| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > zartopn | Structured version Visualization version GIF version | ||
| Description: The Zariski topology is a topology, and its closed sets are images by 𝑉 of the ideals of 𝑅. (Contributed by Thierry Arnoux, 16-Jun-2024.) |
| Ref | Expression |
|---|---|
| zartop.1 | ⊢ 𝑆 = (Spec‘𝑅) |
| zartop.2 | ⊢ 𝐽 = (TopOpen‘𝑆) |
| zarcls.1 | ⊢ 𝑃 = (PrmIdeal‘𝑅) |
| zarcls.2 | ⊢ 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ 𝑃 ∣ 𝑖 ⊆ 𝑗}) |
| Ref | Expression |
|---|---|
| zartopn | ⊢ (𝑅 ∈ CRing → (𝐽 ∈ (TopOn‘𝑃) ∧ ran 𝑉 = (Clsd‘𝐽))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrab2 4030 | . . . . . . . 8 ⊢ {𝑗 ∈ 𝑃 ∣ 𝑖 ⊆ 𝑗} ⊆ 𝑃 | |
| 2 | zarcls.1 | . . . . . . . . . 10 ⊢ 𝑃 = (PrmIdeal‘𝑅) | |
| 3 | 2 | fvexi 6836 | . . . . . . . . 9 ⊢ 𝑃 ∈ V |
| 4 | 3 | elpw2 5272 | . . . . . . . 8 ⊢ ({𝑗 ∈ 𝑃 ∣ 𝑖 ⊆ 𝑗} ∈ 𝒫 𝑃 ↔ {𝑗 ∈ 𝑃 ∣ 𝑖 ⊆ 𝑗} ⊆ 𝑃) |
| 5 | 1, 4 | mpbir 231 | . . . . . . 7 ⊢ {𝑗 ∈ 𝑃 ∣ 𝑖 ⊆ 𝑗} ∈ 𝒫 𝑃 |
| 6 | 5 | rgenw 3051 | . . . . . 6 ⊢ ∀𝑖 ∈ (LIdeal‘𝑅){𝑗 ∈ 𝑃 ∣ 𝑖 ⊆ 𝑗} ∈ 𝒫 𝑃 |
| 7 | zarcls.2 | . . . . . . 7 ⊢ 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ 𝑃 ∣ 𝑖 ⊆ 𝑗}) | |
| 8 | 7 | rnmptss 7056 | . . . . . 6 ⊢ (∀𝑖 ∈ (LIdeal‘𝑅){𝑗 ∈ 𝑃 ∣ 𝑖 ⊆ 𝑗} ∈ 𝒫 𝑃 → ran 𝑉 ⊆ 𝒫 𝑃) |
| 9 | 6, 8 | ax-mp 5 | . . . . 5 ⊢ ran 𝑉 ⊆ 𝒫 𝑃 |
| 10 | 9 | a1i 11 | . . . 4 ⊢ (𝑅 ∈ CRing → ran 𝑉 ⊆ 𝒫 𝑃) |
| 11 | crngring 20161 | . . . . 5 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) | |
| 12 | 2 | rabeqi 3408 | . . . . . . . . 9 ⊢ {𝑗 ∈ 𝑃 ∣ 𝑖 ⊆ 𝑗} = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖 ⊆ 𝑗} |
| 13 | 12 | mpteq2i 5187 | . . . . . . . 8 ⊢ (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ 𝑃 ∣ 𝑖 ⊆ 𝑗}) = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖 ⊆ 𝑗}) |
| 14 | 7, 13 | eqtri 2754 | . . . . . . 7 ⊢ 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖 ⊆ 𝑗}) |
| 15 | eqid 2731 | . . . . . . 7 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 16 | 14, 2, 15 | zarcls0 33876 | . . . . . 6 ⊢ (𝑅 ∈ Ring → (𝑉‘{(0g‘𝑅)}) = 𝑃) |
| 17 | 7 | funmpt2 6520 | . . . . . . 7 ⊢ Fun 𝑉 |
| 18 | eqid 2731 | . . . . . . . . 9 ⊢ (LIdeal‘𝑅) = (LIdeal‘𝑅) | |
| 19 | 18, 15 | lidl0 21165 | . . . . . . . 8 ⊢ (𝑅 ∈ Ring → {(0g‘𝑅)} ∈ (LIdeal‘𝑅)) |
| 20 | 3 | rabex 5277 | . . . . . . . . 9 ⊢ {𝑗 ∈ 𝑃 ∣ 𝑖 ⊆ 𝑗} ∈ V |
| 21 | 20, 7 | dmmpti 6625 | . . . . . . . 8 ⊢ dom 𝑉 = (LIdeal‘𝑅) |
| 22 | 19, 21 | eleqtrrdi 2842 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → {(0g‘𝑅)} ∈ dom 𝑉) |
| 23 | fvelrn 7009 | . . . . . . 7 ⊢ ((Fun 𝑉 ∧ {(0g‘𝑅)} ∈ dom 𝑉) → (𝑉‘{(0g‘𝑅)}) ∈ ran 𝑉) | |
| 24 | 17, 22, 23 | sylancr 587 | . . . . . 6 ⊢ (𝑅 ∈ Ring → (𝑉‘{(0g‘𝑅)}) ∈ ran 𝑉) |
| 25 | 16, 24 | eqeltrrd 2832 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝑃 ∈ ran 𝑉) |
| 26 | 11, 25 | syl 17 | . . . 4 ⊢ (𝑅 ∈ CRing → 𝑃 ∈ ran 𝑉) |
| 27 | 14 | zarclsint 33880 | . . . 4 ⊢ ((𝑅 ∈ CRing ∧ 𝑧 ⊆ ran 𝑉 ∧ 𝑧 ≠ ∅) → ∩ 𝑧 ∈ ran 𝑉) |
| 28 | 10, 26, 27 | ismred 17501 | . . 3 ⊢ (𝑅 ∈ CRing → ran 𝑉 ∈ (Moore‘𝑃)) |
| 29 | eqid 2731 | . . . . . . . 8 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 30 | 21, 29 | lidl1 21168 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → (Base‘𝑅) ∈ dom 𝑉) |
| 31 | 11, 30 | syl 17 | . . . . . 6 ⊢ (𝑅 ∈ CRing → (Base‘𝑅) ∈ dom 𝑉) |
| 32 | 31, 21 | eleqtrdi 2841 | . . . . 5 ⊢ (𝑅 ∈ CRing → (Base‘𝑅) ∈ (LIdeal‘𝑅)) |
| 33 | 14, 29 | zarcls1 33877 | . . . . . 6 ⊢ ((𝑅 ∈ CRing ∧ (Base‘𝑅) ∈ (LIdeal‘𝑅)) → ((𝑉‘(Base‘𝑅)) = ∅ ↔ (Base‘𝑅) = (Base‘𝑅))) |
| 34 | 29, 33 | mpbiri 258 | . . . . 5 ⊢ ((𝑅 ∈ CRing ∧ (Base‘𝑅) ∈ (LIdeal‘𝑅)) → (𝑉‘(Base‘𝑅)) = ∅) |
| 35 | 32, 34 | mpdan 687 | . . . 4 ⊢ (𝑅 ∈ CRing → (𝑉‘(Base‘𝑅)) = ∅) |
| 36 | 17 | a1i 11 | . . . . 5 ⊢ (𝑅 ∈ CRing → Fun 𝑉) |
| 37 | fvelrn 7009 | . . . . 5 ⊢ ((Fun 𝑉 ∧ (Base‘𝑅) ∈ dom 𝑉) → (𝑉‘(Base‘𝑅)) ∈ ran 𝑉) | |
| 38 | 36, 31, 37 | syl2anc 584 | . . . 4 ⊢ (𝑅 ∈ CRing → (𝑉‘(Base‘𝑅)) ∈ ran 𝑉) |
| 39 | 35, 38 | eqeltrrd 2832 | . . 3 ⊢ (𝑅 ∈ CRing → ∅ ∈ ran 𝑉) |
| 40 | 14 | zarclsun 33878 | . . 3 ⊢ ((𝑅 ∈ CRing ∧ 𝑥 ∈ ran 𝑉 ∧ 𝑦 ∈ ran 𝑉) → (𝑥 ∪ 𝑦) ∈ ran 𝑉) |
| 41 | eqid 2731 | . . 3 ⊢ {𝑠 ∈ 𝒫 𝑃 ∣ (𝑃 ∖ 𝑠) ∈ ran 𝑉} = {𝑠 ∈ 𝒫 𝑃 ∣ (𝑃 ∖ 𝑠) ∈ ran 𝑉} | |
| 42 | 28, 39, 40, 41 | mretopd 23005 | . 2 ⊢ (𝑅 ∈ CRing → ({𝑠 ∈ 𝒫 𝑃 ∣ (𝑃 ∖ 𝑠) ∈ ran 𝑉} ∈ (TopOn‘𝑃) ∧ ran 𝑉 = (Clsd‘{𝑠 ∈ 𝒫 𝑃 ∣ (𝑃 ∖ 𝑠) ∈ ran 𝑉}))) |
| 43 | zartop.1 | . . . . . 6 ⊢ 𝑆 = (Spec‘𝑅) | |
| 44 | zartop.2 | . . . . . 6 ⊢ 𝐽 = (TopOpen‘𝑆) | |
| 45 | 43, 44, 2, 7 | zarcls 33882 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝐽 = {𝑠 ∈ 𝒫 𝑃 ∣ (𝑃 ∖ 𝑠) ∈ ran 𝑉}) |
| 46 | 11, 45 | syl 17 | . . . 4 ⊢ (𝑅 ∈ CRing → 𝐽 = {𝑠 ∈ 𝒫 𝑃 ∣ (𝑃 ∖ 𝑠) ∈ ran 𝑉}) |
| 47 | 46 | eleq1d 2816 | . . 3 ⊢ (𝑅 ∈ CRing → (𝐽 ∈ (TopOn‘𝑃) ↔ {𝑠 ∈ 𝒫 𝑃 ∣ (𝑃 ∖ 𝑠) ∈ ran 𝑉} ∈ (TopOn‘𝑃))) |
| 48 | 46 | fveq2d 6826 | . . . 4 ⊢ (𝑅 ∈ CRing → (Clsd‘𝐽) = (Clsd‘{𝑠 ∈ 𝒫 𝑃 ∣ (𝑃 ∖ 𝑠) ∈ ran 𝑉})) |
| 49 | 48 | eqeq2d 2742 | . . 3 ⊢ (𝑅 ∈ CRing → (ran 𝑉 = (Clsd‘𝐽) ↔ ran 𝑉 = (Clsd‘{𝑠 ∈ 𝒫 𝑃 ∣ (𝑃 ∖ 𝑠) ∈ ran 𝑉}))) |
| 50 | 47, 49 | anbi12d 632 | . 2 ⊢ (𝑅 ∈ CRing → ((𝐽 ∈ (TopOn‘𝑃) ∧ ran 𝑉 = (Clsd‘𝐽)) ↔ ({𝑠 ∈ 𝒫 𝑃 ∣ (𝑃 ∖ 𝑠) ∈ ran 𝑉} ∈ (TopOn‘𝑃) ∧ ran 𝑉 = (Clsd‘{𝑠 ∈ 𝒫 𝑃 ∣ (𝑃 ∖ 𝑠) ∈ ran 𝑉})))) |
| 51 | 42, 50 | mpbird 257 | 1 ⊢ (𝑅 ∈ CRing → (𝐽 ∈ (TopOn‘𝑃) ∧ ran 𝑉 = (Clsd‘𝐽))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 {crab 3395 ∖ cdif 3899 ⊆ wss 3902 ∅c0 4283 𝒫 cpw 4550 {csn 4576 ↦ cmpt 5172 dom cdm 5616 ran crn 5617 Fun wfun 6475 ‘cfv 6481 Basecbs 17117 TopOpenctopn 17322 0gc0g 17340 Ringcrg 20149 CRingccrg 20150 LIdealclidl 21141 TopOnctopon 22823 Clsdccld 22929 PrmIdealcprmidl 33395 Speccrspec 33870 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-ac2 10351 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-tp 4581 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-iin 4944 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-se 5570 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-rpss 7656 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-oadd 8389 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-dju 9791 df-card 9829 df-ac 10004 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-nn 12123 df-2 12185 df-3 12186 df-4 12187 df-5 12188 df-6 12189 df-7 12190 df-8 12191 df-9 12192 df-n0 12379 df-z 12466 df-dec 12586 df-uz 12730 df-fz 13405 df-struct 17055 df-sets 17072 df-slot 17090 df-ndx 17102 df-base 17118 df-ress 17139 df-plusg 17171 df-mulr 17172 df-sca 17174 df-vsca 17175 df-ip 17176 df-tset 17177 df-ple 17178 df-rest 17323 df-topn 17324 df-0g 17342 df-mre 17485 df-mgm 18545 df-sgrp 18624 df-mnd 18640 df-submnd 18689 df-grp 18846 df-minusg 18847 df-sbg 18848 df-subg 19033 df-cntz 19227 df-lsm 19546 df-cmn 19692 df-abl 19693 df-mgp 20057 df-rng 20069 df-ur 20098 df-ring 20151 df-cring 20152 df-subrg 20483 df-lmod 20793 df-lss 20863 df-lsp 20903 df-sra 21105 df-rgmod 21106 df-lidl 21143 df-rsp 21144 df-lpidl 21257 df-top 22807 df-topon 22824 df-cld 22932 df-prmidl 33396 df-mxidl 33420 df-idlsrg 33461 df-rspec 33871 |
| This theorem is referenced by: zartop 33884 zartopon 33885 zart0 33887 zarmxt1 33888 zarcmplem 33889 rhmpreimacn 33893 |
| Copyright terms: Public domain | W3C validator |