MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iswwlksnx Structured version   Visualization version   GIF version

Theorem iswwlksnx 28785
Description: Properties of a word to represent a walk of a fixed length, definition of WWalks expanded. (Contributed by AV, 28-Apr-2021.)
Hypotheses
Ref Expression
iswwlksnx.v 𝑉 = (Vtx‘𝐺)
iswwlksnx.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
iswwlksnx (𝑁 ∈ ℕ0 → (𝑊 ∈ (𝑁 WWalksN 𝐺) ↔ (𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ (♯‘𝑊) = (𝑁 + 1))))
Distinct variable groups:   𝑖,𝐺   𝑖,𝑊
Allowed substitution hints:   𝐸(𝑖)   𝑁(𝑖)   𝑉(𝑖)

Proof of Theorem iswwlksnx
StepHypRef Expression
1 iswwlksn 28783 . 2 (𝑁 ∈ ℕ0 → (𝑊 ∈ (𝑁 WWalksN 𝐺) ↔ (𝑊 ∈ (WWalks‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1))))
2 iswwlksnx.v . . . . . . 7 𝑉 = (Vtx‘𝐺)
3 iswwlksnx.e . . . . . . 7 𝐸 = (Edg‘𝐺)
42, 3iswwlks 28781 . . . . . 6 (𝑊 ∈ (WWalks‘𝐺) ↔ (𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸))
5 df-3an 1089 . . . . . . 7 ((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) ↔ ((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸))
6 nn0p1gt0 12442 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ0 → 0 < (𝑁 + 1))
76gt0ne0d 11719 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ0 → (𝑁 + 1) ≠ 0)
87adantr 481 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0 ∧ (♯‘𝑊) = (𝑁 + 1)) → (𝑁 + 1) ≠ 0)
9 neeq1 3006 . . . . . . . . . . . . 13 ((♯‘𝑊) = (𝑁 + 1) → ((♯‘𝑊) ≠ 0 ↔ (𝑁 + 1) ≠ 0))
109adantl 482 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0 ∧ (♯‘𝑊) = (𝑁 + 1)) → ((♯‘𝑊) ≠ 0 ↔ (𝑁 + 1) ≠ 0))
118, 10mpbird 256 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0 ∧ (♯‘𝑊) = (𝑁 + 1)) → (♯‘𝑊) ≠ 0)
12 hasheq0 14263 . . . . . . . . . . . 12 (𝑊 ∈ Word 𝑉 → ((♯‘𝑊) = 0 ↔ 𝑊 = ∅))
1312necon3bid 2988 . . . . . . . . . . 11 (𝑊 ∈ Word 𝑉 → ((♯‘𝑊) ≠ 0 ↔ 𝑊 ≠ ∅))
1411, 13syl5ibcom 244 . . . . . . . . . 10 ((𝑁 ∈ ℕ0 ∧ (♯‘𝑊) = (𝑁 + 1)) → (𝑊 ∈ Word 𝑉𝑊 ≠ ∅))
1514pm4.71rd 563 . . . . . . . . 9 ((𝑁 ∈ ℕ0 ∧ (♯‘𝑊) = (𝑁 + 1)) → (𝑊 ∈ Word 𝑉 ↔ (𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉)))
1615bicomd 222 . . . . . . . 8 ((𝑁 ∈ ℕ0 ∧ (♯‘𝑊) = (𝑁 + 1)) → ((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉) ↔ 𝑊 ∈ Word 𝑉))
1716anbi1d 630 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ (♯‘𝑊) = (𝑁 + 1)) → (((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) ↔ (𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸)))
185, 17bitrid 282 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (♯‘𝑊) = (𝑁 + 1)) → ((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) ↔ (𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸)))
194, 18bitrid 282 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (♯‘𝑊) = (𝑁 + 1)) → (𝑊 ∈ (WWalks‘𝐺) ↔ (𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸)))
2019ex 413 . . . 4 (𝑁 ∈ ℕ0 → ((♯‘𝑊) = (𝑁 + 1) → (𝑊 ∈ (WWalks‘𝐺) ↔ (𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸))))
2120pm5.32rd 578 . . 3 (𝑁 ∈ ℕ0 → ((𝑊 ∈ (WWalks‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ↔ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 + 1))))
22 df-3an 1089 . . 3 ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ (♯‘𝑊) = (𝑁 + 1)) ↔ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 + 1)))
2321, 22bitr4di 288 . 2 (𝑁 ∈ ℕ0 → ((𝑊 ∈ (WWalks‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ↔ (𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ (♯‘𝑊) = (𝑁 + 1))))
241, 23bitrd 278 1 (𝑁 ∈ ℕ0 → (𝑊 ∈ (𝑁 WWalksN 𝐺) ↔ (𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ (♯‘𝑊) = (𝑁 + 1))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2943  wral 3064  c0 4282  {cpr 4588  cfv 6496  (class class class)co 7357  0cc0 11051  1c1 11052   + caddc 11054  cmin 11385  0cn0 12413  ..^cfzo 13567  chash 14230  Word cword 14402  Vtxcvtx 27947  Edgcedg 27998  WWalkscwwlks 28770   WWalksN cwwlksn 28771
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-n0 12414  df-z 12500  df-uz 12764  df-fz 13425  df-fzo 13568  df-hash 14231  df-word 14403  df-wwlks 28775  df-wwlksn 28776
This theorem is referenced by:  clwwlknwwlksn  28982  wwlksubclwwlk  29002
  Copyright terms: Public domain W3C validator