MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iswwlksnx Structured version   Visualization version   GIF version

Theorem iswwlksnx 27781
Description: Properties of a word to represent a walk of a fixed length, definition of WWalks expanded. (Contributed by AV, 28-Apr-2021.)
Hypotheses
Ref Expression
iswwlksnx.v 𝑉 = (Vtx‘𝐺)
iswwlksnx.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
iswwlksnx (𝑁 ∈ ℕ0 → (𝑊 ∈ (𝑁 WWalksN 𝐺) ↔ (𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ (♯‘𝑊) = (𝑁 + 1))))
Distinct variable groups:   𝑖,𝐺   𝑖,𝑊
Allowed substitution hints:   𝐸(𝑖)   𝑁(𝑖)   𝑉(𝑖)

Proof of Theorem iswwlksnx
StepHypRef Expression
1 iswwlksn 27779 . 2 (𝑁 ∈ ℕ0 → (𝑊 ∈ (𝑁 WWalksN 𝐺) ↔ (𝑊 ∈ (WWalks‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1))))
2 iswwlksnx.v . . . . . . 7 𝑉 = (Vtx‘𝐺)
3 iswwlksnx.e . . . . . . 7 𝐸 = (Edg‘𝐺)
42, 3iswwlks 27777 . . . . . 6 (𝑊 ∈ (WWalks‘𝐺) ↔ (𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸))
5 df-3an 1090 . . . . . . 7 ((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) ↔ ((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸))
6 nn0p1gt0 12008 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ0 → 0 < (𝑁 + 1))
76gt0ne0d 11285 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ0 → (𝑁 + 1) ≠ 0)
87adantr 484 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0 ∧ (♯‘𝑊) = (𝑁 + 1)) → (𝑁 + 1) ≠ 0)
9 neeq1 2997 . . . . . . . . . . . . 13 ((♯‘𝑊) = (𝑁 + 1) → ((♯‘𝑊) ≠ 0 ↔ (𝑁 + 1) ≠ 0))
109adantl 485 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0 ∧ (♯‘𝑊) = (𝑁 + 1)) → ((♯‘𝑊) ≠ 0 ↔ (𝑁 + 1) ≠ 0))
118, 10mpbird 260 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0 ∧ (♯‘𝑊) = (𝑁 + 1)) → (♯‘𝑊) ≠ 0)
12 hasheq0 13819 . . . . . . . . . . . 12 (𝑊 ∈ Word 𝑉 → ((♯‘𝑊) = 0 ↔ 𝑊 = ∅))
1312necon3bid 2979 . . . . . . . . . . 11 (𝑊 ∈ Word 𝑉 → ((♯‘𝑊) ≠ 0 ↔ 𝑊 ≠ ∅))
1411, 13syl5ibcom 248 . . . . . . . . . 10 ((𝑁 ∈ ℕ0 ∧ (♯‘𝑊) = (𝑁 + 1)) → (𝑊 ∈ Word 𝑉𝑊 ≠ ∅))
1514pm4.71rd 566 . . . . . . . . 9 ((𝑁 ∈ ℕ0 ∧ (♯‘𝑊) = (𝑁 + 1)) → (𝑊 ∈ Word 𝑉 ↔ (𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉)))
1615bicomd 226 . . . . . . . 8 ((𝑁 ∈ ℕ0 ∧ (♯‘𝑊) = (𝑁 + 1)) → ((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉) ↔ 𝑊 ∈ Word 𝑉))
1716anbi1d 633 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ (♯‘𝑊) = (𝑁 + 1)) → (((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) ↔ (𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸)))
185, 17syl5bb 286 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (♯‘𝑊) = (𝑁 + 1)) → ((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) ↔ (𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸)))
194, 18syl5bb 286 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (♯‘𝑊) = (𝑁 + 1)) → (𝑊 ∈ (WWalks‘𝐺) ↔ (𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸)))
2019ex 416 . . . 4 (𝑁 ∈ ℕ0 → ((♯‘𝑊) = (𝑁 + 1) → (𝑊 ∈ (WWalks‘𝐺) ↔ (𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸))))
2120pm5.32rd 581 . . 3 (𝑁 ∈ ℕ0 → ((𝑊 ∈ (WWalks‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ↔ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 + 1))))
22 df-3an 1090 . . 3 ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ (♯‘𝑊) = (𝑁 + 1)) ↔ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 + 1)))
2321, 22bitr4di 292 . 2 (𝑁 ∈ ℕ0 → ((𝑊 ∈ (WWalks‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ↔ (𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ (♯‘𝑊) = (𝑁 + 1))))
241, 23bitrd 282 1 (𝑁 ∈ ℕ0 → (𝑊 ∈ (𝑁 WWalksN 𝐺) ↔ (𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ (♯‘𝑊) = (𝑁 + 1))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1088   = wceq 1542  wcel 2114  wne 2935  wral 3054  c0 4212  {cpr 4519  cfv 6340  (class class class)co 7173  0cc0 10618  1c1 10619   + caddc 10621  cmin 10951  0cn0 11979  ..^cfzo 13127  chash 13785  Word cword 13958  Vtxcvtx 26944  Edgcedg 26995  WWalkscwwlks 27766   WWalksN cwwlksn 27767
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2711  ax-rep 5155  ax-sep 5168  ax-nul 5175  ax-pow 5233  ax-pr 5297  ax-un 7482  ax-cnex 10674  ax-resscn 10675  ax-1cn 10676  ax-icn 10677  ax-addcl 10678  ax-addrcl 10679  ax-mulcl 10680  ax-mulrcl 10681  ax-mulcom 10682  ax-addass 10683  ax-mulass 10684  ax-distr 10685  ax-i2m1 10686  ax-1ne0 10687  ax-1rid 10688  ax-rnegex 10689  ax-rrecex 10690  ax-cnre 10691  ax-pre-lttri 10692  ax-pre-lttrn 10693  ax-pre-ltadd 10694  ax-pre-mulgt0 10695
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2541  df-eu 2571  df-clab 2718  df-cleq 2731  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rab 3063  df-v 3401  df-sbc 3682  df-csb 3792  df-dif 3847  df-un 3849  df-in 3851  df-ss 3861  df-pss 3863  df-nul 4213  df-if 4416  df-pw 4491  df-sn 4518  df-pr 4520  df-tp 4522  df-op 4524  df-uni 4798  df-int 4838  df-iun 4884  df-br 5032  df-opab 5094  df-mpt 5112  df-tr 5138  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5484  df-we 5486  df-xp 5532  df-rel 5533  df-cnv 5534  df-co 5535  df-dm 5536  df-rn 5537  df-res 5538  df-ima 5539  df-pred 6130  df-ord 6176  df-on 6177  df-lim 6178  df-suc 6179  df-iota 6298  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-riota 7130  df-ov 7176  df-oprab 7177  df-mpo 7178  df-om 7603  df-1st 7717  df-2nd 7718  df-wrecs 7979  df-recs 8040  df-rdg 8078  df-1o 8134  df-er 8323  df-map 8442  df-en 8559  df-dom 8560  df-sdom 8561  df-fin 8562  df-card 9444  df-pnf 10758  df-mnf 10759  df-xr 10760  df-ltxr 10761  df-le 10762  df-sub 10953  df-neg 10954  df-nn 11720  df-n0 11980  df-z 12066  df-uz 12328  df-fz 12985  df-fzo 13128  df-hash 13786  df-word 13959  df-wwlks 27771  df-wwlksn 27772
This theorem is referenced by:  clwwlknwwlksn  27978  wwlksubclwwlk  27998
  Copyright terms: Public domain W3C validator