Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvrval5 Structured version   Visualization version   GIF version

Theorem cvrval5 39382
Description: Binary relation expressing 𝑋 covers 𝑋 𝑌. (Contributed by NM, 7-Dec-2012.)
Hypotheses
Ref Expression
cvrval5.b 𝐵 = (Base‘𝐾)
cvrval5.l = (le‘𝐾)
cvrval5.j = (join‘𝐾)
cvrval5.m = (meet‘𝐾)
cvrval5.c 𝐶 = ( ⋖ ‘𝐾)
cvrval5.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
cvrval5 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑌)𝐶𝑋 ↔ ∃𝑝𝐴𝑝 𝑌 ∧ (𝑝 (𝑋 𝑌)) = 𝑋)))
Distinct variable groups:   𝐴,𝑝   𝐵,𝑝   𝐶,𝑝   𝐾,𝑝   ,𝑝   ,𝑝   𝑋,𝑝   𝑌,𝑝
Allowed substitution hint:   (𝑝)

Proof of Theorem cvrval5
StepHypRef Expression
1 simp1 1136 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ HL)
2 hllat 39329 . . . 4 (𝐾 ∈ HL → 𝐾 ∈ Lat)
3 cvrval5.b . . . . 5 𝐵 = (Base‘𝐾)
4 cvrval5.m . . . . 5 = (meet‘𝐾)
53, 4latmcl 18375 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
62, 5syl3an1 1163 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
7 simp2 1137 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → 𝑋𝐵)
8 cvrval5.l . . . 4 = (le‘𝐾)
9 cvrval5.j . . . 4 = (join‘𝐾)
10 cvrval5.c . . . 4 𝐶 = ( ⋖ ‘𝐾)
11 cvrval5.a . . . 4 𝐴 = (Atoms‘𝐾)
123, 8, 9, 10, 11cvrval3 39380 . . 3 ((𝐾 ∈ HL ∧ (𝑋 𝑌) ∈ 𝐵𝑋𝐵) → ((𝑋 𝑌)𝐶𝑋 ↔ ∃𝑝𝐴𝑝 (𝑋 𝑌) ∧ ((𝑋 𝑌) 𝑝) = 𝑋)))
131, 6, 7, 12syl3anc 1373 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑌)𝐶𝑋 ↔ ∃𝑝𝐴𝑝 (𝑋 𝑌) ∧ ((𝑋 𝑌) 𝑝) = 𝑋)))
1423ad2ant1 1133 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ Lat)
1514ad2antrr 726 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) ∧ ((𝑋 𝑌) 𝑝) = 𝑋) → 𝐾 ∈ Lat)
166ad2antrr 726 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) ∧ ((𝑋 𝑌) 𝑝) = 𝑋) → (𝑋 𝑌) ∈ 𝐵)
173, 11atbase 39255 . . . . . . . . . . . 12 (𝑝𝐴𝑝𝐵)
1817ad2antlr 727 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) ∧ ((𝑋 𝑌) 𝑝) = 𝑋) → 𝑝𝐵)
193, 8, 9latlej2 18384 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ (𝑋 𝑌) ∈ 𝐵𝑝𝐵) → 𝑝 ((𝑋 𝑌) 𝑝))
2015, 16, 18, 19syl3anc 1373 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) ∧ ((𝑋 𝑌) 𝑝) = 𝑋) → 𝑝 ((𝑋 𝑌) 𝑝))
21 simpr 484 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) ∧ ((𝑋 𝑌) 𝑝) = 𝑋) → ((𝑋 𝑌) 𝑝) = 𝑋)
2220, 21breqtrd 5128 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) ∧ ((𝑋 𝑌) 𝑝) = 𝑋) → 𝑝 𝑋)
2322biantrurd 532 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) ∧ ((𝑋 𝑌) 𝑝) = 𝑋) → (𝑝 𝑌 ↔ (𝑝 𝑋𝑝 𝑌)))
24 simpll2 1214 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) ∧ ((𝑋 𝑌) 𝑝) = 𝑋) → 𝑋𝐵)
25 simpll3 1215 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) ∧ ((𝑋 𝑌) 𝑝) = 𝑋) → 𝑌𝐵)
263, 8, 4latlem12 18401 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ (𝑝𝐵𝑋𝐵𝑌𝐵)) → ((𝑝 𝑋𝑝 𝑌) ↔ 𝑝 (𝑋 𝑌)))
2715, 18, 24, 25, 26syl13anc 1374 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) ∧ ((𝑋 𝑌) 𝑝) = 𝑋) → ((𝑝 𝑋𝑝 𝑌) ↔ 𝑝 (𝑋 𝑌)))
2823, 27bitr2d 280 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) ∧ ((𝑋 𝑌) 𝑝) = 𝑋) → (𝑝 (𝑋 𝑌) ↔ 𝑝 𝑌))
2928notbid 318 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) ∧ ((𝑋 𝑌) 𝑝) = 𝑋) → (¬ 𝑝 (𝑋 𝑌) ↔ ¬ 𝑝 𝑌))
3029ex 412 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) → (((𝑋 𝑌) 𝑝) = 𝑋 → (¬ 𝑝 (𝑋 𝑌) ↔ ¬ 𝑝 𝑌)))
3130pm5.32rd 578 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) → ((¬ 𝑝 (𝑋 𝑌) ∧ ((𝑋 𝑌) 𝑝) = 𝑋) ↔ (¬ 𝑝 𝑌 ∧ ((𝑋 𝑌) 𝑝) = 𝑋)))
3214adantr 480 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) → 𝐾 ∈ Lat)
336adantr 480 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) → (𝑋 𝑌) ∈ 𝐵)
3417adantl 481 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) → 𝑝𝐵)
353, 9latjcom 18382 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑋 𝑌) ∈ 𝐵𝑝𝐵) → ((𝑋 𝑌) 𝑝) = (𝑝 (𝑋 𝑌)))
3632, 33, 34, 35syl3anc 1373 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) → ((𝑋 𝑌) 𝑝) = (𝑝 (𝑋 𝑌)))
3736eqeq1d 2731 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) → (((𝑋 𝑌) 𝑝) = 𝑋 ↔ (𝑝 (𝑋 𝑌)) = 𝑋))
3837anbi2d 630 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) → ((¬ 𝑝 𝑌 ∧ ((𝑋 𝑌) 𝑝) = 𝑋) ↔ (¬ 𝑝 𝑌 ∧ (𝑝 (𝑋 𝑌)) = 𝑋)))
3931, 38bitrd 279 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) → ((¬ 𝑝 (𝑋 𝑌) ∧ ((𝑋 𝑌) 𝑝) = 𝑋) ↔ (¬ 𝑝 𝑌 ∧ (𝑝 (𝑋 𝑌)) = 𝑋)))
4039rexbidva 3155 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (∃𝑝𝐴𝑝 (𝑋 𝑌) ∧ ((𝑋 𝑌) 𝑝) = 𝑋) ↔ ∃𝑝𝐴𝑝 𝑌 ∧ (𝑝 (𝑋 𝑌)) = 𝑋)))
4113, 40bitrd 279 1 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑌)𝐶𝑋 ↔ ∃𝑝𝐴𝑝 𝑌 ∧ (𝑝 (𝑋 𝑌)) = 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wrex 3053   class class class wbr 5102  cfv 6499  (class class class)co 7369  Basecbs 17155  lecple 17203  joincjn 18248  meetcmee 18249  Latclat 18366  ccvr 39228  Atomscatm 39229  HLchlt 39316
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-proset 18231  df-poset 18250  df-plt 18265  df-lub 18281  df-glb 18282  df-join 18283  df-meet 18284  df-p0 18360  df-lat 18367  df-clat 18434  df-oposet 39142  df-ol 39144  df-oml 39145  df-covers 39232  df-ats 39233  df-atl 39264  df-cvlat 39288  df-hlat 39317
This theorem is referenced by:  lhpmcvr2  39991
  Copyright terms: Public domain W3C validator