Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zartopn Structured version   Visualization version   GIF version

Theorem zartopn 33821
Description: The Zariski topology is a topology, and its closed sets are images by 𝑉 of the ideals of 𝑅. (Contributed by Thierry Arnoux, 16-Jun-2024.)
Hypotheses
Ref Expression
zartop.1 𝑆 = (Spec‘𝑅)
zartop.2 𝐽 = (TopOpen‘𝑆)
zarcls.1 𝑃 = (PrmIdeal‘𝑅)
zarcls.2 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗𝑃𝑖𝑗})
Assertion
Ref Expression
zartopn (𝑅 ∈ CRing → (𝐽 ∈ (TopOn‘𝑃) ∧ ran 𝑉 = (Clsd‘𝐽)))
Distinct variable groups:   𝑃,𝑖,𝑗   𝑅,𝑖,𝑗   𝑖,𝑉
Allowed substitution hints:   𝑆(𝑖,𝑗)   𝐽(𝑖,𝑗)   𝑉(𝑗)

Proof of Theorem zartopn
Dummy variables 𝑠 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssrab2 4103 . . . . . . . 8 {𝑗𝑃𝑖𝑗} ⊆ 𝑃
2 zarcls.1 . . . . . . . . . 10 𝑃 = (PrmIdeal‘𝑅)
32fvexi 6934 . . . . . . . . 9 𝑃 ∈ V
43elpw2 5352 . . . . . . . 8 ({𝑗𝑃𝑖𝑗} ∈ 𝒫 𝑃 ↔ {𝑗𝑃𝑖𝑗} ⊆ 𝑃)
51, 4mpbir 231 . . . . . . 7 {𝑗𝑃𝑖𝑗} ∈ 𝒫 𝑃
65rgenw 3071 . . . . . 6 𝑖 ∈ (LIdeal‘𝑅){𝑗𝑃𝑖𝑗} ∈ 𝒫 𝑃
7 zarcls.2 . . . . . . 7 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗𝑃𝑖𝑗})
87rnmptss 7157 . . . . . 6 (∀𝑖 ∈ (LIdeal‘𝑅){𝑗𝑃𝑖𝑗} ∈ 𝒫 𝑃 → ran 𝑉 ⊆ 𝒫 𝑃)
96, 8ax-mp 5 . . . . 5 ran 𝑉 ⊆ 𝒫 𝑃
109a1i 11 . . . 4 (𝑅 ∈ CRing → ran 𝑉 ⊆ 𝒫 𝑃)
11 crngring 20272 . . . . 5 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
122rabeqi 3457 . . . . . . . . 9 {𝑗𝑃𝑖𝑗} = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗}
1312mpteq2i 5271 . . . . . . . 8 (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗𝑃𝑖𝑗}) = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗})
147, 13eqtri 2768 . . . . . . 7 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗})
15 eqid 2740 . . . . . . 7 (0g𝑅) = (0g𝑅)
1614, 2, 15zarcls0 33814 . . . . . 6 (𝑅 ∈ Ring → (𝑉‘{(0g𝑅)}) = 𝑃)
177funmpt2 6617 . . . . . . 7 Fun 𝑉
18 eqid 2740 . . . . . . . . 9 (LIdeal‘𝑅) = (LIdeal‘𝑅)
1918, 15lidl0 21263 . . . . . . . 8 (𝑅 ∈ Ring → {(0g𝑅)} ∈ (LIdeal‘𝑅))
203rabex 5357 . . . . . . . . 9 {𝑗𝑃𝑖𝑗} ∈ V
2120, 7dmmpti 6724 . . . . . . . 8 dom 𝑉 = (LIdeal‘𝑅)
2219, 21eleqtrrdi 2855 . . . . . . 7 (𝑅 ∈ Ring → {(0g𝑅)} ∈ dom 𝑉)
23 fvelrn 7110 . . . . . . 7 ((Fun 𝑉 ∧ {(0g𝑅)} ∈ dom 𝑉) → (𝑉‘{(0g𝑅)}) ∈ ran 𝑉)
2417, 22, 23sylancr 586 . . . . . 6 (𝑅 ∈ Ring → (𝑉‘{(0g𝑅)}) ∈ ran 𝑉)
2516, 24eqeltrrd 2845 . . . . 5 (𝑅 ∈ Ring → 𝑃 ∈ ran 𝑉)
2611, 25syl 17 . . . 4 (𝑅 ∈ CRing → 𝑃 ∈ ran 𝑉)
2714zarclsint 33818 . . . 4 ((𝑅 ∈ CRing ∧ 𝑧 ⊆ ran 𝑉𝑧 ≠ ∅) → 𝑧 ∈ ran 𝑉)
2810, 26, 27ismred 17660 . . 3 (𝑅 ∈ CRing → ran 𝑉 ∈ (Moore‘𝑃))
29 eqid 2740 . . . . . . . 8 (Base‘𝑅) = (Base‘𝑅)
3021, 29lidl1 21266 . . . . . . 7 (𝑅 ∈ Ring → (Base‘𝑅) ∈ dom 𝑉)
3111, 30syl 17 . . . . . 6 (𝑅 ∈ CRing → (Base‘𝑅) ∈ dom 𝑉)
3231, 21eleqtrdi 2854 . . . . 5 (𝑅 ∈ CRing → (Base‘𝑅) ∈ (LIdeal‘𝑅))
3314, 29zarcls1 33815 . . . . . 6 ((𝑅 ∈ CRing ∧ (Base‘𝑅) ∈ (LIdeal‘𝑅)) → ((𝑉‘(Base‘𝑅)) = ∅ ↔ (Base‘𝑅) = (Base‘𝑅)))
3429, 33mpbiri 258 . . . . 5 ((𝑅 ∈ CRing ∧ (Base‘𝑅) ∈ (LIdeal‘𝑅)) → (𝑉‘(Base‘𝑅)) = ∅)
3532, 34mpdan 686 . . . 4 (𝑅 ∈ CRing → (𝑉‘(Base‘𝑅)) = ∅)
3617a1i 11 . . . . 5 (𝑅 ∈ CRing → Fun 𝑉)
37 fvelrn 7110 . . . . 5 ((Fun 𝑉 ∧ (Base‘𝑅) ∈ dom 𝑉) → (𝑉‘(Base‘𝑅)) ∈ ran 𝑉)
3836, 31, 37syl2anc 583 . . . 4 (𝑅 ∈ CRing → (𝑉‘(Base‘𝑅)) ∈ ran 𝑉)
3935, 38eqeltrrd 2845 . . 3 (𝑅 ∈ CRing → ∅ ∈ ran 𝑉)
4014zarclsun 33816 . . 3 ((𝑅 ∈ CRing ∧ 𝑥 ∈ ran 𝑉𝑦 ∈ ran 𝑉) → (𝑥𝑦) ∈ ran 𝑉)
41 eqid 2740 . . 3 {𝑠 ∈ 𝒫 𝑃 ∣ (𝑃𝑠) ∈ ran 𝑉} = {𝑠 ∈ 𝒫 𝑃 ∣ (𝑃𝑠) ∈ ran 𝑉}
4228, 39, 40, 41mretopd 23121 . 2 (𝑅 ∈ CRing → ({𝑠 ∈ 𝒫 𝑃 ∣ (𝑃𝑠) ∈ ran 𝑉} ∈ (TopOn‘𝑃) ∧ ran 𝑉 = (Clsd‘{𝑠 ∈ 𝒫 𝑃 ∣ (𝑃𝑠) ∈ ran 𝑉})))
43 zartop.1 . . . . . 6 𝑆 = (Spec‘𝑅)
44 zartop.2 . . . . . 6 𝐽 = (TopOpen‘𝑆)
4543, 44, 2, 7zarcls 33820 . . . . 5 (𝑅 ∈ Ring → 𝐽 = {𝑠 ∈ 𝒫 𝑃 ∣ (𝑃𝑠) ∈ ran 𝑉})
4611, 45syl 17 . . . 4 (𝑅 ∈ CRing → 𝐽 = {𝑠 ∈ 𝒫 𝑃 ∣ (𝑃𝑠) ∈ ran 𝑉})
4746eleq1d 2829 . . 3 (𝑅 ∈ CRing → (𝐽 ∈ (TopOn‘𝑃) ↔ {𝑠 ∈ 𝒫 𝑃 ∣ (𝑃𝑠) ∈ ran 𝑉} ∈ (TopOn‘𝑃)))
4846fveq2d 6924 . . . 4 (𝑅 ∈ CRing → (Clsd‘𝐽) = (Clsd‘{𝑠 ∈ 𝒫 𝑃 ∣ (𝑃𝑠) ∈ ran 𝑉}))
4948eqeq2d 2751 . . 3 (𝑅 ∈ CRing → (ran 𝑉 = (Clsd‘𝐽) ↔ ran 𝑉 = (Clsd‘{𝑠 ∈ 𝒫 𝑃 ∣ (𝑃𝑠) ∈ ran 𝑉})))
5047, 49anbi12d 631 . 2 (𝑅 ∈ CRing → ((𝐽 ∈ (TopOn‘𝑃) ∧ ran 𝑉 = (Clsd‘𝐽)) ↔ ({𝑠 ∈ 𝒫 𝑃 ∣ (𝑃𝑠) ∈ ran 𝑉} ∈ (TopOn‘𝑃) ∧ ran 𝑉 = (Clsd‘{𝑠 ∈ 𝒫 𝑃 ∣ (𝑃𝑠) ∈ ran 𝑉}))))
5142, 50mpbird 257 1 (𝑅 ∈ CRing → (𝐽 ∈ (TopOn‘𝑃) ∧ ran 𝑉 = (Clsd‘𝐽)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wral 3067  {crab 3443  cdif 3973  wss 3976  c0 4352  𝒫 cpw 4622  {csn 4648  cmpt 5249  dom cdm 5700  ran crn 5701  Fun wfun 6567  cfv 6573  Basecbs 17258  TopOpenctopn 17481  0gc0g 17499  Ringcrg 20260  CRingccrg 20261  LIdealclidl 21239  TopOnctopon 22937  Clsdccld 23045  PrmIdealcprmidl 33428  Speccrspec 33808
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-ac2 10532  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-rpss 7758  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-oadd 8526  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-dju 9970  df-card 10008  df-ac 10185  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-fz 13568  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-rest 17482  df-topn 17483  df-0g 17501  df-mre 17644  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-grp 18976  df-minusg 18977  df-sbg 18978  df-subg 19163  df-cntz 19357  df-lsm 19678  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-cring 20263  df-subrg 20597  df-lmod 20882  df-lss 20953  df-lsp 20993  df-sra 21195  df-rgmod 21196  df-lidl 21241  df-rsp 21242  df-lpidl 21355  df-top 22921  df-topon 22938  df-cld 23048  df-prmidl 33429  df-mxidl 33453  df-idlsrg 33494  df-rspec 33809
This theorem is referenced by:  zartop  33822  zartopon  33823  zart0  33825  zarmxt1  33826  zarcmplem  33827  rhmpreimacn  33831
  Copyright terms: Public domain W3C validator