Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zartopn Structured version   Visualization version   GIF version

Theorem zartopn 33909
Description: The Zariski topology is a topology, and its closed sets are images by 𝑉 of the ideals of 𝑅. (Contributed by Thierry Arnoux, 16-Jun-2024.)
Hypotheses
Ref Expression
zartop.1 𝑆 = (Spec‘𝑅)
zartop.2 𝐽 = (TopOpen‘𝑆)
zarcls.1 𝑃 = (PrmIdeal‘𝑅)
zarcls.2 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗𝑃𝑖𝑗})
Assertion
Ref Expression
zartopn (𝑅 ∈ CRing → (𝐽 ∈ (TopOn‘𝑃) ∧ ran 𝑉 = (Clsd‘𝐽)))
Distinct variable groups:   𝑃,𝑖,𝑗   𝑅,𝑖,𝑗   𝑖,𝑉
Allowed substitution hints:   𝑆(𝑖,𝑗)   𝐽(𝑖,𝑗)   𝑉(𝑗)

Proof of Theorem zartopn
Dummy variables 𝑠 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssrab2 4029 . . . . . . . 8 {𝑗𝑃𝑖𝑗} ⊆ 𝑃
2 zarcls.1 . . . . . . . . . 10 𝑃 = (PrmIdeal‘𝑅)
32fvexi 6842 . . . . . . . . 9 𝑃 ∈ V
43elpw2 5274 . . . . . . . 8 ({𝑗𝑃𝑖𝑗} ∈ 𝒫 𝑃 ↔ {𝑗𝑃𝑖𝑗} ⊆ 𝑃)
51, 4mpbir 231 . . . . . . 7 {𝑗𝑃𝑖𝑗} ∈ 𝒫 𝑃
65rgenw 3052 . . . . . 6 𝑖 ∈ (LIdeal‘𝑅){𝑗𝑃𝑖𝑗} ∈ 𝒫 𝑃
7 zarcls.2 . . . . . . 7 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗𝑃𝑖𝑗})
87rnmptss 7062 . . . . . 6 (∀𝑖 ∈ (LIdeal‘𝑅){𝑗𝑃𝑖𝑗} ∈ 𝒫 𝑃 → ran 𝑉 ⊆ 𝒫 𝑃)
96, 8ax-mp 5 . . . . 5 ran 𝑉 ⊆ 𝒫 𝑃
109a1i 11 . . . 4 (𝑅 ∈ CRing → ran 𝑉 ⊆ 𝒫 𝑃)
11 crngring 20165 . . . . 5 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
122rabeqi 3409 . . . . . . . . 9 {𝑗𝑃𝑖𝑗} = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗}
1312mpteq2i 5189 . . . . . . . 8 (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗𝑃𝑖𝑗}) = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗})
147, 13eqtri 2756 . . . . . . 7 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗})
15 eqid 2733 . . . . . . 7 (0g𝑅) = (0g𝑅)
1614, 2, 15zarcls0 33902 . . . . . 6 (𝑅 ∈ Ring → (𝑉‘{(0g𝑅)}) = 𝑃)
177funmpt2 6525 . . . . . . 7 Fun 𝑉
18 eqid 2733 . . . . . . . . 9 (LIdeal‘𝑅) = (LIdeal‘𝑅)
1918, 15lidl0 21169 . . . . . . . 8 (𝑅 ∈ Ring → {(0g𝑅)} ∈ (LIdeal‘𝑅))
203rabex 5279 . . . . . . . . 9 {𝑗𝑃𝑖𝑗} ∈ V
2120, 7dmmpti 6630 . . . . . . . 8 dom 𝑉 = (LIdeal‘𝑅)
2219, 21eleqtrrdi 2844 . . . . . . 7 (𝑅 ∈ Ring → {(0g𝑅)} ∈ dom 𝑉)
23 fvelrn 7015 . . . . . . 7 ((Fun 𝑉 ∧ {(0g𝑅)} ∈ dom 𝑉) → (𝑉‘{(0g𝑅)}) ∈ ran 𝑉)
2417, 22, 23sylancr 587 . . . . . 6 (𝑅 ∈ Ring → (𝑉‘{(0g𝑅)}) ∈ ran 𝑉)
2516, 24eqeltrrd 2834 . . . . 5 (𝑅 ∈ Ring → 𝑃 ∈ ran 𝑉)
2611, 25syl 17 . . . 4 (𝑅 ∈ CRing → 𝑃 ∈ ran 𝑉)
2714zarclsint 33906 . . . 4 ((𝑅 ∈ CRing ∧ 𝑧 ⊆ ran 𝑉𝑧 ≠ ∅) → 𝑧 ∈ ran 𝑉)
2810, 26, 27ismred 17506 . . 3 (𝑅 ∈ CRing → ran 𝑉 ∈ (Moore‘𝑃))
29 eqid 2733 . . . . . . . 8 (Base‘𝑅) = (Base‘𝑅)
3021, 29lidl1 21172 . . . . . . 7 (𝑅 ∈ Ring → (Base‘𝑅) ∈ dom 𝑉)
3111, 30syl 17 . . . . . 6 (𝑅 ∈ CRing → (Base‘𝑅) ∈ dom 𝑉)
3231, 21eleqtrdi 2843 . . . . 5 (𝑅 ∈ CRing → (Base‘𝑅) ∈ (LIdeal‘𝑅))
3314, 29zarcls1 33903 . . . . . 6 ((𝑅 ∈ CRing ∧ (Base‘𝑅) ∈ (LIdeal‘𝑅)) → ((𝑉‘(Base‘𝑅)) = ∅ ↔ (Base‘𝑅) = (Base‘𝑅)))
3429, 33mpbiri 258 . . . . 5 ((𝑅 ∈ CRing ∧ (Base‘𝑅) ∈ (LIdeal‘𝑅)) → (𝑉‘(Base‘𝑅)) = ∅)
3532, 34mpdan 687 . . . 4 (𝑅 ∈ CRing → (𝑉‘(Base‘𝑅)) = ∅)
3617a1i 11 . . . . 5 (𝑅 ∈ CRing → Fun 𝑉)
37 fvelrn 7015 . . . . 5 ((Fun 𝑉 ∧ (Base‘𝑅) ∈ dom 𝑉) → (𝑉‘(Base‘𝑅)) ∈ ran 𝑉)
3836, 31, 37syl2anc 584 . . . 4 (𝑅 ∈ CRing → (𝑉‘(Base‘𝑅)) ∈ ran 𝑉)
3935, 38eqeltrrd 2834 . . 3 (𝑅 ∈ CRing → ∅ ∈ ran 𝑉)
4014zarclsun 33904 . . 3 ((𝑅 ∈ CRing ∧ 𝑥 ∈ ran 𝑉𝑦 ∈ ran 𝑉) → (𝑥𝑦) ∈ ran 𝑉)
41 eqid 2733 . . 3 {𝑠 ∈ 𝒫 𝑃 ∣ (𝑃𝑠) ∈ ran 𝑉} = {𝑠 ∈ 𝒫 𝑃 ∣ (𝑃𝑠) ∈ ran 𝑉}
4228, 39, 40, 41mretopd 23008 . 2 (𝑅 ∈ CRing → ({𝑠 ∈ 𝒫 𝑃 ∣ (𝑃𝑠) ∈ ran 𝑉} ∈ (TopOn‘𝑃) ∧ ran 𝑉 = (Clsd‘{𝑠 ∈ 𝒫 𝑃 ∣ (𝑃𝑠) ∈ ran 𝑉})))
43 zartop.1 . . . . . 6 𝑆 = (Spec‘𝑅)
44 zartop.2 . . . . . 6 𝐽 = (TopOpen‘𝑆)
4543, 44, 2, 7zarcls 33908 . . . . 5 (𝑅 ∈ Ring → 𝐽 = {𝑠 ∈ 𝒫 𝑃 ∣ (𝑃𝑠) ∈ ran 𝑉})
4611, 45syl 17 . . . 4 (𝑅 ∈ CRing → 𝐽 = {𝑠 ∈ 𝒫 𝑃 ∣ (𝑃𝑠) ∈ ran 𝑉})
4746eleq1d 2818 . . 3 (𝑅 ∈ CRing → (𝐽 ∈ (TopOn‘𝑃) ↔ {𝑠 ∈ 𝒫 𝑃 ∣ (𝑃𝑠) ∈ ran 𝑉} ∈ (TopOn‘𝑃)))
4846fveq2d 6832 . . . 4 (𝑅 ∈ CRing → (Clsd‘𝐽) = (Clsd‘{𝑠 ∈ 𝒫 𝑃 ∣ (𝑃𝑠) ∈ ran 𝑉}))
4948eqeq2d 2744 . . 3 (𝑅 ∈ CRing → (ran 𝑉 = (Clsd‘𝐽) ↔ ran 𝑉 = (Clsd‘{𝑠 ∈ 𝒫 𝑃 ∣ (𝑃𝑠) ∈ ran 𝑉})))
5047, 49anbi12d 632 . 2 (𝑅 ∈ CRing → ((𝐽 ∈ (TopOn‘𝑃) ∧ ran 𝑉 = (Clsd‘𝐽)) ↔ ({𝑠 ∈ 𝒫 𝑃 ∣ (𝑃𝑠) ∈ ran 𝑉} ∈ (TopOn‘𝑃) ∧ ran 𝑉 = (Clsd‘{𝑠 ∈ 𝒫 𝑃 ∣ (𝑃𝑠) ∈ ran 𝑉}))))
5142, 50mpbird 257 1 (𝑅 ∈ CRing → (𝐽 ∈ (TopOn‘𝑃) ∧ ran 𝑉 = (Clsd‘𝐽)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  wral 3048  {crab 3396  cdif 3895  wss 3898  c0 4282  𝒫 cpw 4549  {csn 4575  cmpt 5174  dom cdm 5619  ran crn 5620  Fun wfun 6480  cfv 6486  Basecbs 17122  TopOpenctopn 17327  0gc0g 17345  Ringcrg 20153  CRingccrg 20154  LIdealclidl 21145  TopOnctopon 22826  Clsdccld 22932  PrmIdealcprmidl 33407  Speccrspec 33896
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-ac2 10361  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-iin 4944  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-rpss 7662  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-oadd 8395  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-dju 9801  df-card 9839  df-ac 10014  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-2 12195  df-3 12196  df-4 12197  df-5 12198  df-6 12199  df-7 12200  df-8 12201  df-9 12202  df-n0 12389  df-z 12476  df-dec 12595  df-uz 12739  df-fz 13410  df-struct 17060  df-sets 17077  df-slot 17095  df-ndx 17107  df-base 17123  df-ress 17144  df-plusg 17176  df-mulr 17177  df-sca 17179  df-vsca 17180  df-ip 17181  df-tset 17182  df-ple 17183  df-rest 17328  df-topn 17329  df-0g 17347  df-mre 17490  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-submnd 18694  df-grp 18851  df-minusg 18852  df-sbg 18853  df-subg 19038  df-cntz 19231  df-lsm 19550  df-cmn 19696  df-abl 19697  df-mgp 20061  df-rng 20073  df-ur 20102  df-ring 20155  df-cring 20156  df-subrg 20487  df-lmod 20797  df-lss 20867  df-lsp 20907  df-sra 21109  df-rgmod 21110  df-lidl 21147  df-rsp 21148  df-lpidl 21261  df-top 22810  df-topon 22827  df-cld 22935  df-prmidl 33408  df-mxidl 33432  df-idlsrg 33473  df-rspec 33897
This theorem is referenced by:  zartop  33910  zartopon  33911  zart0  33913  zarmxt1  33914  zarcmplem  33915  rhmpreimacn  33919
  Copyright terms: Public domain W3C validator