Step | Hyp | Ref
| Expression |
1 | | iscusgrvtx.v |
. . 3
⊢ 𝑉 = (Vtx‘𝐺) |
2 | | iscusgredg.v |
. . 3
⊢ 𝐸 = (Edg‘𝐺) |
3 | 1, 2 | iscusgredg 27693 |
. 2
⊢ (𝐺 ∈ ComplUSGraph ↔
(𝐺 ∈ USGraph ∧
∀𝑣 ∈ 𝑉 ∀𝑛 ∈ (𝑉 ∖ {𝑣}){𝑛, 𝑣} ∈ 𝐸)) |
4 | | usgredgss 27432 |
. . . . 5
⊢ (𝐺 ∈ USGraph →
(Edg‘𝐺) ⊆
{𝑥 ∈ 𝒫
(Vtx‘𝐺) ∣
(♯‘𝑥) =
2}) |
5 | 1 | pweqi 4548 |
. . . . . 6
⊢ 𝒫
𝑉 = 𝒫
(Vtx‘𝐺) |
6 | 5 | rabeqi 3406 |
. . . . 5
⊢ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} = {𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑥) = 2} |
7 | 4, 2, 6 | 3sstr4g 3962 |
. . . 4
⊢ (𝐺 ∈ USGraph → 𝐸 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}) |
8 | 7 | adantr 480 |
. . 3
⊢ ((𝐺 ∈ USGraph ∧
∀𝑣 ∈ 𝑉 ∀𝑛 ∈ (𝑉 ∖ {𝑣}){𝑛, 𝑣} ∈ 𝐸) → 𝐸 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}) |
9 | | elss2prb 14129 |
. . . . 5
⊢ (𝑝 ∈ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} ↔ ∃𝑦 ∈ 𝑉 ∃𝑧 ∈ 𝑉 (𝑦 ≠ 𝑧 ∧ 𝑝 = {𝑦, 𝑧})) |
10 | | sneq 4568 |
. . . . . . . . . . . . . . 15
⊢ (𝑣 = 𝑦 → {𝑣} = {𝑦}) |
11 | 10 | difeq2d 4053 |
. . . . . . . . . . . . . 14
⊢ (𝑣 = 𝑦 → (𝑉 ∖ {𝑣}) = (𝑉 ∖ {𝑦})) |
12 | | preq2 4667 |
. . . . . . . . . . . . . . 15
⊢ (𝑣 = 𝑦 → {𝑛, 𝑣} = {𝑛, 𝑦}) |
13 | 12 | eleq1d 2823 |
. . . . . . . . . . . . . 14
⊢ (𝑣 = 𝑦 → ({𝑛, 𝑣} ∈ 𝐸 ↔ {𝑛, 𝑦} ∈ 𝐸)) |
14 | 11, 13 | raleqbidv 3327 |
. . . . . . . . . . . . 13
⊢ (𝑣 = 𝑦 → (∀𝑛 ∈ (𝑉 ∖ {𝑣}){𝑛, 𝑣} ∈ 𝐸 ↔ ∀𝑛 ∈ (𝑉 ∖ {𝑦}){𝑛, 𝑦} ∈ 𝐸)) |
15 | 14 | rspcv 3547 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ 𝑉 → (∀𝑣 ∈ 𝑉 ∀𝑛 ∈ (𝑉 ∖ {𝑣}){𝑛, 𝑣} ∈ 𝐸 → ∀𝑛 ∈ (𝑉 ∖ {𝑦}){𝑛, 𝑦} ∈ 𝐸)) |
16 | 15 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉) → (∀𝑣 ∈ 𝑉 ∀𝑛 ∈ (𝑉 ∖ {𝑣}){𝑛, 𝑣} ∈ 𝐸 → ∀𝑛 ∈ (𝑉 ∖ {𝑦}){𝑛, 𝑦} ∈ 𝐸)) |
17 | 16 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉) ∧ (𝑦 ≠ 𝑧 ∧ 𝑝 = {𝑦, 𝑧})) → (∀𝑣 ∈ 𝑉 ∀𝑛 ∈ (𝑉 ∖ {𝑣}){𝑛, 𝑣} ∈ 𝐸 → ∀𝑛 ∈ (𝑉 ∖ {𝑦}){𝑛, 𝑦} ∈ 𝐸)) |
18 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ ((𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉) → 𝑧 ∈ 𝑉) |
19 | | necom 2996 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ≠ 𝑧 ↔ 𝑧 ≠ 𝑦) |
20 | 19 | biimpi 215 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ≠ 𝑧 → 𝑧 ≠ 𝑦) |
21 | 20 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝑦 ≠ 𝑧 ∧ 𝑝 = {𝑦, 𝑧}) → 𝑧 ≠ 𝑦) |
22 | 18, 21 | anim12i 612 |
. . . . . . . . . . . 12
⊢ (((𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉) ∧ (𝑦 ≠ 𝑧 ∧ 𝑝 = {𝑦, 𝑧})) → (𝑧 ∈ 𝑉 ∧ 𝑧 ≠ 𝑦)) |
23 | | eldifsn 4717 |
. . . . . . . . . . . 12
⊢ (𝑧 ∈ (𝑉 ∖ {𝑦}) ↔ (𝑧 ∈ 𝑉 ∧ 𝑧 ≠ 𝑦)) |
24 | 22, 23 | sylibr 233 |
. . . . . . . . . . 11
⊢ (((𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉) ∧ (𝑦 ≠ 𝑧 ∧ 𝑝 = {𝑦, 𝑧})) → 𝑧 ∈ (𝑉 ∖ {𝑦})) |
25 | | preq1 4666 |
. . . . . . . . . . . . 13
⊢ (𝑛 = 𝑧 → {𝑛, 𝑦} = {𝑧, 𝑦}) |
26 | 25 | eleq1d 2823 |
. . . . . . . . . . . 12
⊢ (𝑛 = 𝑧 → ({𝑛, 𝑦} ∈ 𝐸 ↔ {𝑧, 𝑦} ∈ 𝐸)) |
27 | 26 | rspcv 3547 |
. . . . . . . . . . 11
⊢ (𝑧 ∈ (𝑉 ∖ {𝑦}) → (∀𝑛 ∈ (𝑉 ∖ {𝑦}){𝑛, 𝑦} ∈ 𝐸 → {𝑧, 𝑦} ∈ 𝐸)) |
28 | 24, 27 | syl 17 |
. . . . . . . . . 10
⊢ (((𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉) ∧ (𝑦 ≠ 𝑧 ∧ 𝑝 = {𝑦, 𝑧})) → (∀𝑛 ∈ (𝑉 ∖ {𝑦}){𝑛, 𝑦} ∈ 𝐸 → {𝑧, 𝑦} ∈ 𝐸)) |
29 | | id 22 |
. . . . . . . . . . . . . . . 16
⊢ (𝑝 = {𝑦, 𝑧} → 𝑝 = {𝑦, 𝑧}) |
30 | | prcom 4665 |
. . . . . . . . . . . . . . . 16
⊢ {𝑦, 𝑧} = {𝑧, 𝑦} |
31 | 29, 30 | eqtr2di 2796 |
. . . . . . . . . . . . . . 15
⊢ (𝑝 = {𝑦, 𝑧} → {𝑧, 𝑦} = 𝑝) |
32 | 31 | eleq1d 2823 |
. . . . . . . . . . . . . 14
⊢ (𝑝 = {𝑦, 𝑧} → ({𝑧, 𝑦} ∈ 𝐸 ↔ 𝑝 ∈ 𝐸)) |
33 | 32 | biimpd 228 |
. . . . . . . . . . . . 13
⊢ (𝑝 = {𝑦, 𝑧} → ({𝑧, 𝑦} ∈ 𝐸 → 𝑝 ∈ 𝐸)) |
34 | 33 | a1d 25 |
. . . . . . . . . . . 12
⊢ (𝑝 = {𝑦, 𝑧} → (𝐺 ∈ USGraph → ({𝑧, 𝑦} ∈ 𝐸 → 𝑝 ∈ 𝐸))) |
35 | 34 | ad2antll 725 |
. . . . . . . . . . 11
⊢ (((𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉) ∧ (𝑦 ≠ 𝑧 ∧ 𝑝 = {𝑦, 𝑧})) → (𝐺 ∈ USGraph → ({𝑧, 𝑦} ∈ 𝐸 → 𝑝 ∈ 𝐸))) |
36 | 35 | com23 86 |
. . . . . . . . . 10
⊢ (((𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉) ∧ (𝑦 ≠ 𝑧 ∧ 𝑝 = {𝑦, 𝑧})) → ({𝑧, 𝑦} ∈ 𝐸 → (𝐺 ∈ USGraph → 𝑝 ∈ 𝐸))) |
37 | 17, 28, 36 | 3syld 60 |
. . . . . . . . 9
⊢ (((𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉) ∧ (𝑦 ≠ 𝑧 ∧ 𝑝 = {𝑦, 𝑧})) → (∀𝑣 ∈ 𝑉 ∀𝑛 ∈ (𝑉 ∖ {𝑣}){𝑛, 𝑣} ∈ 𝐸 → (𝐺 ∈ USGraph → 𝑝 ∈ 𝐸))) |
38 | 37 | ex 412 |
. . . . . . . 8
⊢ ((𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉) → ((𝑦 ≠ 𝑧 ∧ 𝑝 = {𝑦, 𝑧}) → (∀𝑣 ∈ 𝑉 ∀𝑛 ∈ (𝑉 ∖ {𝑣}){𝑛, 𝑣} ∈ 𝐸 → (𝐺 ∈ USGraph → 𝑝 ∈ 𝐸)))) |
39 | 38 | rexlimivv 3220 |
. . . . . . 7
⊢
(∃𝑦 ∈
𝑉 ∃𝑧 ∈ 𝑉 (𝑦 ≠ 𝑧 ∧ 𝑝 = {𝑦, 𝑧}) → (∀𝑣 ∈ 𝑉 ∀𝑛 ∈ (𝑉 ∖ {𝑣}){𝑛, 𝑣} ∈ 𝐸 → (𝐺 ∈ USGraph → 𝑝 ∈ 𝐸))) |
40 | 39 | com13 88 |
. . . . . 6
⊢ (𝐺 ∈ USGraph →
(∀𝑣 ∈ 𝑉 ∀𝑛 ∈ (𝑉 ∖ {𝑣}){𝑛, 𝑣} ∈ 𝐸 → (∃𝑦 ∈ 𝑉 ∃𝑧 ∈ 𝑉 (𝑦 ≠ 𝑧 ∧ 𝑝 = {𝑦, 𝑧}) → 𝑝 ∈ 𝐸))) |
41 | 40 | imp 406 |
. . . . 5
⊢ ((𝐺 ∈ USGraph ∧
∀𝑣 ∈ 𝑉 ∀𝑛 ∈ (𝑉 ∖ {𝑣}){𝑛, 𝑣} ∈ 𝐸) → (∃𝑦 ∈ 𝑉 ∃𝑧 ∈ 𝑉 (𝑦 ≠ 𝑧 ∧ 𝑝 = {𝑦, 𝑧}) → 𝑝 ∈ 𝐸)) |
42 | 9, 41 | syl5bi 241 |
. . . 4
⊢ ((𝐺 ∈ USGraph ∧
∀𝑣 ∈ 𝑉 ∀𝑛 ∈ (𝑉 ∖ {𝑣}){𝑛, 𝑣} ∈ 𝐸) → (𝑝 ∈ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} → 𝑝 ∈ 𝐸)) |
43 | 42 | ssrdv 3923 |
. . 3
⊢ ((𝐺 ∈ USGraph ∧
∀𝑣 ∈ 𝑉 ∀𝑛 ∈ (𝑉 ∖ {𝑣}){𝑛, 𝑣} ∈ 𝐸) → {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} ⊆ 𝐸) |
44 | 8, 43 | eqssd 3934 |
. 2
⊢ ((𝐺 ∈ USGraph ∧
∀𝑣 ∈ 𝑉 ∀𝑛 ∈ (𝑉 ∖ {𝑣}){𝑛, 𝑣} ∈ 𝐸) → 𝐸 = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}) |
45 | 3, 44 | sylbi 216 |
1
⊢ (𝐺 ∈ ComplUSGraph →
𝐸 = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}) |