bitr4di 289 |
. 2
β’ (π β β0
β ((π β
(WWalksβπΊ) β§
(β―βπ) = (π + 1)) β (π β Word π β§ βπ β (0..^((β―βπ) β 1)){(πβπ), (πβ(π + 1))} β πΈ β§ (β―βπ) = (π + 1)))) |
24 | 1, 23 | bitrd 279 |
1
β’ (π β β0
β (π β (π WWalksN πΊ) β (π β Word π β§ βπ β (0..^((β―βπ) β 1)){(πβπ), (πβ(π + 1))} β πΈ β§ (β―βπ) = (π + 1)))) |