Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvrval5 Structured version   Visualization version   GIF version

Theorem cvrval5 35371
Description: Binary relation expressing 𝑋 covers 𝑋 𝑌. (Contributed by NM, 7-Dec-2012.)
Hypotheses
Ref Expression
cvrval5.b 𝐵 = (Base‘𝐾)
cvrval5.l = (le‘𝐾)
cvrval5.j = (join‘𝐾)
cvrval5.m = (meet‘𝐾)
cvrval5.c 𝐶 = ( ⋖ ‘𝐾)
cvrval5.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
cvrval5 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑌)𝐶𝑋 ↔ ∃𝑝𝐴𝑝 𝑌 ∧ (𝑝 (𝑋 𝑌)) = 𝑋)))
Distinct variable groups:   𝐴,𝑝   𝐵,𝑝   𝐶,𝑝   𝐾,𝑝   ,𝑝   ,𝑝   𝑋,𝑝   𝑌,𝑝
Allowed substitution hint:   (𝑝)

Proof of Theorem cvrval5
StepHypRef Expression
1 simp1 1166 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ HL)
2 hllat 35319 . . . 4 (𝐾 ∈ HL → 𝐾 ∈ Lat)
3 cvrval5.b . . . . 5 𝐵 = (Base‘𝐾)
4 cvrval5.m . . . . 5 = (meet‘𝐾)
53, 4latmcl 17318 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
62, 5syl3an1 1202 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
7 simp2 1167 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → 𝑋𝐵)
8 cvrval5.l . . . 4 = (le‘𝐾)
9 cvrval5.j . . . 4 = (join‘𝐾)
10 cvrval5.c . . . 4 𝐶 = ( ⋖ ‘𝐾)
11 cvrval5.a . . . 4 𝐴 = (Atoms‘𝐾)
123, 8, 9, 10, 11cvrval3 35369 . . 3 ((𝐾 ∈ HL ∧ (𝑋 𝑌) ∈ 𝐵𝑋𝐵) → ((𝑋 𝑌)𝐶𝑋 ↔ ∃𝑝𝐴𝑝 (𝑋 𝑌) ∧ ((𝑋 𝑌) 𝑝) = 𝑋)))
131, 6, 7, 12syl3anc 1490 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑌)𝐶𝑋 ↔ ∃𝑝𝐴𝑝 (𝑋 𝑌) ∧ ((𝑋 𝑌) 𝑝) = 𝑋)))
1423ad2ant1 1163 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ Lat)
1514ad2antrr 717 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) ∧ ((𝑋 𝑌) 𝑝) = 𝑋) → 𝐾 ∈ Lat)
166ad2antrr 717 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) ∧ ((𝑋 𝑌) 𝑝) = 𝑋) → (𝑋 𝑌) ∈ 𝐵)
173, 11atbase 35245 . . . . . . . . . . . 12 (𝑝𝐴𝑝𝐵)
1817ad2antlr 718 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) ∧ ((𝑋 𝑌) 𝑝) = 𝑋) → 𝑝𝐵)
193, 8, 9latlej2 17327 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ (𝑋 𝑌) ∈ 𝐵𝑝𝐵) → 𝑝 ((𝑋 𝑌) 𝑝))
2015, 16, 18, 19syl3anc 1490 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) ∧ ((𝑋 𝑌) 𝑝) = 𝑋) → 𝑝 ((𝑋 𝑌) 𝑝))
21 simpr 477 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) ∧ ((𝑋 𝑌) 𝑝) = 𝑋) → ((𝑋 𝑌) 𝑝) = 𝑋)
2220, 21breqtrd 4835 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) ∧ ((𝑋 𝑌) 𝑝) = 𝑋) → 𝑝 𝑋)
2322biantrurd 528 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) ∧ ((𝑋 𝑌) 𝑝) = 𝑋) → (𝑝 𝑌 ↔ (𝑝 𝑋𝑝 𝑌)))
24 simpll2 1271 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) ∧ ((𝑋 𝑌) 𝑝) = 𝑋) → 𝑋𝐵)
25 simpll3 1273 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) ∧ ((𝑋 𝑌) 𝑝) = 𝑋) → 𝑌𝐵)
263, 8, 4latlem12 17344 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ (𝑝𝐵𝑋𝐵𝑌𝐵)) → ((𝑝 𝑋𝑝 𝑌) ↔ 𝑝 (𝑋 𝑌)))
2715, 18, 24, 25, 26syl13anc 1491 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) ∧ ((𝑋 𝑌) 𝑝) = 𝑋) → ((𝑝 𝑋𝑝 𝑌) ↔ 𝑝 (𝑋 𝑌)))
2823, 27bitr2d 271 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) ∧ ((𝑋 𝑌) 𝑝) = 𝑋) → (𝑝 (𝑋 𝑌) ↔ 𝑝 𝑌))
2928notbid 309 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) ∧ ((𝑋 𝑌) 𝑝) = 𝑋) → (¬ 𝑝 (𝑋 𝑌) ↔ ¬ 𝑝 𝑌))
3029ex 401 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) → (((𝑋 𝑌) 𝑝) = 𝑋 → (¬ 𝑝 (𝑋 𝑌) ↔ ¬ 𝑝 𝑌)))
3130pm5.32rd 573 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) → ((¬ 𝑝 (𝑋 𝑌) ∧ ((𝑋 𝑌) 𝑝) = 𝑋) ↔ (¬ 𝑝 𝑌 ∧ ((𝑋 𝑌) 𝑝) = 𝑋)))
3214adantr 472 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) → 𝐾 ∈ Lat)
336adantr 472 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) → (𝑋 𝑌) ∈ 𝐵)
3417adantl 473 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) → 𝑝𝐵)
353, 9latjcom 17325 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑋 𝑌) ∈ 𝐵𝑝𝐵) → ((𝑋 𝑌) 𝑝) = (𝑝 (𝑋 𝑌)))
3632, 33, 34, 35syl3anc 1490 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) → ((𝑋 𝑌) 𝑝) = (𝑝 (𝑋 𝑌)))
3736eqeq1d 2767 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) → (((𝑋 𝑌) 𝑝) = 𝑋 ↔ (𝑝 (𝑋 𝑌)) = 𝑋))
3837anbi2d 622 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) → ((¬ 𝑝 𝑌 ∧ ((𝑋 𝑌) 𝑝) = 𝑋) ↔ (¬ 𝑝 𝑌 ∧ (𝑝 (𝑋 𝑌)) = 𝑋)))
3931, 38bitrd 270 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) → ((¬ 𝑝 (𝑋 𝑌) ∧ ((𝑋 𝑌) 𝑝) = 𝑋) ↔ (¬ 𝑝 𝑌 ∧ (𝑝 (𝑋 𝑌)) = 𝑋)))
4039rexbidva 3196 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (∃𝑝𝐴𝑝 (𝑋 𝑌) ∧ ((𝑋 𝑌) 𝑝) = 𝑋) ↔ ∃𝑝𝐴𝑝 𝑌 ∧ (𝑝 (𝑋 𝑌)) = 𝑋)))
4113, 40bitrd 270 1 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑌)𝐶𝑋 ↔ ∃𝑝𝐴𝑝 𝑌 ∧ (𝑝 (𝑋 𝑌)) = 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384  w3a 1107   = wceq 1652  wcel 2155  wrex 3056   class class class wbr 4809  cfv 6068  (class class class)co 6842  Basecbs 16130  lecple 16221  joincjn 17210  meetcmee 17211  Latclat 17311  ccvr 35218  Atomscatm 35219  HLchlt 35306
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-ral 3060  df-rex 3061  df-reu 3062  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-op 4341  df-uni 4595  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-id 5185  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-riota 6803  df-ov 6845  df-oprab 6846  df-proset 17194  df-poset 17212  df-plt 17224  df-lub 17240  df-glb 17241  df-join 17242  df-meet 17243  df-p0 17305  df-lat 17312  df-clat 17374  df-oposet 35132  df-ol 35134  df-oml 35135  df-covers 35222  df-ats 35223  df-atl 35254  df-cvlat 35278  df-hlat 35307
This theorem is referenced by:  lhpmcvr2  35980
  Copyright terms: Public domain W3C validator