Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zartopn Structured version   Visualization version   GIF version

Theorem zartopn 33852
Description: The Zariski topology is a topology, and its closed sets are images by 𝑉 of the ideals of 𝑅. (Contributed by Thierry Arnoux, 16-Jun-2024.)
Hypotheses
Ref Expression
zartop.1 𝑆 = (Spec‘𝑅)
zartop.2 𝐽 = (TopOpen‘𝑆)
zarcls.1 𝑃 = (PrmIdeal‘𝑅)
zarcls.2 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗𝑃𝑖𝑗})
Assertion
Ref Expression
zartopn (𝑅 ∈ CRing → (𝐽 ∈ (TopOn‘𝑃) ∧ ran 𝑉 = (Clsd‘𝐽)))
Distinct variable groups:   𝑃,𝑖,𝑗   𝑅,𝑖,𝑗   𝑖,𝑉
Allowed substitution hints:   𝑆(𝑖,𝑗)   𝐽(𝑖,𝑗)   𝑉(𝑗)

Proof of Theorem zartopn
Dummy variables 𝑠 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssrab2 4055 . . . . . . . 8 {𝑗𝑃𝑖𝑗} ⊆ 𝑃
2 zarcls.1 . . . . . . . . . 10 𝑃 = (PrmIdeal‘𝑅)
32fvexi 6889 . . . . . . . . 9 𝑃 ∈ V
43elpw2 5304 . . . . . . . 8 ({𝑗𝑃𝑖𝑗} ∈ 𝒫 𝑃 ↔ {𝑗𝑃𝑖𝑗} ⊆ 𝑃)
51, 4mpbir 231 . . . . . . 7 {𝑗𝑃𝑖𝑗} ∈ 𝒫 𝑃
65rgenw 3055 . . . . . 6 𝑖 ∈ (LIdeal‘𝑅){𝑗𝑃𝑖𝑗} ∈ 𝒫 𝑃
7 zarcls.2 . . . . . . 7 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗𝑃𝑖𝑗})
87rnmptss 7112 . . . . . 6 (∀𝑖 ∈ (LIdeal‘𝑅){𝑗𝑃𝑖𝑗} ∈ 𝒫 𝑃 → ran 𝑉 ⊆ 𝒫 𝑃)
96, 8ax-mp 5 . . . . 5 ran 𝑉 ⊆ 𝒫 𝑃
109a1i 11 . . . 4 (𝑅 ∈ CRing → ran 𝑉 ⊆ 𝒫 𝑃)
11 crngring 20203 . . . . 5 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
122rabeqi 3429 . . . . . . . . 9 {𝑗𝑃𝑖𝑗} = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗}
1312mpteq2i 5217 . . . . . . . 8 (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗𝑃𝑖𝑗}) = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗})
147, 13eqtri 2758 . . . . . . 7 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗})
15 eqid 2735 . . . . . . 7 (0g𝑅) = (0g𝑅)
1614, 2, 15zarcls0 33845 . . . . . 6 (𝑅 ∈ Ring → (𝑉‘{(0g𝑅)}) = 𝑃)
177funmpt2 6574 . . . . . . 7 Fun 𝑉
18 eqid 2735 . . . . . . . . 9 (LIdeal‘𝑅) = (LIdeal‘𝑅)
1918, 15lidl0 21189 . . . . . . . 8 (𝑅 ∈ Ring → {(0g𝑅)} ∈ (LIdeal‘𝑅))
203rabex 5309 . . . . . . . . 9 {𝑗𝑃𝑖𝑗} ∈ V
2120, 7dmmpti 6681 . . . . . . . 8 dom 𝑉 = (LIdeal‘𝑅)
2219, 21eleqtrrdi 2845 . . . . . . 7 (𝑅 ∈ Ring → {(0g𝑅)} ∈ dom 𝑉)
23 fvelrn 7065 . . . . . . 7 ((Fun 𝑉 ∧ {(0g𝑅)} ∈ dom 𝑉) → (𝑉‘{(0g𝑅)}) ∈ ran 𝑉)
2417, 22, 23sylancr 587 . . . . . 6 (𝑅 ∈ Ring → (𝑉‘{(0g𝑅)}) ∈ ran 𝑉)
2516, 24eqeltrrd 2835 . . . . 5 (𝑅 ∈ Ring → 𝑃 ∈ ran 𝑉)
2611, 25syl 17 . . . 4 (𝑅 ∈ CRing → 𝑃 ∈ ran 𝑉)
2714zarclsint 33849 . . . 4 ((𝑅 ∈ CRing ∧ 𝑧 ⊆ ran 𝑉𝑧 ≠ ∅) → 𝑧 ∈ ran 𝑉)
2810, 26, 27ismred 17612 . . 3 (𝑅 ∈ CRing → ran 𝑉 ∈ (Moore‘𝑃))
29 eqid 2735 . . . . . . . 8 (Base‘𝑅) = (Base‘𝑅)
3021, 29lidl1 21192 . . . . . . 7 (𝑅 ∈ Ring → (Base‘𝑅) ∈ dom 𝑉)
3111, 30syl 17 . . . . . 6 (𝑅 ∈ CRing → (Base‘𝑅) ∈ dom 𝑉)
3231, 21eleqtrdi 2844 . . . . 5 (𝑅 ∈ CRing → (Base‘𝑅) ∈ (LIdeal‘𝑅))
3314, 29zarcls1 33846 . . . . . 6 ((𝑅 ∈ CRing ∧ (Base‘𝑅) ∈ (LIdeal‘𝑅)) → ((𝑉‘(Base‘𝑅)) = ∅ ↔ (Base‘𝑅) = (Base‘𝑅)))
3429, 33mpbiri 258 . . . . 5 ((𝑅 ∈ CRing ∧ (Base‘𝑅) ∈ (LIdeal‘𝑅)) → (𝑉‘(Base‘𝑅)) = ∅)
3532, 34mpdan 687 . . . 4 (𝑅 ∈ CRing → (𝑉‘(Base‘𝑅)) = ∅)
3617a1i 11 . . . . 5 (𝑅 ∈ CRing → Fun 𝑉)
37 fvelrn 7065 . . . . 5 ((Fun 𝑉 ∧ (Base‘𝑅) ∈ dom 𝑉) → (𝑉‘(Base‘𝑅)) ∈ ran 𝑉)
3836, 31, 37syl2anc 584 . . . 4 (𝑅 ∈ CRing → (𝑉‘(Base‘𝑅)) ∈ ran 𝑉)
3935, 38eqeltrrd 2835 . . 3 (𝑅 ∈ CRing → ∅ ∈ ran 𝑉)
4014zarclsun 33847 . . 3 ((𝑅 ∈ CRing ∧ 𝑥 ∈ ran 𝑉𝑦 ∈ ran 𝑉) → (𝑥𝑦) ∈ ran 𝑉)
41 eqid 2735 . . 3 {𝑠 ∈ 𝒫 𝑃 ∣ (𝑃𝑠) ∈ ran 𝑉} = {𝑠 ∈ 𝒫 𝑃 ∣ (𝑃𝑠) ∈ ran 𝑉}
4228, 39, 40, 41mretopd 23028 . 2 (𝑅 ∈ CRing → ({𝑠 ∈ 𝒫 𝑃 ∣ (𝑃𝑠) ∈ ran 𝑉} ∈ (TopOn‘𝑃) ∧ ran 𝑉 = (Clsd‘{𝑠 ∈ 𝒫 𝑃 ∣ (𝑃𝑠) ∈ ran 𝑉})))
43 zartop.1 . . . . . 6 𝑆 = (Spec‘𝑅)
44 zartop.2 . . . . . 6 𝐽 = (TopOpen‘𝑆)
4543, 44, 2, 7zarcls 33851 . . . . 5 (𝑅 ∈ Ring → 𝐽 = {𝑠 ∈ 𝒫 𝑃 ∣ (𝑃𝑠) ∈ ran 𝑉})
4611, 45syl 17 . . . 4 (𝑅 ∈ CRing → 𝐽 = {𝑠 ∈ 𝒫 𝑃 ∣ (𝑃𝑠) ∈ ran 𝑉})
4746eleq1d 2819 . . 3 (𝑅 ∈ CRing → (𝐽 ∈ (TopOn‘𝑃) ↔ {𝑠 ∈ 𝒫 𝑃 ∣ (𝑃𝑠) ∈ ran 𝑉} ∈ (TopOn‘𝑃)))
4846fveq2d 6879 . . . 4 (𝑅 ∈ CRing → (Clsd‘𝐽) = (Clsd‘{𝑠 ∈ 𝒫 𝑃 ∣ (𝑃𝑠) ∈ ran 𝑉}))
4948eqeq2d 2746 . . 3 (𝑅 ∈ CRing → (ran 𝑉 = (Clsd‘𝐽) ↔ ran 𝑉 = (Clsd‘{𝑠 ∈ 𝒫 𝑃 ∣ (𝑃𝑠) ∈ ran 𝑉})))
5047, 49anbi12d 632 . 2 (𝑅 ∈ CRing → ((𝐽 ∈ (TopOn‘𝑃) ∧ ran 𝑉 = (Clsd‘𝐽)) ↔ ({𝑠 ∈ 𝒫 𝑃 ∣ (𝑃𝑠) ∈ ran 𝑉} ∈ (TopOn‘𝑃) ∧ ran 𝑉 = (Clsd‘{𝑠 ∈ 𝒫 𝑃 ∣ (𝑃𝑠) ∈ ran 𝑉}))))
5142, 50mpbird 257 1 (𝑅 ∈ CRing → (𝐽 ∈ (TopOn‘𝑃) ∧ ran 𝑉 = (Clsd‘𝐽)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wral 3051  {crab 3415  cdif 3923  wss 3926  c0 4308  𝒫 cpw 4575  {csn 4601  cmpt 5201  dom cdm 5654  ran crn 5655  Fun wfun 6524  cfv 6530  Basecbs 17226  TopOpenctopn 17433  0gc0g 17451  Ringcrg 20191  CRingccrg 20192  LIdealclidl 21165  TopOnctopon 22846  Clsdccld 22952  PrmIdealcprmidl 33396  Speccrspec 33839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-ac2 10475  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-isom 6539  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-rpss 7715  df-om 7860  df-1st 7986  df-2nd 7987  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-oadd 8482  df-er 8717  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-dju 9913  df-card 9951  df-ac 10128  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-nn 12239  df-2 12301  df-3 12302  df-4 12303  df-5 12304  df-6 12305  df-7 12306  df-8 12307  df-9 12308  df-n0 12500  df-z 12587  df-dec 12707  df-uz 12851  df-fz 13523  df-struct 17164  df-sets 17181  df-slot 17199  df-ndx 17211  df-base 17227  df-ress 17250  df-plusg 17282  df-mulr 17283  df-sca 17285  df-vsca 17286  df-ip 17287  df-tset 17288  df-ple 17289  df-rest 17434  df-topn 17435  df-0g 17453  df-mre 17596  df-mgm 18616  df-sgrp 18695  df-mnd 18711  df-submnd 18760  df-grp 18917  df-minusg 18918  df-sbg 18919  df-subg 19104  df-cntz 19298  df-lsm 19615  df-cmn 19761  df-abl 19762  df-mgp 20099  df-rng 20111  df-ur 20140  df-ring 20193  df-cring 20194  df-subrg 20528  df-lmod 20817  df-lss 20887  df-lsp 20927  df-sra 21129  df-rgmod 21130  df-lidl 21167  df-rsp 21168  df-lpidl 21281  df-top 22830  df-topon 22847  df-cld 22955  df-prmidl 33397  df-mxidl 33421  df-idlsrg 33462  df-rspec 33840
This theorem is referenced by:  zartop  33853  zartopon  33854  zart0  33856  zarmxt1  33857  zarcmplem  33858  rhmpreimacn  33862
  Copyright terms: Public domain W3C validator