| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > zartopn | Structured version Visualization version GIF version | ||
| Description: The Zariski topology is a topology, and its closed sets are images by 𝑉 of the ideals of 𝑅. (Contributed by Thierry Arnoux, 16-Jun-2024.) |
| Ref | Expression |
|---|---|
| zartop.1 | ⊢ 𝑆 = (Spec‘𝑅) |
| zartop.2 | ⊢ 𝐽 = (TopOpen‘𝑆) |
| zarcls.1 | ⊢ 𝑃 = (PrmIdeal‘𝑅) |
| zarcls.2 | ⊢ 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ 𝑃 ∣ 𝑖 ⊆ 𝑗}) |
| Ref | Expression |
|---|---|
| zartopn | ⊢ (𝑅 ∈ CRing → (𝐽 ∈ (TopOn‘𝑃) ∧ ran 𝑉 = (Clsd‘𝐽))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrab2 4060 | . . . . . . . 8 ⊢ {𝑗 ∈ 𝑃 ∣ 𝑖 ⊆ 𝑗} ⊆ 𝑃 | |
| 2 | zarcls.1 | . . . . . . . . . 10 ⊢ 𝑃 = (PrmIdeal‘𝑅) | |
| 3 | 2 | fvexi 6895 | . . . . . . . . 9 ⊢ 𝑃 ∈ V |
| 4 | 3 | elpw2 5309 | . . . . . . . 8 ⊢ ({𝑗 ∈ 𝑃 ∣ 𝑖 ⊆ 𝑗} ∈ 𝒫 𝑃 ↔ {𝑗 ∈ 𝑃 ∣ 𝑖 ⊆ 𝑗} ⊆ 𝑃) |
| 5 | 1, 4 | mpbir 231 | . . . . . . 7 ⊢ {𝑗 ∈ 𝑃 ∣ 𝑖 ⊆ 𝑗} ∈ 𝒫 𝑃 |
| 6 | 5 | rgenw 3056 | . . . . . 6 ⊢ ∀𝑖 ∈ (LIdeal‘𝑅){𝑗 ∈ 𝑃 ∣ 𝑖 ⊆ 𝑗} ∈ 𝒫 𝑃 |
| 7 | zarcls.2 | . . . . . . 7 ⊢ 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ 𝑃 ∣ 𝑖 ⊆ 𝑗}) | |
| 8 | 7 | rnmptss 7118 | . . . . . 6 ⊢ (∀𝑖 ∈ (LIdeal‘𝑅){𝑗 ∈ 𝑃 ∣ 𝑖 ⊆ 𝑗} ∈ 𝒫 𝑃 → ran 𝑉 ⊆ 𝒫 𝑃) |
| 9 | 6, 8 | ax-mp 5 | . . . . 5 ⊢ ran 𝑉 ⊆ 𝒫 𝑃 |
| 10 | 9 | a1i 11 | . . . 4 ⊢ (𝑅 ∈ CRing → ran 𝑉 ⊆ 𝒫 𝑃) |
| 11 | crngring 20210 | . . . . 5 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) | |
| 12 | 2 | rabeqi 3434 | . . . . . . . . 9 ⊢ {𝑗 ∈ 𝑃 ∣ 𝑖 ⊆ 𝑗} = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖 ⊆ 𝑗} |
| 13 | 12 | mpteq2i 5222 | . . . . . . . 8 ⊢ (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ 𝑃 ∣ 𝑖 ⊆ 𝑗}) = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖 ⊆ 𝑗}) |
| 14 | 7, 13 | eqtri 2759 | . . . . . . 7 ⊢ 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖 ⊆ 𝑗}) |
| 15 | eqid 2736 | . . . . . . 7 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 16 | 14, 2, 15 | zarcls0 33904 | . . . . . 6 ⊢ (𝑅 ∈ Ring → (𝑉‘{(0g‘𝑅)}) = 𝑃) |
| 17 | 7 | funmpt2 6580 | . . . . . . 7 ⊢ Fun 𝑉 |
| 18 | eqid 2736 | . . . . . . . . 9 ⊢ (LIdeal‘𝑅) = (LIdeal‘𝑅) | |
| 19 | 18, 15 | lidl0 21196 | . . . . . . . 8 ⊢ (𝑅 ∈ Ring → {(0g‘𝑅)} ∈ (LIdeal‘𝑅)) |
| 20 | 3 | rabex 5314 | . . . . . . . . 9 ⊢ {𝑗 ∈ 𝑃 ∣ 𝑖 ⊆ 𝑗} ∈ V |
| 21 | 20, 7 | dmmpti 6687 | . . . . . . . 8 ⊢ dom 𝑉 = (LIdeal‘𝑅) |
| 22 | 19, 21 | eleqtrrdi 2846 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → {(0g‘𝑅)} ∈ dom 𝑉) |
| 23 | fvelrn 7071 | . . . . . . 7 ⊢ ((Fun 𝑉 ∧ {(0g‘𝑅)} ∈ dom 𝑉) → (𝑉‘{(0g‘𝑅)}) ∈ ran 𝑉) | |
| 24 | 17, 22, 23 | sylancr 587 | . . . . . 6 ⊢ (𝑅 ∈ Ring → (𝑉‘{(0g‘𝑅)}) ∈ ran 𝑉) |
| 25 | 16, 24 | eqeltrrd 2836 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝑃 ∈ ran 𝑉) |
| 26 | 11, 25 | syl 17 | . . . 4 ⊢ (𝑅 ∈ CRing → 𝑃 ∈ ran 𝑉) |
| 27 | 14 | zarclsint 33908 | . . . 4 ⊢ ((𝑅 ∈ CRing ∧ 𝑧 ⊆ ran 𝑉 ∧ 𝑧 ≠ ∅) → ∩ 𝑧 ∈ ran 𝑉) |
| 28 | 10, 26, 27 | ismred 17619 | . . 3 ⊢ (𝑅 ∈ CRing → ran 𝑉 ∈ (Moore‘𝑃)) |
| 29 | eqid 2736 | . . . . . . . 8 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 30 | 21, 29 | lidl1 21199 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → (Base‘𝑅) ∈ dom 𝑉) |
| 31 | 11, 30 | syl 17 | . . . . . 6 ⊢ (𝑅 ∈ CRing → (Base‘𝑅) ∈ dom 𝑉) |
| 32 | 31, 21 | eleqtrdi 2845 | . . . . 5 ⊢ (𝑅 ∈ CRing → (Base‘𝑅) ∈ (LIdeal‘𝑅)) |
| 33 | 14, 29 | zarcls1 33905 | . . . . . 6 ⊢ ((𝑅 ∈ CRing ∧ (Base‘𝑅) ∈ (LIdeal‘𝑅)) → ((𝑉‘(Base‘𝑅)) = ∅ ↔ (Base‘𝑅) = (Base‘𝑅))) |
| 34 | 29, 33 | mpbiri 258 | . . . . 5 ⊢ ((𝑅 ∈ CRing ∧ (Base‘𝑅) ∈ (LIdeal‘𝑅)) → (𝑉‘(Base‘𝑅)) = ∅) |
| 35 | 32, 34 | mpdan 687 | . . . 4 ⊢ (𝑅 ∈ CRing → (𝑉‘(Base‘𝑅)) = ∅) |
| 36 | 17 | a1i 11 | . . . . 5 ⊢ (𝑅 ∈ CRing → Fun 𝑉) |
| 37 | fvelrn 7071 | . . . . 5 ⊢ ((Fun 𝑉 ∧ (Base‘𝑅) ∈ dom 𝑉) → (𝑉‘(Base‘𝑅)) ∈ ran 𝑉) | |
| 38 | 36, 31, 37 | syl2anc 584 | . . . 4 ⊢ (𝑅 ∈ CRing → (𝑉‘(Base‘𝑅)) ∈ ran 𝑉) |
| 39 | 35, 38 | eqeltrrd 2836 | . . 3 ⊢ (𝑅 ∈ CRing → ∅ ∈ ran 𝑉) |
| 40 | 14 | zarclsun 33906 | . . 3 ⊢ ((𝑅 ∈ CRing ∧ 𝑥 ∈ ran 𝑉 ∧ 𝑦 ∈ ran 𝑉) → (𝑥 ∪ 𝑦) ∈ ran 𝑉) |
| 41 | eqid 2736 | . . 3 ⊢ {𝑠 ∈ 𝒫 𝑃 ∣ (𝑃 ∖ 𝑠) ∈ ran 𝑉} = {𝑠 ∈ 𝒫 𝑃 ∣ (𝑃 ∖ 𝑠) ∈ ran 𝑉} | |
| 42 | 28, 39, 40, 41 | mretopd 23035 | . 2 ⊢ (𝑅 ∈ CRing → ({𝑠 ∈ 𝒫 𝑃 ∣ (𝑃 ∖ 𝑠) ∈ ran 𝑉} ∈ (TopOn‘𝑃) ∧ ran 𝑉 = (Clsd‘{𝑠 ∈ 𝒫 𝑃 ∣ (𝑃 ∖ 𝑠) ∈ ran 𝑉}))) |
| 43 | zartop.1 | . . . . . 6 ⊢ 𝑆 = (Spec‘𝑅) | |
| 44 | zartop.2 | . . . . . 6 ⊢ 𝐽 = (TopOpen‘𝑆) | |
| 45 | 43, 44, 2, 7 | zarcls 33910 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝐽 = {𝑠 ∈ 𝒫 𝑃 ∣ (𝑃 ∖ 𝑠) ∈ ran 𝑉}) |
| 46 | 11, 45 | syl 17 | . . . 4 ⊢ (𝑅 ∈ CRing → 𝐽 = {𝑠 ∈ 𝒫 𝑃 ∣ (𝑃 ∖ 𝑠) ∈ ran 𝑉}) |
| 47 | 46 | eleq1d 2820 | . . 3 ⊢ (𝑅 ∈ CRing → (𝐽 ∈ (TopOn‘𝑃) ↔ {𝑠 ∈ 𝒫 𝑃 ∣ (𝑃 ∖ 𝑠) ∈ ran 𝑉} ∈ (TopOn‘𝑃))) |
| 48 | 46 | fveq2d 6885 | . . . 4 ⊢ (𝑅 ∈ CRing → (Clsd‘𝐽) = (Clsd‘{𝑠 ∈ 𝒫 𝑃 ∣ (𝑃 ∖ 𝑠) ∈ ran 𝑉})) |
| 49 | 48 | eqeq2d 2747 | . . 3 ⊢ (𝑅 ∈ CRing → (ran 𝑉 = (Clsd‘𝐽) ↔ ran 𝑉 = (Clsd‘{𝑠 ∈ 𝒫 𝑃 ∣ (𝑃 ∖ 𝑠) ∈ ran 𝑉}))) |
| 50 | 47, 49 | anbi12d 632 | . 2 ⊢ (𝑅 ∈ CRing → ((𝐽 ∈ (TopOn‘𝑃) ∧ ran 𝑉 = (Clsd‘𝐽)) ↔ ({𝑠 ∈ 𝒫 𝑃 ∣ (𝑃 ∖ 𝑠) ∈ ran 𝑉} ∈ (TopOn‘𝑃) ∧ ran 𝑉 = (Clsd‘{𝑠 ∈ 𝒫 𝑃 ∣ (𝑃 ∖ 𝑠) ∈ ran 𝑉})))) |
| 51 | 42, 50 | mpbird 257 | 1 ⊢ (𝑅 ∈ CRing → (𝐽 ∈ (TopOn‘𝑃) ∧ ran 𝑉 = (Clsd‘𝐽))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3052 {crab 3420 ∖ cdif 3928 ⊆ wss 3931 ∅c0 4313 𝒫 cpw 4580 {csn 4606 ↦ cmpt 5206 dom cdm 5659 ran crn 5660 Fun wfun 6530 ‘cfv 6536 Basecbs 17233 TopOpenctopn 17440 0gc0g 17458 Ringcrg 20198 CRingccrg 20199 LIdealclidl 21172 TopOnctopon 22853 Clsdccld 22959 PrmIdealcprmidl 33455 Speccrspec 33898 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-ac2 10482 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-iin 4975 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-se 5612 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-isom 6545 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-rpss 7722 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-oadd 8489 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-dju 9920 df-card 9958 df-ac 10135 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12507 df-z 12594 df-dec 12714 df-uz 12858 df-fz 13530 df-struct 17171 df-sets 17188 df-slot 17206 df-ndx 17218 df-base 17234 df-ress 17257 df-plusg 17289 df-mulr 17290 df-sca 17292 df-vsca 17293 df-ip 17294 df-tset 17295 df-ple 17296 df-rest 17441 df-topn 17442 df-0g 17460 df-mre 17603 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-submnd 18767 df-grp 18924 df-minusg 18925 df-sbg 18926 df-subg 19111 df-cntz 19305 df-lsm 19622 df-cmn 19768 df-abl 19769 df-mgp 20106 df-rng 20118 df-ur 20147 df-ring 20200 df-cring 20201 df-subrg 20535 df-lmod 20824 df-lss 20894 df-lsp 20934 df-sra 21136 df-rgmod 21137 df-lidl 21174 df-rsp 21175 df-lpidl 21288 df-top 22837 df-topon 22854 df-cld 22962 df-prmidl 33456 df-mxidl 33480 df-idlsrg 33521 df-rspec 33899 |
| This theorem is referenced by: zartop 33912 zartopon 33913 zart0 33915 zarmxt1 33916 zarcmplem 33917 rhmpreimacn 33921 |
| Copyright terms: Public domain | W3C validator |