Users' Mathboxes Mathbox for Gino Giotto < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gg-cffldtocusgr Structured version   Visualization version   GIF version

Theorem gg-cffldtocusgr 35498
Description: The field of complex numbers can be made a complete simple graph with the set of pairs of complex numbers regarded as edges. This theorem demonstrates the capabilities of the current definitions for graphs applied to extensible structures. (Contributed by AV, 14-Nov-2021.) (Proof shortened by AV, 17-Nov-2021.) Revise df-cnfld 21149. (Revised by GG, 31-Mar-2025.)
Hypotheses
Ref Expression
gg-cffldtocusgr.p 𝑃 = {𝑥 ∈ 𝒫 ℂ ∣ (♯‘𝑥) = 2}
gg-cffldtocusgr.g 𝐺 = (ℂfld sSet ⟨(.ef‘ndx), ( I ↾ 𝑃)⟩)
Assertion
Ref Expression
gg-cffldtocusgr 𝐺 ∈ ComplUSGraph
Distinct variable groups:   𝑥,𝐺   𝑥,𝑃

Proof of Theorem gg-cffldtocusgr
Dummy variables 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opex 5464 . . . . . . 7 ⟨(Base‘ndx), ℂ⟩ ∈ V
21tpid1 4772 . . . . . 6 ⟨(Base‘ndx), ℂ⟩ ∈ {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))⟩, ⟨(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))⟩}
32orci 862 . . . . 5 (⟨(Base‘ndx), ℂ⟩ ∈ {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))⟩, ⟨(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))⟩} ∨ ⟨(Base‘ndx), ℂ⟩ ∈ {⟨(*𝑟‘ndx), ∗⟩})
4 elun 4148 . . . . 5 (⟨(Base‘ndx), ℂ⟩ ∈ ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))⟩, ⟨(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ↔ (⟨(Base‘ndx), ℂ⟩ ∈ {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))⟩, ⟨(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))⟩} ∨ ⟨(Base‘ndx), ℂ⟩ ∈ {⟨(*𝑟‘ndx), ∗⟩}))
53, 4mpbir 230 . . . 4 ⟨(Base‘ndx), ℂ⟩ ∈ ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))⟩, ⟨(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩})
65orci 862 . . 3 (⟨(Base‘ndx), ℂ⟩ ∈ ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))⟩, ⟨(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∨ ⟨(Base‘ndx), ℂ⟩ ∈ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}))
7 gg-dfcnfld 35486 . . . . 5 fld = (({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))⟩, ⟨(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∪ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}))
87eleq2i 2824 . . . 4 (⟨(Base‘ndx), ℂ⟩ ∈ ℂfld ↔ ⟨(Base‘ndx), ℂ⟩ ∈ (({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))⟩, ⟨(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∪ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})))
9 elun 4148 . . . 4 (⟨(Base‘ndx), ℂ⟩ ∈ (({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))⟩, ⟨(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∪ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})) ↔ (⟨(Base‘ndx), ℂ⟩ ∈ ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))⟩, ⟨(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∨ ⟨(Base‘ndx), ℂ⟩ ∈ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})))
108, 9bitri 275 . . 3 (⟨(Base‘ndx), ℂ⟩ ∈ ℂfld ↔ (⟨(Base‘ndx), ℂ⟩ ∈ ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))⟩, ⟨(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∨ ⟨(Base‘ndx), ℂ⟩ ∈ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})))
116, 10mpbir 230 . 2 ⟨(Base‘ndx), ℂ⟩ ∈ ℂfld
12 gg-cffldtocusgr.p . . . 4 𝑃 = {𝑥 ∈ 𝒫 ℂ ∣ (♯‘𝑥) = 2}
13 cnfldbas 21152 . . . . . 6 ℂ = (Base‘ℂfld)
1413pweqi 4618 . . . . 5 𝒫 ℂ = 𝒫 (Base‘ℂfld)
1514rabeqi 3444 . . . 4 {𝑥 ∈ 𝒫 ℂ ∣ (♯‘𝑥) = 2} = {𝑥 ∈ 𝒫 (Base‘ℂfld) ∣ (♯‘𝑥) = 2}
1612, 15eqtri 2759 . . 3 𝑃 = {𝑥 ∈ 𝒫 (Base‘ℂfld) ∣ (♯‘𝑥) = 2}
17 cnfldstr 21150 . . . 4 fld Struct ⟨1, 13⟩
1817a1i 11 . . 3 (⟨(Base‘ndx), ℂ⟩ ∈ ℂfld → ℂfld Struct ⟨1, 13⟩)
19 gg-cffldtocusgr.g . . 3 𝐺 = (ℂfld sSet ⟨(.ef‘ndx), ( I ↾ 𝑃)⟩)
20 fvex 6904 . . . 4 (Base‘ndx) ∈ V
21 cnex 11197 . . . 4 ℂ ∈ V
2220, 21opeldm 5907 . . 3 (⟨(Base‘ndx), ℂ⟩ ∈ ℂfld → (Base‘ndx) ∈ dom ℂfld)
2316, 18, 19, 22structtocusgr 28985 . 2 (⟨(Base‘ndx), ℂ⟩ ∈ ℂfld𝐺 ∈ ComplUSGraph)
2411, 23ax-mp 5 1 𝐺 ∈ ComplUSGraph
Colors of variables: wff setvar class
Syntax hints:  wo 844   = wceq 1540  wcel 2105  {crab 3431  cun 3946  𝒫 cpw 4602  {csn 4628  {ctp 4632  cop 4634   class class class wbr 5148   I cid 5573  cres 5678  ccom 5680  cfv 6543  (class class class)co 7412  cmpo 7414  cc 11114  1c1 11117   + caddc 11119   · cmul 11121  cle 11256  cmin 11451  2c2 12274  3c3 12275  cdc 12684  chash 14297  ccj 15050  abscabs 15188   Struct cstr 17086   sSet csts 17103  ndxcnx 17133  Basecbs 17151  +gcplusg 17204  .rcmulr 17205  *𝑟cstv 17206  TopSetcts 17210  lecple 17211  distcds 17213  UnifSetcunif 17214  MetOpencmopn 21138  metUnifcmetu 21139  fldccnfld 21148  .efcedgf 28528  ComplUSGraphccusgr 28949
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-cnex 11172  ax-resscn 11173  ax-1cn 11174  ax-icn 11175  ax-addcl 11176  ax-addrcl 11177  ax-mulcl 11178  ax-mulrcl 11179  ax-mulcom 11180  ax-addass 11181  ax-mulass 11182  ax-distr 11183  ax-i2m1 11184  ax-1ne0 11185  ax-1rid 11186  ax-rnegex 11187  ax-rrecex 11188  ax-cnre 11189  ax-pre-lttri 11190  ax-pre-lttrn 11191  ax-pre-ltadd 11192  ax-pre-mulgt0 11193  ax-addf 11195  ax-mulf 11196
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7860  df-1st 7979  df-2nd 7980  df-frecs 8272  df-wrecs 8303  df-recs 8377  df-rdg 8416  df-1o 8472  df-oadd 8476  df-er 8709  df-en 8946  df-dom 8947  df-sdom 8948  df-fin 8949  df-dju 9902  df-card 9940  df-pnf 11257  df-mnf 11258  df-xr 11259  df-ltxr 11260  df-le 11261  df-sub 11453  df-neg 11454  df-nn 12220  df-2 12282  df-3 12283  df-4 12284  df-5 12285  df-6 12286  df-7 12287  df-8 12288  df-9 12289  df-n0 12480  df-xnn0 12552  df-z 12566  df-dec 12685  df-uz 12830  df-fz 13492  df-hash 14298  df-struct 17087  df-sets 17104  df-slot 17122  df-ndx 17134  df-base 17152  df-plusg 17217  df-mulr 17218  df-starv 17219  df-tset 17223  df-ple 17224  df-ds 17226  df-unif 17227  df-cnfld 21149  df-edgf 28529  df-vtx 28540  df-iedg 28541  df-edg 28590  df-usgr 28693  df-nbgr 28872  df-uvtx 28925  df-cplgr 28950  df-cusgr 28951
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator