MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iswwlksnx Structured version   Visualization version   GIF version

Theorem iswwlksnx 29870
Description: Properties of a word to represent a walk of a fixed length, definition of WWalks expanded. (Contributed by AV, 28-Apr-2021.)
Hypotheses
Ref Expression
iswwlksnx.v 𝑉 = (Vtx‘𝐺)
iswwlksnx.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
iswwlksnx (𝑁 ∈ ℕ0 → (𝑊 ∈ (𝑁 WWalksN 𝐺) ↔ (𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ (♯‘𝑊) = (𝑁 + 1))))
Distinct variable groups:   𝑖,𝐺   𝑖,𝑊
Allowed substitution hints:   𝐸(𝑖)   𝑁(𝑖)   𝑉(𝑖)

Proof of Theorem iswwlksnx
StepHypRef Expression
1 iswwlksn 29868 . 2 (𝑁 ∈ ℕ0 → (𝑊 ∈ (𝑁 WWalksN 𝐺) ↔ (𝑊 ∈ (WWalks‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1))))
2 iswwlksnx.v . . . . . . 7 𝑉 = (Vtx‘𝐺)
3 iswwlksnx.e . . . . . . 7 𝐸 = (Edg‘𝐺)
42, 3iswwlks 29866 . . . . . 6 (𝑊 ∈ (WWalks‘𝐺) ↔ (𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸))
5 df-3an 1088 . . . . . . 7 ((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) ↔ ((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸))
6 nn0p1gt0 12553 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ0 → 0 < (𝑁 + 1))
76gt0ne0d 11825 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ0 → (𝑁 + 1) ≠ 0)
87adantr 480 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0 ∧ (♯‘𝑊) = (𝑁 + 1)) → (𝑁 + 1) ≠ 0)
9 neeq1 3001 . . . . . . . . . . . . 13 ((♯‘𝑊) = (𝑁 + 1) → ((♯‘𝑊) ≠ 0 ↔ (𝑁 + 1) ≠ 0))
109adantl 481 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0 ∧ (♯‘𝑊) = (𝑁 + 1)) → ((♯‘𝑊) ≠ 0 ↔ (𝑁 + 1) ≠ 0))
118, 10mpbird 257 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0 ∧ (♯‘𝑊) = (𝑁 + 1)) → (♯‘𝑊) ≠ 0)
12 hasheq0 14399 . . . . . . . . . . . 12 (𝑊 ∈ Word 𝑉 → ((♯‘𝑊) = 0 ↔ 𝑊 = ∅))
1312necon3bid 2983 . . . . . . . . . . 11 (𝑊 ∈ Word 𝑉 → ((♯‘𝑊) ≠ 0 ↔ 𝑊 ≠ ∅))
1411, 13syl5ibcom 245 . . . . . . . . . 10 ((𝑁 ∈ ℕ0 ∧ (♯‘𝑊) = (𝑁 + 1)) → (𝑊 ∈ Word 𝑉𝑊 ≠ ∅))
1514pm4.71rd 562 . . . . . . . . 9 ((𝑁 ∈ ℕ0 ∧ (♯‘𝑊) = (𝑁 + 1)) → (𝑊 ∈ Word 𝑉 ↔ (𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉)))
1615bicomd 223 . . . . . . . 8 ((𝑁 ∈ ℕ0 ∧ (♯‘𝑊) = (𝑁 + 1)) → ((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉) ↔ 𝑊 ∈ Word 𝑉))
1716anbi1d 631 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ (♯‘𝑊) = (𝑁 + 1)) → (((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) ↔ (𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸)))
185, 17bitrid 283 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (♯‘𝑊) = (𝑁 + 1)) → ((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) ↔ (𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸)))
194, 18bitrid 283 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (♯‘𝑊) = (𝑁 + 1)) → (𝑊 ∈ (WWalks‘𝐺) ↔ (𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸)))
2019ex 412 . . . 4 (𝑁 ∈ ℕ0 → ((♯‘𝑊) = (𝑁 + 1) → (𝑊 ∈ (WWalks‘𝐺) ↔ (𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸))))
2120pm5.32rd 578 . . 3 (𝑁 ∈ ℕ0 → ((𝑊 ∈ (WWalks‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ↔ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 + 1))))
22 df-3an 1088 . . 3 ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ (♯‘𝑊) = (𝑁 + 1)) ↔ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 + 1)))
2321, 22bitr4di 289 . 2 (𝑁 ∈ ℕ0 → ((𝑊 ∈ (WWalks‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ↔ (𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ (♯‘𝑊) = (𝑁 + 1))))
241, 23bitrd 279 1 (𝑁 ∈ ℕ0 → (𝑊 ∈ (𝑁 WWalksN 𝐺) ↔ (𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ (♯‘𝑊) = (𝑁 + 1))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  wne 2938  wral 3059  c0 4339  {cpr 4633  cfv 6563  (class class class)co 7431  0cc0 11153  1c1 11154   + caddc 11156  cmin 11490  0cn0 12524  ..^cfzo 13691  chash 14366  Word cword 14549  Vtxcvtx 29028  Edgcedg 29079  WWalkscwwlks 29855   WWalksN cwwlksn 29856
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-n0 12525  df-z 12612  df-uz 12877  df-fz 13545  df-fzo 13692  df-hash 14367  df-word 14550  df-wwlks 29860  df-wwlksn 29861
This theorem is referenced by:  clwwlknwwlksn  30067  wwlksubclwwlk  30087
  Copyright terms: Public domain W3C validator