Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zartopn Structured version   Visualization version   GIF version

Theorem zartopn 33604
Description: The Zariski topology is a topology, and its closed sets are images by 𝑉 of the ideals of 𝑅. (Contributed by Thierry Arnoux, 16-Jun-2024.)
Hypotheses
Ref Expression
zartop.1 𝑆 = (Spec‘𝑅)
zartop.2 𝐽 = (TopOpen‘𝑆)
zarcls.1 𝑃 = (PrmIdeal‘𝑅)
zarcls.2 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗𝑃𝑖𝑗})
Assertion
Ref Expression
zartopn (𝑅 ∈ CRing → (𝐽 ∈ (TopOn‘𝑃) ∧ ran 𝑉 = (Clsd‘𝐽)))
Distinct variable groups:   𝑃,𝑖,𝑗   𝑅,𝑖,𝑗   𝑖,𝑉
Allowed substitution hints:   𝑆(𝑖,𝑗)   𝐽(𝑖,𝑗)   𝑉(𝑗)

Proof of Theorem zartopn
Dummy variables 𝑠 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssrab2 4073 . . . . . . . 8 {𝑗𝑃𝑖𝑗} ⊆ 𝑃
2 zarcls.1 . . . . . . . . . 10 𝑃 = (PrmIdeal‘𝑅)
32fvexi 6910 . . . . . . . . 9 𝑃 ∈ V
43elpw2 5348 . . . . . . . 8 ({𝑗𝑃𝑖𝑗} ∈ 𝒫 𝑃 ↔ {𝑗𝑃𝑖𝑗} ⊆ 𝑃)
51, 4mpbir 230 . . . . . . 7 {𝑗𝑃𝑖𝑗} ∈ 𝒫 𝑃
65rgenw 3054 . . . . . 6 𝑖 ∈ (LIdeal‘𝑅){𝑗𝑃𝑖𝑗} ∈ 𝒫 𝑃
7 zarcls.2 . . . . . . 7 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗𝑃𝑖𝑗})
87rnmptss 7132 . . . . . 6 (∀𝑖 ∈ (LIdeal‘𝑅){𝑗𝑃𝑖𝑗} ∈ 𝒫 𝑃 → ran 𝑉 ⊆ 𝒫 𝑃)
96, 8ax-mp 5 . . . . 5 ran 𝑉 ⊆ 𝒫 𝑃
109a1i 11 . . . 4 (𝑅 ∈ CRing → ran 𝑉 ⊆ 𝒫 𝑃)
11 crngring 20197 . . . . 5 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
122rabeqi 3432 . . . . . . . . 9 {𝑗𝑃𝑖𝑗} = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗}
1312mpteq2i 5254 . . . . . . . 8 (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗𝑃𝑖𝑗}) = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗})
147, 13eqtri 2753 . . . . . . 7 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗})
15 eqid 2725 . . . . . . 7 (0g𝑅) = (0g𝑅)
1614, 2, 15zarcls0 33597 . . . . . 6 (𝑅 ∈ Ring → (𝑉‘{(0g𝑅)}) = 𝑃)
177funmpt2 6593 . . . . . . 7 Fun 𝑉
18 eqid 2725 . . . . . . . . 9 (LIdeal‘𝑅) = (LIdeal‘𝑅)
1918, 15lidl0 21138 . . . . . . . 8 (𝑅 ∈ Ring → {(0g𝑅)} ∈ (LIdeal‘𝑅))
203rabex 5335 . . . . . . . . 9 {𝑗𝑃𝑖𝑗} ∈ V
2120, 7dmmpti 6700 . . . . . . . 8 dom 𝑉 = (LIdeal‘𝑅)
2219, 21eleqtrrdi 2836 . . . . . . 7 (𝑅 ∈ Ring → {(0g𝑅)} ∈ dom 𝑉)
23 fvelrn 7085 . . . . . . 7 ((Fun 𝑉 ∧ {(0g𝑅)} ∈ dom 𝑉) → (𝑉‘{(0g𝑅)}) ∈ ran 𝑉)
2417, 22, 23sylancr 585 . . . . . 6 (𝑅 ∈ Ring → (𝑉‘{(0g𝑅)}) ∈ ran 𝑉)
2516, 24eqeltrrd 2826 . . . . 5 (𝑅 ∈ Ring → 𝑃 ∈ ran 𝑉)
2611, 25syl 17 . . . 4 (𝑅 ∈ CRing → 𝑃 ∈ ran 𝑉)
2714zarclsint 33601 . . . 4 ((𝑅 ∈ CRing ∧ 𝑧 ⊆ ran 𝑉𝑧 ≠ ∅) → 𝑧 ∈ ran 𝑉)
2810, 26, 27ismred 17585 . . 3 (𝑅 ∈ CRing → ran 𝑉 ∈ (Moore‘𝑃))
29 eqid 2725 . . . . . . . 8 (Base‘𝑅) = (Base‘𝑅)
3021, 29lidl1 21141 . . . . . . 7 (𝑅 ∈ Ring → (Base‘𝑅) ∈ dom 𝑉)
3111, 30syl 17 . . . . . 6 (𝑅 ∈ CRing → (Base‘𝑅) ∈ dom 𝑉)
3231, 21eleqtrdi 2835 . . . . 5 (𝑅 ∈ CRing → (Base‘𝑅) ∈ (LIdeal‘𝑅))
3314, 29zarcls1 33598 . . . . . 6 ((𝑅 ∈ CRing ∧ (Base‘𝑅) ∈ (LIdeal‘𝑅)) → ((𝑉‘(Base‘𝑅)) = ∅ ↔ (Base‘𝑅) = (Base‘𝑅)))
3429, 33mpbiri 257 . . . . 5 ((𝑅 ∈ CRing ∧ (Base‘𝑅) ∈ (LIdeal‘𝑅)) → (𝑉‘(Base‘𝑅)) = ∅)
3532, 34mpdan 685 . . . 4 (𝑅 ∈ CRing → (𝑉‘(Base‘𝑅)) = ∅)
3617a1i 11 . . . . 5 (𝑅 ∈ CRing → Fun 𝑉)
37 fvelrn 7085 . . . . 5 ((Fun 𝑉 ∧ (Base‘𝑅) ∈ dom 𝑉) → (𝑉‘(Base‘𝑅)) ∈ ran 𝑉)
3836, 31, 37syl2anc 582 . . . 4 (𝑅 ∈ CRing → (𝑉‘(Base‘𝑅)) ∈ ran 𝑉)
3935, 38eqeltrrd 2826 . . 3 (𝑅 ∈ CRing → ∅ ∈ ran 𝑉)
4014zarclsun 33599 . . 3 ((𝑅 ∈ CRing ∧ 𝑥 ∈ ran 𝑉𝑦 ∈ ran 𝑉) → (𝑥𝑦) ∈ ran 𝑉)
41 eqid 2725 . . 3 {𝑠 ∈ 𝒫 𝑃 ∣ (𝑃𝑠) ∈ ran 𝑉} = {𝑠 ∈ 𝒫 𝑃 ∣ (𝑃𝑠) ∈ ran 𝑉}
4228, 39, 40, 41mretopd 23040 . 2 (𝑅 ∈ CRing → ({𝑠 ∈ 𝒫 𝑃 ∣ (𝑃𝑠) ∈ ran 𝑉} ∈ (TopOn‘𝑃) ∧ ran 𝑉 = (Clsd‘{𝑠 ∈ 𝒫 𝑃 ∣ (𝑃𝑠) ∈ ran 𝑉})))
43 zartop.1 . . . . . 6 𝑆 = (Spec‘𝑅)
44 zartop.2 . . . . . 6 𝐽 = (TopOpen‘𝑆)
4543, 44, 2, 7zarcls 33603 . . . . 5 (𝑅 ∈ Ring → 𝐽 = {𝑠 ∈ 𝒫 𝑃 ∣ (𝑃𝑠) ∈ ran 𝑉})
4611, 45syl 17 . . . 4 (𝑅 ∈ CRing → 𝐽 = {𝑠 ∈ 𝒫 𝑃 ∣ (𝑃𝑠) ∈ ran 𝑉})
4746eleq1d 2810 . . 3 (𝑅 ∈ CRing → (𝐽 ∈ (TopOn‘𝑃) ↔ {𝑠 ∈ 𝒫 𝑃 ∣ (𝑃𝑠) ∈ ran 𝑉} ∈ (TopOn‘𝑃)))
4846fveq2d 6900 . . . 4 (𝑅 ∈ CRing → (Clsd‘𝐽) = (Clsd‘{𝑠 ∈ 𝒫 𝑃 ∣ (𝑃𝑠) ∈ ran 𝑉}))
4948eqeq2d 2736 . . 3 (𝑅 ∈ CRing → (ran 𝑉 = (Clsd‘𝐽) ↔ ran 𝑉 = (Clsd‘{𝑠 ∈ 𝒫 𝑃 ∣ (𝑃𝑠) ∈ ran 𝑉})))
5047, 49anbi12d 630 . 2 (𝑅 ∈ CRing → ((𝐽 ∈ (TopOn‘𝑃) ∧ ran 𝑉 = (Clsd‘𝐽)) ↔ ({𝑠 ∈ 𝒫 𝑃 ∣ (𝑃𝑠) ∈ ran 𝑉} ∈ (TopOn‘𝑃) ∧ ran 𝑉 = (Clsd‘{𝑠 ∈ 𝒫 𝑃 ∣ (𝑃𝑠) ∈ ran 𝑉}))))
5142, 50mpbird 256 1 (𝑅 ∈ CRing → (𝐽 ∈ (TopOn‘𝑃) ∧ ran 𝑉 = (Clsd‘𝐽)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  wral 3050  {crab 3418  cdif 3941  wss 3944  c0 4322  𝒫 cpw 4604  {csn 4630  cmpt 5232  dom cdm 5678  ran crn 5679  Fun wfun 6543  cfv 6549  Basecbs 17183  TopOpenctopn 17406  0gc0g 17424  Ringcrg 20185  CRingccrg 20186  LIdealclidl 21114  TopOnctopon 22856  Clsdccld 22964  PrmIdealcprmidl 33247  Speccrspec 33591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-ac2 10488  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4910  df-int 4951  df-iun 4999  df-iin 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-se 5634  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-isom 6558  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-rpss 7729  df-om 7872  df-1st 7994  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-oadd 8491  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-dju 9926  df-card 9964  df-ac 10141  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12506  df-z 12592  df-dec 12711  df-uz 12856  df-fz 13520  df-struct 17119  df-sets 17136  df-slot 17154  df-ndx 17166  df-base 17184  df-ress 17213  df-plusg 17249  df-mulr 17250  df-sca 17252  df-vsca 17253  df-ip 17254  df-tset 17255  df-ple 17256  df-rest 17407  df-topn 17408  df-0g 17426  df-mre 17569  df-mgm 18603  df-sgrp 18682  df-mnd 18698  df-submnd 18744  df-grp 18901  df-minusg 18902  df-sbg 18903  df-subg 19086  df-cntz 19280  df-lsm 19603  df-cmn 19749  df-abl 19750  df-mgp 20087  df-rng 20105  df-ur 20134  df-ring 20187  df-cring 20188  df-subrg 20520  df-lmod 20757  df-lss 20828  df-lsp 20868  df-sra 21070  df-rgmod 21071  df-lidl 21116  df-rsp 21117  df-lpidl 21229  df-top 22840  df-topon 22857  df-cld 22967  df-prmidl 33248  df-mxidl 33272  df-idlsrg 33313  df-rspec 33592
This theorem is referenced by:  zartop  33605  zartopon  33606  zart0  33608  zarmxt1  33609  zarcmplem  33610  rhmpreimacn  33614
  Copyright terms: Public domain W3C validator