Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > zartopn | Structured version Visualization version GIF version |
Description: The Zariski topology is a topology, and its closed sets are images by 𝑉 of the ideals of 𝑅. (Contributed by Thierry Arnoux, 16-Jun-2024.) |
Ref | Expression |
---|---|
zartop.1 | ⊢ 𝑆 = (Spec‘𝑅) |
zartop.2 | ⊢ 𝐽 = (TopOpen‘𝑆) |
zarcls.1 | ⊢ 𝑃 = (PrmIdeal‘𝑅) |
zarcls.2 | ⊢ 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ 𝑃 ∣ 𝑖 ⊆ 𝑗}) |
Ref | Expression |
---|---|
zartopn | ⊢ (𝑅 ∈ CRing → (𝐽 ∈ (TopOn‘𝑃) ∧ ran 𝑉 = (Clsd‘𝐽))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrab2 4013 | . . . . . . . 8 ⊢ {𝑗 ∈ 𝑃 ∣ 𝑖 ⊆ 𝑗} ⊆ 𝑃 | |
2 | zarcls.1 | . . . . . . . . . 10 ⊢ 𝑃 = (PrmIdeal‘𝑅) | |
3 | 2 | fvexi 6781 | . . . . . . . . 9 ⊢ 𝑃 ∈ V |
4 | 3 | elpw2 5268 | . . . . . . . 8 ⊢ ({𝑗 ∈ 𝑃 ∣ 𝑖 ⊆ 𝑗} ∈ 𝒫 𝑃 ↔ {𝑗 ∈ 𝑃 ∣ 𝑖 ⊆ 𝑗} ⊆ 𝑃) |
5 | 1, 4 | mpbir 230 | . . . . . . 7 ⊢ {𝑗 ∈ 𝑃 ∣ 𝑖 ⊆ 𝑗} ∈ 𝒫 𝑃 |
6 | 5 | rgenw 3076 | . . . . . 6 ⊢ ∀𝑖 ∈ (LIdeal‘𝑅){𝑗 ∈ 𝑃 ∣ 𝑖 ⊆ 𝑗} ∈ 𝒫 𝑃 |
7 | zarcls.2 | . . . . . . 7 ⊢ 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ 𝑃 ∣ 𝑖 ⊆ 𝑗}) | |
8 | 7 | rnmptss 6989 | . . . . . 6 ⊢ (∀𝑖 ∈ (LIdeal‘𝑅){𝑗 ∈ 𝑃 ∣ 𝑖 ⊆ 𝑗} ∈ 𝒫 𝑃 → ran 𝑉 ⊆ 𝒫 𝑃) |
9 | 6, 8 | ax-mp 5 | . . . . 5 ⊢ ran 𝑉 ⊆ 𝒫 𝑃 |
10 | 9 | a1i 11 | . . . 4 ⊢ (𝑅 ∈ CRing → ran 𝑉 ⊆ 𝒫 𝑃) |
11 | crngring 19783 | . . . . 5 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) | |
12 | 2 | rabeqi 3414 | . . . . . . . . 9 ⊢ {𝑗 ∈ 𝑃 ∣ 𝑖 ⊆ 𝑗} = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖 ⊆ 𝑗} |
13 | 12 | mpteq2i 5179 | . . . . . . . 8 ⊢ (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ 𝑃 ∣ 𝑖 ⊆ 𝑗}) = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖 ⊆ 𝑗}) |
14 | 7, 13 | eqtri 2766 | . . . . . . 7 ⊢ 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖 ⊆ 𝑗}) |
15 | eqid 2738 | . . . . . . 7 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
16 | 14, 2, 15 | zarcls0 31804 | . . . . . 6 ⊢ (𝑅 ∈ Ring → (𝑉‘{(0g‘𝑅)}) = 𝑃) |
17 | 7 | funmpt2 6466 | . . . . . . 7 ⊢ Fun 𝑉 |
18 | eqid 2738 | . . . . . . . . 9 ⊢ (LIdeal‘𝑅) = (LIdeal‘𝑅) | |
19 | 18, 15 | lidl0 20478 | . . . . . . . 8 ⊢ (𝑅 ∈ Ring → {(0g‘𝑅)} ∈ (LIdeal‘𝑅)) |
20 | 3 | rabex 5255 | . . . . . . . . 9 ⊢ {𝑗 ∈ 𝑃 ∣ 𝑖 ⊆ 𝑗} ∈ V |
21 | 20, 7 | dmmpti 6570 | . . . . . . . 8 ⊢ dom 𝑉 = (LIdeal‘𝑅) |
22 | 19, 21 | eleqtrrdi 2850 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → {(0g‘𝑅)} ∈ dom 𝑉) |
23 | fvelrn 6947 | . . . . . . 7 ⊢ ((Fun 𝑉 ∧ {(0g‘𝑅)} ∈ dom 𝑉) → (𝑉‘{(0g‘𝑅)}) ∈ ran 𝑉) | |
24 | 17, 22, 23 | sylancr 587 | . . . . . 6 ⊢ (𝑅 ∈ Ring → (𝑉‘{(0g‘𝑅)}) ∈ ran 𝑉) |
25 | 16, 24 | eqeltrrd 2840 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝑃 ∈ ran 𝑉) |
26 | 11, 25 | syl 17 | . . . 4 ⊢ (𝑅 ∈ CRing → 𝑃 ∈ ran 𝑉) |
27 | 14 | zarclsint 31808 | . . . 4 ⊢ ((𝑅 ∈ CRing ∧ 𝑧 ⊆ ran 𝑉 ∧ 𝑧 ≠ ∅) → ∩ 𝑧 ∈ ran 𝑉) |
28 | 10, 26, 27 | ismred 17299 | . . 3 ⊢ (𝑅 ∈ CRing → ran 𝑉 ∈ (Moore‘𝑃)) |
29 | eqid 2738 | . . . . . . . 8 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
30 | 21, 29 | lidl1 20479 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → (Base‘𝑅) ∈ dom 𝑉) |
31 | 11, 30 | syl 17 | . . . . . 6 ⊢ (𝑅 ∈ CRing → (Base‘𝑅) ∈ dom 𝑉) |
32 | 31, 21 | eleqtrdi 2849 | . . . . 5 ⊢ (𝑅 ∈ CRing → (Base‘𝑅) ∈ (LIdeal‘𝑅)) |
33 | 14, 29 | zarcls1 31805 | . . . . . 6 ⊢ ((𝑅 ∈ CRing ∧ (Base‘𝑅) ∈ (LIdeal‘𝑅)) → ((𝑉‘(Base‘𝑅)) = ∅ ↔ (Base‘𝑅) = (Base‘𝑅))) |
34 | 29, 33 | mpbiri 257 | . . . . 5 ⊢ ((𝑅 ∈ CRing ∧ (Base‘𝑅) ∈ (LIdeal‘𝑅)) → (𝑉‘(Base‘𝑅)) = ∅) |
35 | 32, 34 | mpdan 684 | . . . 4 ⊢ (𝑅 ∈ CRing → (𝑉‘(Base‘𝑅)) = ∅) |
36 | 17 | a1i 11 | . . . . 5 ⊢ (𝑅 ∈ CRing → Fun 𝑉) |
37 | fvelrn 6947 | . . . . 5 ⊢ ((Fun 𝑉 ∧ (Base‘𝑅) ∈ dom 𝑉) → (𝑉‘(Base‘𝑅)) ∈ ran 𝑉) | |
38 | 36, 31, 37 | syl2anc 584 | . . . 4 ⊢ (𝑅 ∈ CRing → (𝑉‘(Base‘𝑅)) ∈ ran 𝑉) |
39 | 35, 38 | eqeltrrd 2840 | . . 3 ⊢ (𝑅 ∈ CRing → ∅ ∈ ran 𝑉) |
40 | 14 | zarclsun 31806 | . . 3 ⊢ ((𝑅 ∈ CRing ∧ 𝑥 ∈ ran 𝑉 ∧ 𝑦 ∈ ran 𝑉) → (𝑥 ∪ 𝑦) ∈ ran 𝑉) |
41 | eqid 2738 | . . 3 ⊢ {𝑠 ∈ 𝒫 𝑃 ∣ (𝑃 ∖ 𝑠) ∈ ran 𝑉} = {𝑠 ∈ 𝒫 𝑃 ∣ (𝑃 ∖ 𝑠) ∈ ran 𝑉} | |
42 | 28, 39, 40, 41 | mretopd 22231 | . 2 ⊢ (𝑅 ∈ CRing → ({𝑠 ∈ 𝒫 𝑃 ∣ (𝑃 ∖ 𝑠) ∈ ran 𝑉} ∈ (TopOn‘𝑃) ∧ ran 𝑉 = (Clsd‘{𝑠 ∈ 𝒫 𝑃 ∣ (𝑃 ∖ 𝑠) ∈ ran 𝑉}))) |
43 | zartop.1 | . . . . . 6 ⊢ 𝑆 = (Spec‘𝑅) | |
44 | zartop.2 | . . . . . 6 ⊢ 𝐽 = (TopOpen‘𝑆) | |
45 | 43, 44, 2, 7 | zarcls 31810 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝐽 = {𝑠 ∈ 𝒫 𝑃 ∣ (𝑃 ∖ 𝑠) ∈ ran 𝑉}) |
46 | 11, 45 | syl 17 | . . . 4 ⊢ (𝑅 ∈ CRing → 𝐽 = {𝑠 ∈ 𝒫 𝑃 ∣ (𝑃 ∖ 𝑠) ∈ ran 𝑉}) |
47 | 46 | eleq1d 2823 | . . 3 ⊢ (𝑅 ∈ CRing → (𝐽 ∈ (TopOn‘𝑃) ↔ {𝑠 ∈ 𝒫 𝑃 ∣ (𝑃 ∖ 𝑠) ∈ ran 𝑉} ∈ (TopOn‘𝑃))) |
48 | 46 | fveq2d 6771 | . . . 4 ⊢ (𝑅 ∈ CRing → (Clsd‘𝐽) = (Clsd‘{𝑠 ∈ 𝒫 𝑃 ∣ (𝑃 ∖ 𝑠) ∈ ran 𝑉})) |
49 | 48 | eqeq2d 2749 | . . 3 ⊢ (𝑅 ∈ CRing → (ran 𝑉 = (Clsd‘𝐽) ↔ ran 𝑉 = (Clsd‘{𝑠 ∈ 𝒫 𝑃 ∣ (𝑃 ∖ 𝑠) ∈ ran 𝑉}))) |
50 | 47, 49 | anbi12d 631 | . 2 ⊢ (𝑅 ∈ CRing → ((𝐽 ∈ (TopOn‘𝑃) ∧ ran 𝑉 = (Clsd‘𝐽)) ↔ ({𝑠 ∈ 𝒫 𝑃 ∣ (𝑃 ∖ 𝑠) ∈ ran 𝑉} ∈ (TopOn‘𝑃) ∧ ran 𝑉 = (Clsd‘{𝑠 ∈ 𝒫 𝑃 ∣ (𝑃 ∖ 𝑠) ∈ ran 𝑉})))) |
51 | 42, 50 | mpbird 256 | 1 ⊢ (𝑅 ∈ CRing → (𝐽 ∈ (TopOn‘𝑃) ∧ ran 𝑉 = (Clsd‘𝐽))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∀wral 3064 {crab 3068 ∖ cdif 3884 ⊆ wss 3887 ∅c0 4257 𝒫 cpw 4534 {csn 4562 ↦ cmpt 5157 dom cdm 5585 ran crn 5586 Fun wfun 6421 ‘cfv 6427 Basecbs 16900 TopOpenctopn 17120 0gc0g 17138 Ringcrg 19771 CRingccrg 19772 LIdealclidl 20420 TopOnctopon 22047 Clsdccld 22155 PrmIdealcprmidl 31596 Speccrspec 31798 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5222 ax-nul 5229 ax-pow 5287 ax-pr 5351 ax-un 7579 ax-ac2 10207 ax-cnex 10915 ax-resscn 10916 ax-1cn 10917 ax-icn 10918 ax-addcl 10919 ax-addrcl 10920 ax-mulcl 10921 ax-mulrcl 10922 ax-mulcom 10923 ax-addass 10924 ax-mulass 10925 ax-distr 10926 ax-i2m1 10927 ax-1ne0 10928 ax-1rid 10929 ax-rnegex 10930 ax-rrecex 10931 ax-cnre 10932 ax-pre-lttri 10933 ax-pre-lttrn 10934 ax-pre-ltadd 10935 ax-pre-mulgt0 10936 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rmo 3072 df-rab 3073 df-v 3432 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4258 df-if 4461 df-pw 4536 df-sn 4563 df-pr 4565 df-tp 4567 df-op 4569 df-uni 4841 df-int 4881 df-iun 4927 df-iin 4928 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5485 df-eprel 5491 df-po 5499 df-so 5500 df-fr 5540 df-se 5541 df-we 5542 df-xp 5591 df-rel 5592 df-cnv 5593 df-co 5594 df-dm 5595 df-rn 5596 df-res 5597 df-ima 5598 df-pred 6196 df-ord 6263 df-on 6264 df-lim 6265 df-suc 6266 df-iota 6385 df-fun 6429 df-fn 6430 df-f 6431 df-f1 6432 df-fo 6433 df-f1o 6434 df-fv 6435 df-isom 6436 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-rpss 7567 df-om 7704 df-1st 7821 df-2nd 7822 df-frecs 8085 df-wrecs 8116 df-recs 8190 df-rdg 8229 df-1o 8285 df-oadd 8289 df-er 8486 df-en 8722 df-dom 8723 df-sdom 8724 df-fin 8725 df-dju 9647 df-card 9685 df-ac 9860 df-pnf 10999 df-mnf 11000 df-xr 11001 df-ltxr 11002 df-le 11003 df-sub 11195 df-neg 11196 df-nn 11962 df-2 12024 df-3 12025 df-4 12026 df-5 12027 df-6 12028 df-7 12029 df-8 12030 df-9 12031 df-n0 12222 df-z 12308 df-dec 12426 df-uz 12571 df-fz 13228 df-struct 16836 df-sets 16853 df-slot 16871 df-ndx 16883 df-base 16901 df-ress 16930 df-plusg 16963 df-mulr 16964 df-sca 16966 df-vsca 16967 df-ip 16968 df-tset 16969 df-ple 16970 df-rest 17121 df-topn 17122 df-0g 17140 df-mre 17283 df-mgm 18314 df-sgrp 18363 df-mnd 18374 df-submnd 18419 df-grp 18568 df-minusg 18569 df-sbg 18570 df-subg 18740 df-cntz 18911 df-lsm 19229 df-cmn 19376 df-abl 19377 df-mgp 19709 df-ur 19726 df-ring 19773 df-cring 19774 df-subrg 20010 df-lmod 20113 df-lss 20182 df-lsp 20222 df-sra 20422 df-rgmod 20423 df-lidl 20424 df-rsp 20425 df-lpidl 20502 df-top 22031 df-topon 22048 df-cld 22158 df-prmidl 31597 df-mxidl 31618 df-idlsrg 31632 df-rspec 31799 |
This theorem is referenced by: zartop 31812 zartopon 31813 zart0 31815 zarmxt1 31816 zarcmplem 31817 rhmpreimacn 31821 |
Copyright terms: Public domain | W3C validator |