Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > zartopn | Structured version Visualization version GIF version |
Description: The Zariski topology is a topology, and its closed sets are images by 𝑉 of the ideals of 𝑅. (Contributed by Thierry Arnoux, 16-Jun-2024.) |
Ref | Expression |
---|---|
zartop.1 | ⊢ 𝑆 = (Spec‘𝑅) |
zartop.2 | ⊢ 𝐽 = (TopOpen‘𝑆) |
zarcls.1 | ⊢ 𝑃 = (PrmIdeal‘𝑅) |
zarcls.2 | ⊢ 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ 𝑃 ∣ 𝑖 ⊆ 𝑗}) |
Ref | Expression |
---|---|
zartopn | ⊢ (𝑅 ∈ CRing → (𝐽 ∈ (TopOn‘𝑃) ∧ ran 𝑉 = (Clsd‘𝐽))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrab2 4009 | . . . . . . . 8 ⊢ {𝑗 ∈ 𝑃 ∣ 𝑖 ⊆ 𝑗} ⊆ 𝑃 | |
2 | zarcls.1 | . . . . . . . . . 10 ⊢ 𝑃 = (PrmIdeal‘𝑅) | |
3 | 2 | fvexi 6770 | . . . . . . . . 9 ⊢ 𝑃 ∈ V |
4 | 3 | elpw2 5264 | . . . . . . . 8 ⊢ ({𝑗 ∈ 𝑃 ∣ 𝑖 ⊆ 𝑗} ∈ 𝒫 𝑃 ↔ {𝑗 ∈ 𝑃 ∣ 𝑖 ⊆ 𝑗} ⊆ 𝑃) |
5 | 1, 4 | mpbir 230 | . . . . . . 7 ⊢ {𝑗 ∈ 𝑃 ∣ 𝑖 ⊆ 𝑗} ∈ 𝒫 𝑃 |
6 | 5 | rgenw 3075 | . . . . . 6 ⊢ ∀𝑖 ∈ (LIdeal‘𝑅){𝑗 ∈ 𝑃 ∣ 𝑖 ⊆ 𝑗} ∈ 𝒫 𝑃 |
7 | zarcls.2 | . . . . . . 7 ⊢ 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ 𝑃 ∣ 𝑖 ⊆ 𝑗}) | |
8 | 7 | rnmptss 6978 | . . . . . 6 ⊢ (∀𝑖 ∈ (LIdeal‘𝑅){𝑗 ∈ 𝑃 ∣ 𝑖 ⊆ 𝑗} ∈ 𝒫 𝑃 → ran 𝑉 ⊆ 𝒫 𝑃) |
9 | 6, 8 | ax-mp 5 | . . . . 5 ⊢ ran 𝑉 ⊆ 𝒫 𝑃 |
10 | 9 | a1i 11 | . . . 4 ⊢ (𝑅 ∈ CRing → ran 𝑉 ⊆ 𝒫 𝑃) |
11 | crngring 19710 | . . . . 5 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) | |
12 | 2 | rabeqi 3406 | . . . . . . . . 9 ⊢ {𝑗 ∈ 𝑃 ∣ 𝑖 ⊆ 𝑗} = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖 ⊆ 𝑗} |
13 | 12 | mpteq2i 5175 | . . . . . . . 8 ⊢ (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ 𝑃 ∣ 𝑖 ⊆ 𝑗}) = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖 ⊆ 𝑗}) |
14 | 7, 13 | eqtri 2766 | . . . . . . 7 ⊢ 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖 ⊆ 𝑗}) |
15 | eqid 2738 | . . . . . . 7 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
16 | 14, 2, 15 | zarcls0 31720 | . . . . . 6 ⊢ (𝑅 ∈ Ring → (𝑉‘{(0g‘𝑅)}) = 𝑃) |
17 | 7 | funmpt2 6457 | . . . . . . 7 ⊢ Fun 𝑉 |
18 | eqid 2738 | . . . . . . . . 9 ⊢ (LIdeal‘𝑅) = (LIdeal‘𝑅) | |
19 | 18, 15 | lidl0 20403 | . . . . . . . 8 ⊢ (𝑅 ∈ Ring → {(0g‘𝑅)} ∈ (LIdeal‘𝑅)) |
20 | 3 | rabex 5251 | . . . . . . . . 9 ⊢ {𝑗 ∈ 𝑃 ∣ 𝑖 ⊆ 𝑗} ∈ V |
21 | 20, 7 | dmmpti 6561 | . . . . . . . 8 ⊢ dom 𝑉 = (LIdeal‘𝑅) |
22 | 19, 21 | eleqtrrdi 2850 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → {(0g‘𝑅)} ∈ dom 𝑉) |
23 | fvelrn 6936 | . . . . . . 7 ⊢ ((Fun 𝑉 ∧ {(0g‘𝑅)} ∈ dom 𝑉) → (𝑉‘{(0g‘𝑅)}) ∈ ran 𝑉) | |
24 | 17, 22, 23 | sylancr 586 | . . . . . 6 ⊢ (𝑅 ∈ Ring → (𝑉‘{(0g‘𝑅)}) ∈ ran 𝑉) |
25 | 16, 24 | eqeltrrd 2840 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝑃 ∈ ran 𝑉) |
26 | 11, 25 | syl 17 | . . . 4 ⊢ (𝑅 ∈ CRing → 𝑃 ∈ ran 𝑉) |
27 | 14 | zarclsint 31724 | . . . 4 ⊢ ((𝑅 ∈ CRing ∧ 𝑧 ⊆ ran 𝑉 ∧ 𝑧 ≠ ∅) → ∩ 𝑧 ∈ ran 𝑉) |
28 | 10, 26, 27 | ismred 17228 | . . 3 ⊢ (𝑅 ∈ CRing → ran 𝑉 ∈ (Moore‘𝑃)) |
29 | eqid 2738 | . . . . . . . 8 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
30 | 21, 29 | lidl1 20404 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → (Base‘𝑅) ∈ dom 𝑉) |
31 | 11, 30 | syl 17 | . . . . . 6 ⊢ (𝑅 ∈ CRing → (Base‘𝑅) ∈ dom 𝑉) |
32 | 31, 21 | eleqtrdi 2849 | . . . . 5 ⊢ (𝑅 ∈ CRing → (Base‘𝑅) ∈ (LIdeal‘𝑅)) |
33 | 14, 29 | zarcls1 31721 | . . . . . 6 ⊢ ((𝑅 ∈ CRing ∧ (Base‘𝑅) ∈ (LIdeal‘𝑅)) → ((𝑉‘(Base‘𝑅)) = ∅ ↔ (Base‘𝑅) = (Base‘𝑅))) |
34 | 29, 33 | mpbiri 257 | . . . . 5 ⊢ ((𝑅 ∈ CRing ∧ (Base‘𝑅) ∈ (LIdeal‘𝑅)) → (𝑉‘(Base‘𝑅)) = ∅) |
35 | 32, 34 | mpdan 683 | . . . 4 ⊢ (𝑅 ∈ CRing → (𝑉‘(Base‘𝑅)) = ∅) |
36 | 17 | a1i 11 | . . . . 5 ⊢ (𝑅 ∈ CRing → Fun 𝑉) |
37 | fvelrn 6936 | . . . . 5 ⊢ ((Fun 𝑉 ∧ (Base‘𝑅) ∈ dom 𝑉) → (𝑉‘(Base‘𝑅)) ∈ ran 𝑉) | |
38 | 36, 31, 37 | syl2anc 583 | . . . 4 ⊢ (𝑅 ∈ CRing → (𝑉‘(Base‘𝑅)) ∈ ran 𝑉) |
39 | 35, 38 | eqeltrrd 2840 | . . 3 ⊢ (𝑅 ∈ CRing → ∅ ∈ ran 𝑉) |
40 | 14 | zarclsun 31722 | . . 3 ⊢ ((𝑅 ∈ CRing ∧ 𝑥 ∈ ran 𝑉 ∧ 𝑦 ∈ ran 𝑉) → (𝑥 ∪ 𝑦) ∈ ran 𝑉) |
41 | eqid 2738 | . . 3 ⊢ {𝑠 ∈ 𝒫 𝑃 ∣ (𝑃 ∖ 𝑠) ∈ ran 𝑉} = {𝑠 ∈ 𝒫 𝑃 ∣ (𝑃 ∖ 𝑠) ∈ ran 𝑉} | |
42 | 28, 39, 40, 41 | mretopd 22151 | . 2 ⊢ (𝑅 ∈ CRing → ({𝑠 ∈ 𝒫 𝑃 ∣ (𝑃 ∖ 𝑠) ∈ ran 𝑉} ∈ (TopOn‘𝑃) ∧ ran 𝑉 = (Clsd‘{𝑠 ∈ 𝒫 𝑃 ∣ (𝑃 ∖ 𝑠) ∈ ran 𝑉}))) |
43 | zartop.1 | . . . . . 6 ⊢ 𝑆 = (Spec‘𝑅) | |
44 | zartop.2 | . . . . . 6 ⊢ 𝐽 = (TopOpen‘𝑆) | |
45 | 43, 44, 2, 7 | zarcls 31726 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝐽 = {𝑠 ∈ 𝒫 𝑃 ∣ (𝑃 ∖ 𝑠) ∈ ran 𝑉}) |
46 | 11, 45 | syl 17 | . . . 4 ⊢ (𝑅 ∈ CRing → 𝐽 = {𝑠 ∈ 𝒫 𝑃 ∣ (𝑃 ∖ 𝑠) ∈ ran 𝑉}) |
47 | 46 | eleq1d 2823 | . . 3 ⊢ (𝑅 ∈ CRing → (𝐽 ∈ (TopOn‘𝑃) ↔ {𝑠 ∈ 𝒫 𝑃 ∣ (𝑃 ∖ 𝑠) ∈ ran 𝑉} ∈ (TopOn‘𝑃))) |
48 | 46 | fveq2d 6760 | . . . 4 ⊢ (𝑅 ∈ CRing → (Clsd‘𝐽) = (Clsd‘{𝑠 ∈ 𝒫 𝑃 ∣ (𝑃 ∖ 𝑠) ∈ ran 𝑉})) |
49 | 48 | eqeq2d 2749 | . . 3 ⊢ (𝑅 ∈ CRing → (ran 𝑉 = (Clsd‘𝐽) ↔ ran 𝑉 = (Clsd‘{𝑠 ∈ 𝒫 𝑃 ∣ (𝑃 ∖ 𝑠) ∈ ran 𝑉}))) |
50 | 47, 49 | anbi12d 630 | . 2 ⊢ (𝑅 ∈ CRing → ((𝐽 ∈ (TopOn‘𝑃) ∧ ran 𝑉 = (Clsd‘𝐽)) ↔ ({𝑠 ∈ 𝒫 𝑃 ∣ (𝑃 ∖ 𝑠) ∈ ran 𝑉} ∈ (TopOn‘𝑃) ∧ ran 𝑉 = (Clsd‘{𝑠 ∈ 𝒫 𝑃 ∣ (𝑃 ∖ 𝑠) ∈ ran 𝑉})))) |
51 | 42, 50 | mpbird 256 | 1 ⊢ (𝑅 ∈ CRing → (𝐽 ∈ (TopOn‘𝑃) ∧ ran 𝑉 = (Clsd‘𝐽))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 {crab 3067 ∖ cdif 3880 ⊆ wss 3883 ∅c0 4253 𝒫 cpw 4530 {csn 4558 ↦ cmpt 5153 dom cdm 5580 ran crn 5581 Fun wfun 6412 ‘cfv 6418 Basecbs 16840 TopOpenctopn 17049 0gc0g 17067 Ringcrg 19698 CRingccrg 19699 LIdealclidl 20347 TopOnctopon 21967 Clsdccld 22075 PrmIdealcprmidl 31512 Speccrspec 31714 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-ac2 10150 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-rpss 7554 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-oadd 8271 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-dju 9590 df-card 9628 df-ac 9803 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-fz 13169 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-sca 16904 df-vsca 16905 df-ip 16906 df-tset 16907 df-ple 16908 df-rest 17050 df-topn 17051 df-0g 17069 df-mre 17212 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-submnd 18346 df-grp 18495 df-minusg 18496 df-sbg 18497 df-subg 18667 df-cntz 18838 df-lsm 19156 df-cmn 19303 df-abl 19304 df-mgp 19636 df-ur 19653 df-ring 19700 df-cring 19701 df-subrg 19937 df-lmod 20040 df-lss 20109 df-lsp 20149 df-sra 20349 df-rgmod 20350 df-lidl 20351 df-rsp 20352 df-lpidl 20427 df-top 21951 df-topon 21968 df-cld 22078 df-prmidl 31513 df-mxidl 31534 df-idlsrg 31548 df-rspec 31715 |
This theorem is referenced by: zartop 31728 zartopon 31729 zart0 31731 zarmxt1 31732 zarcmplem 31733 rhmpreimacn 31737 |
Copyright terms: Public domain | W3C validator |