MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cusgredg Structured version   Visualization version   GIF version

Theorem cusgredg 29404
Description: In a complete simple graph, the edges are all the pairs of different vertices. (Contributed by Alexander van der Vekens, 12-Jan-2018.) (Revised by AV, 1-Nov-2020.)
Hypotheses
Ref Expression
iscusgrvtx.v 𝑉 = (Vtx‘𝐺)
iscusgredg.v 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
cusgredg (𝐺 ∈ ComplUSGraph → 𝐸 = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2})
Distinct variable groups:   𝑥,𝐺   𝑥,𝑉
Allowed substitution hint:   𝐸(𝑥)

Proof of Theorem cusgredg
Dummy variables 𝑣 𝑛 𝑝 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iscusgrvtx.v . . 3 𝑉 = (Vtx‘𝐺)
2 iscusgredg.v . . 3 𝐸 = (Edg‘𝐺)
31, 2iscusgredg 29403 . 2 (𝐺 ∈ ComplUSGraph ↔ (𝐺 ∈ USGraph ∧ ∀𝑣𝑉𝑛 ∈ (𝑉 ∖ {𝑣}){𝑛, 𝑣} ∈ 𝐸))
4 usgredgss 29139 . . . . 5 (𝐺 ∈ USGraph → (Edg‘𝐺) ⊆ {𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑥) = 2})
51pweqi 4565 . . . . . 6 𝒫 𝑉 = 𝒫 (Vtx‘𝐺)
65rabeqi 3409 . . . . 5 {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} = {𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑥) = 2}
74, 2, 63sstr4g 3984 . . . 4 (𝐺 ∈ USGraph → 𝐸 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2})
87adantr 480 . . 3 ((𝐺 ∈ USGraph ∧ ∀𝑣𝑉𝑛 ∈ (𝑉 ∖ {𝑣}){𝑛, 𝑣} ∈ 𝐸) → 𝐸 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2})
9 elss2prb 14397 . . . . 5 (𝑝 ∈ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} ↔ ∃𝑦𝑉𝑧𝑉 (𝑦𝑧𝑝 = {𝑦, 𝑧}))
10 sneq 4585 . . . . . . . . . . . . . . 15 (𝑣 = 𝑦 → {𝑣} = {𝑦})
1110difeq2d 4075 . . . . . . . . . . . . . 14 (𝑣 = 𝑦 → (𝑉 ∖ {𝑣}) = (𝑉 ∖ {𝑦}))
12 preq2 4686 . . . . . . . . . . . . . . 15 (𝑣 = 𝑦 → {𝑛, 𝑣} = {𝑛, 𝑦})
1312eleq1d 2818 . . . . . . . . . . . . . 14 (𝑣 = 𝑦 → ({𝑛, 𝑣} ∈ 𝐸 ↔ {𝑛, 𝑦} ∈ 𝐸))
1411, 13raleqbidv 3313 . . . . . . . . . . . . 13 (𝑣 = 𝑦 → (∀𝑛 ∈ (𝑉 ∖ {𝑣}){𝑛, 𝑣} ∈ 𝐸 ↔ ∀𝑛 ∈ (𝑉 ∖ {𝑦}){𝑛, 𝑦} ∈ 𝐸))
1514rspcv 3569 . . . . . . . . . . . 12 (𝑦𝑉 → (∀𝑣𝑉𝑛 ∈ (𝑉 ∖ {𝑣}){𝑛, 𝑣} ∈ 𝐸 → ∀𝑛 ∈ (𝑉 ∖ {𝑦}){𝑛, 𝑦} ∈ 𝐸))
1615adantr 480 . . . . . . . . . . 11 ((𝑦𝑉𝑧𝑉) → (∀𝑣𝑉𝑛 ∈ (𝑉 ∖ {𝑣}){𝑛, 𝑣} ∈ 𝐸 → ∀𝑛 ∈ (𝑉 ∖ {𝑦}){𝑛, 𝑦} ∈ 𝐸))
1716adantr 480 . . . . . . . . . 10 (((𝑦𝑉𝑧𝑉) ∧ (𝑦𝑧𝑝 = {𝑦, 𝑧})) → (∀𝑣𝑉𝑛 ∈ (𝑉 ∖ {𝑣}){𝑛, 𝑣} ∈ 𝐸 → ∀𝑛 ∈ (𝑉 ∖ {𝑦}){𝑛, 𝑦} ∈ 𝐸))
18 simpr 484 . . . . . . . . . . . . 13 ((𝑦𝑉𝑧𝑉) → 𝑧𝑉)
19 necom 2982 . . . . . . . . . . . . . . 15 (𝑦𝑧𝑧𝑦)
2019biimpi 216 . . . . . . . . . . . . . 14 (𝑦𝑧𝑧𝑦)
2120adantr 480 . . . . . . . . . . . . 13 ((𝑦𝑧𝑝 = {𝑦, 𝑧}) → 𝑧𝑦)
2218, 21anim12i 613 . . . . . . . . . . . 12 (((𝑦𝑉𝑧𝑉) ∧ (𝑦𝑧𝑝 = {𝑦, 𝑧})) → (𝑧𝑉𝑧𝑦))
23 eldifsn 4737 . . . . . . . . . . . 12 (𝑧 ∈ (𝑉 ∖ {𝑦}) ↔ (𝑧𝑉𝑧𝑦))
2422, 23sylibr 234 . . . . . . . . . . 11 (((𝑦𝑉𝑧𝑉) ∧ (𝑦𝑧𝑝 = {𝑦, 𝑧})) → 𝑧 ∈ (𝑉 ∖ {𝑦}))
25 preq1 4685 . . . . . . . . . . . . 13 (𝑛 = 𝑧 → {𝑛, 𝑦} = {𝑧, 𝑦})
2625eleq1d 2818 . . . . . . . . . . . 12 (𝑛 = 𝑧 → ({𝑛, 𝑦} ∈ 𝐸 ↔ {𝑧, 𝑦} ∈ 𝐸))
2726rspcv 3569 . . . . . . . . . . 11 (𝑧 ∈ (𝑉 ∖ {𝑦}) → (∀𝑛 ∈ (𝑉 ∖ {𝑦}){𝑛, 𝑦} ∈ 𝐸 → {𝑧, 𝑦} ∈ 𝐸))
2824, 27syl 17 . . . . . . . . . 10 (((𝑦𝑉𝑧𝑉) ∧ (𝑦𝑧𝑝 = {𝑦, 𝑧})) → (∀𝑛 ∈ (𝑉 ∖ {𝑦}){𝑛, 𝑦} ∈ 𝐸 → {𝑧, 𝑦} ∈ 𝐸))
29 id 22 . . . . . . . . . . . . . . . 16 (𝑝 = {𝑦, 𝑧} → 𝑝 = {𝑦, 𝑧})
30 prcom 4684 . . . . . . . . . . . . . . . 16 {𝑦, 𝑧} = {𝑧, 𝑦}
3129, 30eqtr2di 2785 . . . . . . . . . . . . . . 15 (𝑝 = {𝑦, 𝑧} → {𝑧, 𝑦} = 𝑝)
3231eleq1d 2818 . . . . . . . . . . . . . 14 (𝑝 = {𝑦, 𝑧} → ({𝑧, 𝑦} ∈ 𝐸𝑝𝐸))
3332biimpd 229 . . . . . . . . . . . . 13 (𝑝 = {𝑦, 𝑧} → ({𝑧, 𝑦} ∈ 𝐸𝑝𝐸))
3433a1d 25 . . . . . . . . . . . 12 (𝑝 = {𝑦, 𝑧} → (𝐺 ∈ USGraph → ({𝑧, 𝑦} ∈ 𝐸𝑝𝐸)))
3534ad2antll 729 . . . . . . . . . . 11 (((𝑦𝑉𝑧𝑉) ∧ (𝑦𝑧𝑝 = {𝑦, 𝑧})) → (𝐺 ∈ USGraph → ({𝑧, 𝑦} ∈ 𝐸𝑝𝐸)))
3635com23 86 . . . . . . . . . 10 (((𝑦𝑉𝑧𝑉) ∧ (𝑦𝑧𝑝 = {𝑦, 𝑧})) → ({𝑧, 𝑦} ∈ 𝐸 → (𝐺 ∈ USGraph → 𝑝𝐸)))
3717, 28, 363syld 60 . . . . . . . . 9 (((𝑦𝑉𝑧𝑉) ∧ (𝑦𝑧𝑝 = {𝑦, 𝑧})) → (∀𝑣𝑉𝑛 ∈ (𝑉 ∖ {𝑣}){𝑛, 𝑣} ∈ 𝐸 → (𝐺 ∈ USGraph → 𝑝𝐸)))
3837ex 412 . . . . . . . 8 ((𝑦𝑉𝑧𝑉) → ((𝑦𝑧𝑝 = {𝑦, 𝑧}) → (∀𝑣𝑉𝑛 ∈ (𝑉 ∖ {𝑣}){𝑛, 𝑣} ∈ 𝐸 → (𝐺 ∈ USGraph → 𝑝𝐸))))
3938rexlimivv 3175 . . . . . . 7 (∃𝑦𝑉𝑧𝑉 (𝑦𝑧𝑝 = {𝑦, 𝑧}) → (∀𝑣𝑉𝑛 ∈ (𝑉 ∖ {𝑣}){𝑛, 𝑣} ∈ 𝐸 → (𝐺 ∈ USGraph → 𝑝𝐸)))
4039com13 88 . . . . . 6 (𝐺 ∈ USGraph → (∀𝑣𝑉𝑛 ∈ (𝑉 ∖ {𝑣}){𝑛, 𝑣} ∈ 𝐸 → (∃𝑦𝑉𝑧𝑉 (𝑦𝑧𝑝 = {𝑦, 𝑧}) → 𝑝𝐸)))
4140imp 406 . . . . 5 ((𝐺 ∈ USGraph ∧ ∀𝑣𝑉𝑛 ∈ (𝑉 ∖ {𝑣}){𝑛, 𝑣} ∈ 𝐸) → (∃𝑦𝑉𝑧𝑉 (𝑦𝑧𝑝 = {𝑦, 𝑧}) → 𝑝𝐸))
429, 41biimtrid 242 . . . 4 ((𝐺 ∈ USGraph ∧ ∀𝑣𝑉𝑛 ∈ (𝑉 ∖ {𝑣}){𝑛, 𝑣} ∈ 𝐸) → (𝑝 ∈ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} → 𝑝𝐸))
4342ssrdv 3936 . . 3 ((𝐺 ∈ USGraph ∧ ∀𝑣𝑉𝑛 ∈ (𝑉 ∖ {𝑣}){𝑛, 𝑣} ∈ 𝐸) → {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} ⊆ 𝐸)
448, 43eqssd 3948 . 2 ((𝐺 ∈ USGraph ∧ ∀𝑣𝑉𝑛 ∈ (𝑉 ∖ {𝑣}){𝑛, 𝑣} ∈ 𝐸) → 𝐸 = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2})
453, 44sylbi 217 1 (𝐺 ∈ ComplUSGraph → 𝐸 = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  wne 2929  wral 3048  wrex 3057  {crab 3396  cdif 3895  wss 3898  𝒫 cpw 4549  {csn 4575  {cpr 4577  cfv 6486  2c2 12187  chash 14239  Vtxcvtx 28976  Edgcedg 29027  USGraphcusgr 29129  ComplUSGraphccusgr 29390
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-2o 8392  df-oadd 8395  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-dju 9801  df-card 9839  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-2 12195  df-n0 12389  df-xnn0 12462  df-z 12476  df-uz 12739  df-fz 13410  df-hash 14240  df-edg 29028  df-upgr 29062  df-umgr 29063  df-usgr 29131  df-nbgr 29313  df-uvtx 29366  df-cplgr 29391  df-cusgr 29392
This theorem is referenced by:  cusgrfilem1  29436
  Copyright terms: Public domain W3C validator