| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > zartopn | Structured version Visualization version GIF version | ||
| Description: The Zariski topology is a topology, and its closed sets are images by 𝑉 of the ideals of 𝑅. (Contributed by Thierry Arnoux, 16-Jun-2024.) |
| Ref | Expression |
|---|---|
| zartop.1 | ⊢ 𝑆 = (Spec‘𝑅) |
| zartop.2 | ⊢ 𝐽 = (TopOpen‘𝑆) |
| zarcls.1 | ⊢ 𝑃 = (PrmIdeal‘𝑅) |
| zarcls.2 | ⊢ 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ 𝑃 ∣ 𝑖 ⊆ 𝑗}) |
| Ref | Expression |
|---|---|
| zartopn | ⊢ (𝑅 ∈ CRing → (𝐽 ∈ (TopOn‘𝑃) ∧ ran 𝑉 = (Clsd‘𝐽))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrab2 4055 | . . . . . . . 8 ⊢ {𝑗 ∈ 𝑃 ∣ 𝑖 ⊆ 𝑗} ⊆ 𝑃 | |
| 2 | zarcls.1 | . . . . . . . . . 10 ⊢ 𝑃 = (PrmIdeal‘𝑅) | |
| 3 | 2 | fvexi 6889 | . . . . . . . . 9 ⊢ 𝑃 ∈ V |
| 4 | 3 | elpw2 5304 | . . . . . . . 8 ⊢ ({𝑗 ∈ 𝑃 ∣ 𝑖 ⊆ 𝑗} ∈ 𝒫 𝑃 ↔ {𝑗 ∈ 𝑃 ∣ 𝑖 ⊆ 𝑗} ⊆ 𝑃) |
| 5 | 1, 4 | mpbir 231 | . . . . . . 7 ⊢ {𝑗 ∈ 𝑃 ∣ 𝑖 ⊆ 𝑗} ∈ 𝒫 𝑃 |
| 6 | 5 | rgenw 3055 | . . . . . 6 ⊢ ∀𝑖 ∈ (LIdeal‘𝑅){𝑗 ∈ 𝑃 ∣ 𝑖 ⊆ 𝑗} ∈ 𝒫 𝑃 |
| 7 | zarcls.2 | . . . . . . 7 ⊢ 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ 𝑃 ∣ 𝑖 ⊆ 𝑗}) | |
| 8 | 7 | rnmptss 7112 | . . . . . 6 ⊢ (∀𝑖 ∈ (LIdeal‘𝑅){𝑗 ∈ 𝑃 ∣ 𝑖 ⊆ 𝑗} ∈ 𝒫 𝑃 → ran 𝑉 ⊆ 𝒫 𝑃) |
| 9 | 6, 8 | ax-mp 5 | . . . . 5 ⊢ ran 𝑉 ⊆ 𝒫 𝑃 |
| 10 | 9 | a1i 11 | . . . 4 ⊢ (𝑅 ∈ CRing → ran 𝑉 ⊆ 𝒫 𝑃) |
| 11 | crngring 20203 | . . . . 5 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) | |
| 12 | 2 | rabeqi 3429 | . . . . . . . . 9 ⊢ {𝑗 ∈ 𝑃 ∣ 𝑖 ⊆ 𝑗} = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖 ⊆ 𝑗} |
| 13 | 12 | mpteq2i 5217 | . . . . . . . 8 ⊢ (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ 𝑃 ∣ 𝑖 ⊆ 𝑗}) = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖 ⊆ 𝑗}) |
| 14 | 7, 13 | eqtri 2758 | . . . . . . 7 ⊢ 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖 ⊆ 𝑗}) |
| 15 | eqid 2735 | . . . . . . 7 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 16 | 14, 2, 15 | zarcls0 33845 | . . . . . 6 ⊢ (𝑅 ∈ Ring → (𝑉‘{(0g‘𝑅)}) = 𝑃) |
| 17 | 7 | funmpt2 6574 | . . . . . . 7 ⊢ Fun 𝑉 |
| 18 | eqid 2735 | . . . . . . . . 9 ⊢ (LIdeal‘𝑅) = (LIdeal‘𝑅) | |
| 19 | 18, 15 | lidl0 21189 | . . . . . . . 8 ⊢ (𝑅 ∈ Ring → {(0g‘𝑅)} ∈ (LIdeal‘𝑅)) |
| 20 | 3 | rabex 5309 | . . . . . . . . 9 ⊢ {𝑗 ∈ 𝑃 ∣ 𝑖 ⊆ 𝑗} ∈ V |
| 21 | 20, 7 | dmmpti 6681 | . . . . . . . 8 ⊢ dom 𝑉 = (LIdeal‘𝑅) |
| 22 | 19, 21 | eleqtrrdi 2845 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → {(0g‘𝑅)} ∈ dom 𝑉) |
| 23 | fvelrn 7065 | . . . . . . 7 ⊢ ((Fun 𝑉 ∧ {(0g‘𝑅)} ∈ dom 𝑉) → (𝑉‘{(0g‘𝑅)}) ∈ ran 𝑉) | |
| 24 | 17, 22, 23 | sylancr 587 | . . . . . 6 ⊢ (𝑅 ∈ Ring → (𝑉‘{(0g‘𝑅)}) ∈ ran 𝑉) |
| 25 | 16, 24 | eqeltrrd 2835 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝑃 ∈ ran 𝑉) |
| 26 | 11, 25 | syl 17 | . . . 4 ⊢ (𝑅 ∈ CRing → 𝑃 ∈ ran 𝑉) |
| 27 | 14 | zarclsint 33849 | . . . 4 ⊢ ((𝑅 ∈ CRing ∧ 𝑧 ⊆ ran 𝑉 ∧ 𝑧 ≠ ∅) → ∩ 𝑧 ∈ ran 𝑉) |
| 28 | 10, 26, 27 | ismred 17612 | . . 3 ⊢ (𝑅 ∈ CRing → ran 𝑉 ∈ (Moore‘𝑃)) |
| 29 | eqid 2735 | . . . . . . . 8 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 30 | 21, 29 | lidl1 21192 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → (Base‘𝑅) ∈ dom 𝑉) |
| 31 | 11, 30 | syl 17 | . . . . . 6 ⊢ (𝑅 ∈ CRing → (Base‘𝑅) ∈ dom 𝑉) |
| 32 | 31, 21 | eleqtrdi 2844 | . . . . 5 ⊢ (𝑅 ∈ CRing → (Base‘𝑅) ∈ (LIdeal‘𝑅)) |
| 33 | 14, 29 | zarcls1 33846 | . . . . . 6 ⊢ ((𝑅 ∈ CRing ∧ (Base‘𝑅) ∈ (LIdeal‘𝑅)) → ((𝑉‘(Base‘𝑅)) = ∅ ↔ (Base‘𝑅) = (Base‘𝑅))) |
| 34 | 29, 33 | mpbiri 258 | . . . . 5 ⊢ ((𝑅 ∈ CRing ∧ (Base‘𝑅) ∈ (LIdeal‘𝑅)) → (𝑉‘(Base‘𝑅)) = ∅) |
| 35 | 32, 34 | mpdan 687 | . . . 4 ⊢ (𝑅 ∈ CRing → (𝑉‘(Base‘𝑅)) = ∅) |
| 36 | 17 | a1i 11 | . . . . 5 ⊢ (𝑅 ∈ CRing → Fun 𝑉) |
| 37 | fvelrn 7065 | . . . . 5 ⊢ ((Fun 𝑉 ∧ (Base‘𝑅) ∈ dom 𝑉) → (𝑉‘(Base‘𝑅)) ∈ ran 𝑉) | |
| 38 | 36, 31, 37 | syl2anc 584 | . . . 4 ⊢ (𝑅 ∈ CRing → (𝑉‘(Base‘𝑅)) ∈ ran 𝑉) |
| 39 | 35, 38 | eqeltrrd 2835 | . . 3 ⊢ (𝑅 ∈ CRing → ∅ ∈ ran 𝑉) |
| 40 | 14 | zarclsun 33847 | . . 3 ⊢ ((𝑅 ∈ CRing ∧ 𝑥 ∈ ran 𝑉 ∧ 𝑦 ∈ ran 𝑉) → (𝑥 ∪ 𝑦) ∈ ran 𝑉) |
| 41 | eqid 2735 | . . 3 ⊢ {𝑠 ∈ 𝒫 𝑃 ∣ (𝑃 ∖ 𝑠) ∈ ran 𝑉} = {𝑠 ∈ 𝒫 𝑃 ∣ (𝑃 ∖ 𝑠) ∈ ran 𝑉} | |
| 42 | 28, 39, 40, 41 | mretopd 23028 | . 2 ⊢ (𝑅 ∈ CRing → ({𝑠 ∈ 𝒫 𝑃 ∣ (𝑃 ∖ 𝑠) ∈ ran 𝑉} ∈ (TopOn‘𝑃) ∧ ran 𝑉 = (Clsd‘{𝑠 ∈ 𝒫 𝑃 ∣ (𝑃 ∖ 𝑠) ∈ ran 𝑉}))) |
| 43 | zartop.1 | . . . . . 6 ⊢ 𝑆 = (Spec‘𝑅) | |
| 44 | zartop.2 | . . . . . 6 ⊢ 𝐽 = (TopOpen‘𝑆) | |
| 45 | 43, 44, 2, 7 | zarcls 33851 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝐽 = {𝑠 ∈ 𝒫 𝑃 ∣ (𝑃 ∖ 𝑠) ∈ ran 𝑉}) |
| 46 | 11, 45 | syl 17 | . . . 4 ⊢ (𝑅 ∈ CRing → 𝐽 = {𝑠 ∈ 𝒫 𝑃 ∣ (𝑃 ∖ 𝑠) ∈ ran 𝑉}) |
| 47 | 46 | eleq1d 2819 | . . 3 ⊢ (𝑅 ∈ CRing → (𝐽 ∈ (TopOn‘𝑃) ↔ {𝑠 ∈ 𝒫 𝑃 ∣ (𝑃 ∖ 𝑠) ∈ ran 𝑉} ∈ (TopOn‘𝑃))) |
| 48 | 46 | fveq2d 6879 | . . . 4 ⊢ (𝑅 ∈ CRing → (Clsd‘𝐽) = (Clsd‘{𝑠 ∈ 𝒫 𝑃 ∣ (𝑃 ∖ 𝑠) ∈ ran 𝑉})) |
| 49 | 48 | eqeq2d 2746 | . . 3 ⊢ (𝑅 ∈ CRing → (ran 𝑉 = (Clsd‘𝐽) ↔ ran 𝑉 = (Clsd‘{𝑠 ∈ 𝒫 𝑃 ∣ (𝑃 ∖ 𝑠) ∈ ran 𝑉}))) |
| 50 | 47, 49 | anbi12d 632 | . 2 ⊢ (𝑅 ∈ CRing → ((𝐽 ∈ (TopOn‘𝑃) ∧ ran 𝑉 = (Clsd‘𝐽)) ↔ ({𝑠 ∈ 𝒫 𝑃 ∣ (𝑃 ∖ 𝑠) ∈ ran 𝑉} ∈ (TopOn‘𝑃) ∧ ran 𝑉 = (Clsd‘{𝑠 ∈ 𝒫 𝑃 ∣ (𝑃 ∖ 𝑠) ∈ ran 𝑉})))) |
| 51 | 42, 50 | mpbird 257 | 1 ⊢ (𝑅 ∈ CRing → (𝐽 ∈ (TopOn‘𝑃) ∧ ran 𝑉 = (Clsd‘𝐽))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3051 {crab 3415 ∖ cdif 3923 ⊆ wss 3926 ∅c0 4308 𝒫 cpw 4575 {csn 4601 ↦ cmpt 5201 dom cdm 5654 ran crn 5655 Fun wfun 6524 ‘cfv 6530 Basecbs 17226 TopOpenctopn 17433 0gc0g 17451 Ringcrg 20191 CRingccrg 20192 LIdealclidl 21165 TopOnctopon 22846 Clsdccld 22952 PrmIdealcprmidl 33396 Speccrspec 33839 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-ac2 10475 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-iin 4970 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-isom 6539 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-rpss 7715 df-om 7860 df-1st 7986 df-2nd 7987 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-1o 8478 df-oadd 8482 df-er 8717 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-dju 9913 df-card 9951 df-ac 10128 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-nn 12239 df-2 12301 df-3 12302 df-4 12303 df-5 12304 df-6 12305 df-7 12306 df-8 12307 df-9 12308 df-n0 12500 df-z 12587 df-dec 12707 df-uz 12851 df-fz 13523 df-struct 17164 df-sets 17181 df-slot 17199 df-ndx 17211 df-base 17227 df-ress 17250 df-plusg 17282 df-mulr 17283 df-sca 17285 df-vsca 17286 df-ip 17287 df-tset 17288 df-ple 17289 df-rest 17434 df-topn 17435 df-0g 17453 df-mre 17596 df-mgm 18616 df-sgrp 18695 df-mnd 18711 df-submnd 18760 df-grp 18917 df-minusg 18918 df-sbg 18919 df-subg 19104 df-cntz 19298 df-lsm 19615 df-cmn 19761 df-abl 19762 df-mgp 20099 df-rng 20111 df-ur 20140 df-ring 20193 df-cring 20194 df-subrg 20528 df-lmod 20817 df-lss 20887 df-lsp 20927 df-sra 21129 df-rgmod 21130 df-lidl 21167 df-rsp 21168 df-lpidl 21281 df-top 22830 df-topon 22847 df-cld 22955 df-prmidl 33397 df-mxidl 33421 df-idlsrg 33462 df-rspec 33840 |
| This theorem is referenced by: zartop 33853 zartopon 33854 zart0 33856 zarmxt1 33857 zarcmplem 33858 rhmpreimacn 33862 |
| Copyright terms: Public domain | W3C validator |