Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zartopn Structured version   Visualization version   GIF version

Theorem zartopn 31811
Description: The Zariski topology is a topology, and its closed sets are images by 𝑉 of the ideals of 𝑅. (Contributed by Thierry Arnoux, 16-Jun-2024.)
Hypotheses
Ref Expression
zartop.1 𝑆 = (Spec‘𝑅)
zartop.2 𝐽 = (TopOpen‘𝑆)
zarcls.1 𝑃 = (PrmIdeal‘𝑅)
zarcls.2 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗𝑃𝑖𝑗})
Assertion
Ref Expression
zartopn (𝑅 ∈ CRing → (𝐽 ∈ (TopOn‘𝑃) ∧ ran 𝑉 = (Clsd‘𝐽)))
Distinct variable groups:   𝑃,𝑖,𝑗   𝑅,𝑖,𝑗   𝑖,𝑉
Allowed substitution hints:   𝑆(𝑖,𝑗)   𝐽(𝑖,𝑗)   𝑉(𝑗)

Proof of Theorem zartopn
Dummy variables 𝑠 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssrab2 4013 . . . . . . . 8 {𝑗𝑃𝑖𝑗} ⊆ 𝑃
2 zarcls.1 . . . . . . . . . 10 𝑃 = (PrmIdeal‘𝑅)
32fvexi 6781 . . . . . . . . 9 𝑃 ∈ V
43elpw2 5268 . . . . . . . 8 ({𝑗𝑃𝑖𝑗} ∈ 𝒫 𝑃 ↔ {𝑗𝑃𝑖𝑗} ⊆ 𝑃)
51, 4mpbir 230 . . . . . . 7 {𝑗𝑃𝑖𝑗} ∈ 𝒫 𝑃
65rgenw 3076 . . . . . 6 𝑖 ∈ (LIdeal‘𝑅){𝑗𝑃𝑖𝑗} ∈ 𝒫 𝑃
7 zarcls.2 . . . . . . 7 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗𝑃𝑖𝑗})
87rnmptss 6989 . . . . . 6 (∀𝑖 ∈ (LIdeal‘𝑅){𝑗𝑃𝑖𝑗} ∈ 𝒫 𝑃 → ran 𝑉 ⊆ 𝒫 𝑃)
96, 8ax-mp 5 . . . . 5 ran 𝑉 ⊆ 𝒫 𝑃
109a1i 11 . . . 4 (𝑅 ∈ CRing → ran 𝑉 ⊆ 𝒫 𝑃)
11 crngring 19783 . . . . 5 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
122rabeqi 3414 . . . . . . . . 9 {𝑗𝑃𝑖𝑗} = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗}
1312mpteq2i 5179 . . . . . . . 8 (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗𝑃𝑖𝑗}) = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗})
147, 13eqtri 2766 . . . . . . 7 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗})
15 eqid 2738 . . . . . . 7 (0g𝑅) = (0g𝑅)
1614, 2, 15zarcls0 31804 . . . . . 6 (𝑅 ∈ Ring → (𝑉‘{(0g𝑅)}) = 𝑃)
177funmpt2 6466 . . . . . . 7 Fun 𝑉
18 eqid 2738 . . . . . . . . 9 (LIdeal‘𝑅) = (LIdeal‘𝑅)
1918, 15lidl0 20478 . . . . . . . 8 (𝑅 ∈ Ring → {(0g𝑅)} ∈ (LIdeal‘𝑅))
203rabex 5255 . . . . . . . . 9 {𝑗𝑃𝑖𝑗} ∈ V
2120, 7dmmpti 6570 . . . . . . . 8 dom 𝑉 = (LIdeal‘𝑅)
2219, 21eleqtrrdi 2850 . . . . . . 7 (𝑅 ∈ Ring → {(0g𝑅)} ∈ dom 𝑉)
23 fvelrn 6947 . . . . . . 7 ((Fun 𝑉 ∧ {(0g𝑅)} ∈ dom 𝑉) → (𝑉‘{(0g𝑅)}) ∈ ran 𝑉)
2417, 22, 23sylancr 587 . . . . . 6 (𝑅 ∈ Ring → (𝑉‘{(0g𝑅)}) ∈ ran 𝑉)
2516, 24eqeltrrd 2840 . . . . 5 (𝑅 ∈ Ring → 𝑃 ∈ ran 𝑉)
2611, 25syl 17 . . . 4 (𝑅 ∈ CRing → 𝑃 ∈ ran 𝑉)
2714zarclsint 31808 . . . 4 ((𝑅 ∈ CRing ∧ 𝑧 ⊆ ran 𝑉𝑧 ≠ ∅) → 𝑧 ∈ ran 𝑉)
2810, 26, 27ismred 17299 . . 3 (𝑅 ∈ CRing → ran 𝑉 ∈ (Moore‘𝑃))
29 eqid 2738 . . . . . . . 8 (Base‘𝑅) = (Base‘𝑅)
3021, 29lidl1 20479 . . . . . . 7 (𝑅 ∈ Ring → (Base‘𝑅) ∈ dom 𝑉)
3111, 30syl 17 . . . . . 6 (𝑅 ∈ CRing → (Base‘𝑅) ∈ dom 𝑉)
3231, 21eleqtrdi 2849 . . . . 5 (𝑅 ∈ CRing → (Base‘𝑅) ∈ (LIdeal‘𝑅))
3314, 29zarcls1 31805 . . . . . 6 ((𝑅 ∈ CRing ∧ (Base‘𝑅) ∈ (LIdeal‘𝑅)) → ((𝑉‘(Base‘𝑅)) = ∅ ↔ (Base‘𝑅) = (Base‘𝑅)))
3429, 33mpbiri 257 . . . . 5 ((𝑅 ∈ CRing ∧ (Base‘𝑅) ∈ (LIdeal‘𝑅)) → (𝑉‘(Base‘𝑅)) = ∅)
3532, 34mpdan 684 . . . 4 (𝑅 ∈ CRing → (𝑉‘(Base‘𝑅)) = ∅)
3617a1i 11 . . . . 5 (𝑅 ∈ CRing → Fun 𝑉)
37 fvelrn 6947 . . . . 5 ((Fun 𝑉 ∧ (Base‘𝑅) ∈ dom 𝑉) → (𝑉‘(Base‘𝑅)) ∈ ran 𝑉)
3836, 31, 37syl2anc 584 . . . 4 (𝑅 ∈ CRing → (𝑉‘(Base‘𝑅)) ∈ ran 𝑉)
3935, 38eqeltrrd 2840 . . 3 (𝑅 ∈ CRing → ∅ ∈ ran 𝑉)
4014zarclsun 31806 . . 3 ((𝑅 ∈ CRing ∧ 𝑥 ∈ ran 𝑉𝑦 ∈ ran 𝑉) → (𝑥𝑦) ∈ ran 𝑉)
41 eqid 2738 . . 3 {𝑠 ∈ 𝒫 𝑃 ∣ (𝑃𝑠) ∈ ran 𝑉} = {𝑠 ∈ 𝒫 𝑃 ∣ (𝑃𝑠) ∈ ran 𝑉}
4228, 39, 40, 41mretopd 22231 . 2 (𝑅 ∈ CRing → ({𝑠 ∈ 𝒫 𝑃 ∣ (𝑃𝑠) ∈ ran 𝑉} ∈ (TopOn‘𝑃) ∧ ran 𝑉 = (Clsd‘{𝑠 ∈ 𝒫 𝑃 ∣ (𝑃𝑠) ∈ ran 𝑉})))
43 zartop.1 . . . . . 6 𝑆 = (Spec‘𝑅)
44 zartop.2 . . . . . 6 𝐽 = (TopOpen‘𝑆)
4543, 44, 2, 7zarcls 31810 . . . . 5 (𝑅 ∈ Ring → 𝐽 = {𝑠 ∈ 𝒫 𝑃 ∣ (𝑃𝑠) ∈ ran 𝑉})
4611, 45syl 17 . . . 4 (𝑅 ∈ CRing → 𝐽 = {𝑠 ∈ 𝒫 𝑃 ∣ (𝑃𝑠) ∈ ran 𝑉})
4746eleq1d 2823 . . 3 (𝑅 ∈ CRing → (𝐽 ∈ (TopOn‘𝑃) ↔ {𝑠 ∈ 𝒫 𝑃 ∣ (𝑃𝑠) ∈ ran 𝑉} ∈ (TopOn‘𝑃)))
4846fveq2d 6771 . . . 4 (𝑅 ∈ CRing → (Clsd‘𝐽) = (Clsd‘{𝑠 ∈ 𝒫 𝑃 ∣ (𝑃𝑠) ∈ ran 𝑉}))
4948eqeq2d 2749 . . 3 (𝑅 ∈ CRing → (ran 𝑉 = (Clsd‘𝐽) ↔ ran 𝑉 = (Clsd‘{𝑠 ∈ 𝒫 𝑃 ∣ (𝑃𝑠) ∈ ran 𝑉})))
5047, 49anbi12d 631 . 2 (𝑅 ∈ CRing → ((𝐽 ∈ (TopOn‘𝑃) ∧ ran 𝑉 = (Clsd‘𝐽)) ↔ ({𝑠 ∈ 𝒫 𝑃 ∣ (𝑃𝑠) ∈ ran 𝑉} ∈ (TopOn‘𝑃) ∧ ran 𝑉 = (Clsd‘{𝑠 ∈ 𝒫 𝑃 ∣ (𝑃𝑠) ∈ ran 𝑉}))))
5142, 50mpbird 256 1 (𝑅 ∈ CRing → (𝐽 ∈ (TopOn‘𝑃) ∧ ran 𝑉 = (Clsd‘𝐽)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wral 3064  {crab 3068  cdif 3884  wss 3887  c0 4257  𝒫 cpw 4534  {csn 4562  cmpt 5157  dom cdm 5585  ran crn 5586  Fun wfun 6421  cfv 6427  Basecbs 16900  TopOpenctopn 17120  0gc0g 17138  Ringcrg 19771  CRingccrg 19772  LIdealclidl 20420  TopOnctopon 22047  Clsdccld 22155  PrmIdealcprmidl 31596  Speccrspec 31798
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5222  ax-nul 5229  ax-pow 5287  ax-pr 5351  ax-un 7579  ax-ac2 10207  ax-cnex 10915  ax-resscn 10916  ax-1cn 10917  ax-icn 10918  ax-addcl 10919  ax-addrcl 10920  ax-mulcl 10921  ax-mulrcl 10922  ax-mulcom 10923  ax-addass 10924  ax-mulass 10925  ax-distr 10926  ax-i2m1 10927  ax-1ne0 10928  ax-1rid 10929  ax-rnegex 10930  ax-rrecex 10931  ax-cnre 10932  ax-pre-lttri 10933  ax-pre-lttrn 10934  ax-pre-ltadd 10935  ax-pre-mulgt0 10936
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3071  df-rmo 3072  df-rab 3073  df-v 3432  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4258  df-if 4461  df-pw 4536  df-sn 4563  df-pr 4565  df-tp 4567  df-op 4569  df-uni 4841  df-int 4881  df-iun 4927  df-iin 4928  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5485  df-eprel 5491  df-po 5499  df-so 5500  df-fr 5540  df-se 5541  df-we 5542  df-xp 5591  df-rel 5592  df-cnv 5593  df-co 5594  df-dm 5595  df-rn 5596  df-res 5597  df-ima 5598  df-pred 6196  df-ord 6263  df-on 6264  df-lim 6265  df-suc 6266  df-iota 6385  df-fun 6429  df-fn 6430  df-f 6431  df-f1 6432  df-fo 6433  df-f1o 6434  df-fv 6435  df-isom 6436  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-rpss 7567  df-om 7704  df-1st 7821  df-2nd 7822  df-frecs 8085  df-wrecs 8116  df-recs 8190  df-rdg 8229  df-1o 8285  df-oadd 8289  df-er 8486  df-en 8722  df-dom 8723  df-sdom 8724  df-fin 8725  df-dju 9647  df-card 9685  df-ac 9860  df-pnf 10999  df-mnf 11000  df-xr 11001  df-ltxr 11002  df-le 11003  df-sub 11195  df-neg 11196  df-nn 11962  df-2 12024  df-3 12025  df-4 12026  df-5 12027  df-6 12028  df-7 12029  df-8 12030  df-9 12031  df-n0 12222  df-z 12308  df-dec 12426  df-uz 12571  df-fz 13228  df-struct 16836  df-sets 16853  df-slot 16871  df-ndx 16883  df-base 16901  df-ress 16930  df-plusg 16963  df-mulr 16964  df-sca 16966  df-vsca 16967  df-ip 16968  df-tset 16969  df-ple 16970  df-rest 17121  df-topn 17122  df-0g 17140  df-mre 17283  df-mgm 18314  df-sgrp 18363  df-mnd 18374  df-submnd 18419  df-grp 18568  df-minusg 18569  df-sbg 18570  df-subg 18740  df-cntz 18911  df-lsm 19229  df-cmn 19376  df-abl 19377  df-mgp 19709  df-ur 19726  df-ring 19773  df-cring 19774  df-subrg 20010  df-lmod 20113  df-lss 20182  df-lsp 20222  df-sra 20422  df-rgmod 20423  df-lidl 20424  df-rsp 20425  df-lpidl 20502  df-top 22031  df-topon 22048  df-cld 22158  df-prmidl 31597  df-mxidl 31618  df-idlsrg 31632  df-rspec 31799
This theorem is referenced by:  zartop  31812  zartopon  31813  zart0  31815  zarmxt1  31816  zarcmplem  31817  rhmpreimacn  31821
  Copyright terms: Public domain W3C validator