MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cusgredg Structured version   Visualization version   GIF version

Theorem cusgredg 29253
Description: In a complete simple graph, the edges are all the pairs of different vertices. (Contributed by Alexander van der Vekens, 12-Jan-2018.) (Revised by AV, 1-Nov-2020.)
Hypotheses
Ref Expression
iscusgrvtx.v 𝑉 = (Vtx‘𝐺)
iscusgredg.v 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
cusgredg (𝐺 ∈ ComplUSGraph → 𝐸 = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2})
Distinct variable groups:   𝑥,𝐺   𝑥,𝑉
Allowed substitution hint:   𝐸(𝑥)

Proof of Theorem cusgredg
Dummy variables 𝑣 𝑛 𝑝 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iscusgrvtx.v . . 3 𝑉 = (Vtx‘𝐺)
2 iscusgredg.v . . 3 𝐸 = (Edg‘𝐺)
31, 2iscusgredg 29252 . 2 (𝐺 ∈ ComplUSGraph ↔ (𝐺 ∈ USGraph ∧ ∀𝑣𝑉𝑛 ∈ (𝑉 ∖ {𝑣}){𝑛, 𝑣} ∈ 𝐸))
4 usgredgss 28988 . . . . 5 (𝐺 ∈ USGraph → (Edg‘𝐺) ⊆ {𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑥) = 2})
51pweqi 4612 . . . . . 6 𝒫 𝑉 = 𝒫 (Vtx‘𝐺)
65rabeqi 3433 . . . . 5 {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} = {𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑥) = 2}
74, 2, 63sstr4g 4017 . . . 4 (𝐺 ∈ USGraph → 𝐸 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2})
87adantr 479 . . 3 ((𝐺 ∈ USGraph ∧ ∀𝑣𝑉𝑛 ∈ (𝑉 ∖ {𝑣}){𝑛, 𝑣} ∈ 𝐸) → 𝐸 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2})
9 elss2prb 14478 . . . . 5 (𝑝 ∈ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} ↔ ∃𝑦𝑉𝑧𝑉 (𝑦𝑧𝑝 = {𝑦, 𝑧}))
10 sneq 4632 . . . . . . . . . . . . . . 15 (𝑣 = 𝑦 → {𝑣} = {𝑦})
1110difeq2d 4112 . . . . . . . . . . . . . 14 (𝑣 = 𝑦 → (𝑉 ∖ {𝑣}) = (𝑉 ∖ {𝑦}))
12 preq2 4732 . . . . . . . . . . . . . . 15 (𝑣 = 𝑦 → {𝑛, 𝑣} = {𝑛, 𝑦})
1312eleq1d 2810 . . . . . . . . . . . . . 14 (𝑣 = 𝑦 → ({𝑛, 𝑣} ∈ 𝐸 ↔ {𝑛, 𝑦} ∈ 𝐸))
1411, 13raleqbidv 3330 . . . . . . . . . . . . 13 (𝑣 = 𝑦 → (∀𝑛 ∈ (𝑉 ∖ {𝑣}){𝑛, 𝑣} ∈ 𝐸 ↔ ∀𝑛 ∈ (𝑉 ∖ {𝑦}){𝑛, 𝑦} ∈ 𝐸))
1514rspcv 3597 . . . . . . . . . . . 12 (𝑦𝑉 → (∀𝑣𝑉𝑛 ∈ (𝑉 ∖ {𝑣}){𝑛, 𝑣} ∈ 𝐸 → ∀𝑛 ∈ (𝑉 ∖ {𝑦}){𝑛, 𝑦} ∈ 𝐸))
1615adantr 479 . . . . . . . . . . 11 ((𝑦𝑉𝑧𝑉) → (∀𝑣𝑉𝑛 ∈ (𝑉 ∖ {𝑣}){𝑛, 𝑣} ∈ 𝐸 → ∀𝑛 ∈ (𝑉 ∖ {𝑦}){𝑛, 𝑦} ∈ 𝐸))
1716adantr 479 . . . . . . . . . 10 (((𝑦𝑉𝑧𝑉) ∧ (𝑦𝑧𝑝 = {𝑦, 𝑧})) → (∀𝑣𝑉𝑛 ∈ (𝑉 ∖ {𝑣}){𝑛, 𝑣} ∈ 𝐸 → ∀𝑛 ∈ (𝑉 ∖ {𝑦}){𝑛, 𝑦} ∈ 𝐸))
18 simpr 483 . . . . . . . . . . . . 13 ((𝑦𝑉𝑧𝑉) → 𝑧𝑉)
19 necom 2984 . . . . . . . . . . . . . . 15 (𝑦𝑧𝑧𝑦)
2019biimpi 215 . . . . . . . . . . . . . 14 (𝑦𝑧𝑧𝑦)
2120adantr 479 . . . . . . . . . . . . 13 ((𝑦𝑧𝑝 = {𝑦, 𝑧}) → 𝑧𝑦)
2218, 21anim12i 611 . . . . . . . . . . . 12 (((𝑦𝑉𝑧𝑉) ∧ (𝑦𝑧𝑝 = {𝑦, 𝑧})) → (𝑧𝑉𝑧𝑦))
23 eldifsn 4784 . . . . . . . . . . . 12 (𝑧 ∈ (𝑉 ∖ {𝑦}) ↔ (𝑧𝑉𝑧𝑦))
2422, 23sylibr 233 . . . . . . . . . . 11 (((𝑦𝑉𝑧𝑉) ∧ (𝑦𝑧𝑝 = {𝑦, 𝑧})) → 𝑧 ∈ (𝑉 ∖ {𝑦}))
25 preq1 4731 . . . . . . . . . . . . 13 (𝑛 = 𝑧 → {𝑛, 𝑦} = {𝑧, 𝑦})
2625eleq1d 2810 . . . . . . . . . . . 12 (𝑛 = 𝑧 → ({𝑛, 𝑦} ∈ 𝐸 ↔ {𝑧, 𝑦} ∈ 𝐸))
2726rspcv 3597 . . . . . . . . . . 11 (𝑧 ∈ (𝑉 ∖ {𝑦}) → (∀𝑛 ∈ (𝑉 ∖ {𝑦}){𝑛, 𝑦} ∈ 𝐸 → {𝑧, 𝑦} ∈ 𝐸))
2824, 27syl 17 . . . . . . . . . 10 (((𝑦𝑉𝑧𝑉) ∧ (𝑦𝑧𝑝 = {𝑦, 𝑧})) → (∀𝑛 ∈ (𝑉 ∖ {𝑦}){𝑛, 𝑦} ∈ 𝐸 → {𝑧, 𝑦} ∈ 𝐸))
29 id 22 . . . . . . . . . . . . . . . 16 (𝑝 = {𝑦, 𝑧} → 𝑝 = {𝑦, 𝑧})
30 prcom 4730 . . . . . . . . . . . . . . . 16 {𝑦, 𝑧} = {𝑧, 𝑦}
3129, 30eqtr2di 2782 . . . . . . . . . . . . . . 15 (𝑝 = {𝑦, 𝑧} → {𝑧, 𝑦} = 𝑝)
3231eleq1d 2810 . . . . . . . . . . . . . 14 (𝑝 = {𝑦, 𝑧} → ({𝑧, 𝑦} ∈ 𝐸𝑝𝐸))
3332biimpd 228 . . . . . . . . . . . . 13 (𝑝 = {𝑦, 𝑧} → ({𝑧, 𝑦} ∈ 𝐸𝑝𝐸))
3433a1d 25 . . . . . . . . . . . 12 (𝑝 = {𝑦, 𝑧} → (𝐺 ∈ USGraph → ({𝑧, 𝑦} ∈ 𝐸𝑝𝐸)))
3534ad2antll 727 . . . . . . . . . . 11 (((𝑦𝑉𝑧𝑉) ∧ (𝑦𝑧𝑝 = {𝑦, 𝑧})) → (𝐺 ∈ USGraph → ({𝑧, 𝑦} ∈ 𝐸𝑝𝐸)))
3635com23 86 . . . . . . . . . 10 (((𝑦𝑉𝑧𝑉) ∧ (𝑦𝑧𝑝 = {𝑦, 𝑧})) → ({𝑧, 𝑦} ∈ 𝐸 → (𝐺 ∈ USGraph → 𝑝𝐸)))
3717, 28, 363syld 60 . . . . . . . . 9 (((𝑦𝑉𝑧𝑉) ∧ (𝑦𝑧𝑝 = {𝑦, 𝑧})) → (∀𝑣𝑉𝑛 ∈ (𝑉 ∖ {𝑣}){𝑛, 𝑣} ∈ 𝐸 → (𝐺 ∈ USGraph → 𝑝𝐸)))
3837ex 411 . . . . . . . 8 ((𝑦𝑉𝑧𝑉) → ((𝑦𝑧𝑝 = {𝑦, 𝑧}) → (∀𝑣𝑉𝑛 ∈ (𝑉 ∖ {𝑣}){𝑛, 𝑣} ∈ 𝐸 → (𝐺 ∈ USGraph → 𝑝𝐸))))
3938rexlimivv 3190 . . . . . . 7 (∃𝑦𝑉𝑧𝑉 (𝑦𝑧𝑝 = {𝑦, 𝑧}) → (∀𝑣𝑉𝑛 ∈ (𝑉 ∖ {𝑣}){𝑛, 𝑣} ∈ 𝐸 → (𝐺 ∈ USGraph → 𝑝𝐸)))
4039com13 88 . . . . . 6 (𝐺 ∈ USGraph → (∀𝑣𝑉𝑛 ∈ (𝑉 ∖ {𝑣}){𝑛, 𝑣} ∈ 𝐸 → (∃𝑦𝑉𝑧𝑉 (𝑦𝑧𝑝 = {𝑦, 𝑧}) → 𝑝𝐸)))
4140imp 405 . . . . 5 ((𝐺 ∈ USGraph ∧ ∀𝑣𝑉𝑛 ∈ (𝑉 ∖ {𝑣}){𝑛, 𝑣} ∈ 𝐸) → (∃𝑦𝑉𝑧𝑉 (𝑦𝑧𝑝 = {𝑦, 𝑧}) → 𝑝𝐸))
429, 41biimtrid 241 . . . 4 ((𝐺 ∈ USGraph ∧ ∀𝑣𝑉𝑛 ∈ (𝑉 ∖ {𝑣}){𝑛, 𝑣} ∈ 𝐸) → (𝑝 ∈ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} → 𝑝𝐸))
4342ssrdv 3978 . . 3 ((𝐺 ∈ USGraph ∧ ∀𝑣𝑉𝑛 ∈ (𝑉 ∖ {𝑣}){𝑛, 𝑣} ∈ 𝐸) → {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} ⊆ 𝐸)
448, 43eqssd 3989 . 2 ((𝐺 ∈ USGraph ∧ ∀𝑣𝑉𝑛 ∈ (𝑉 ∖ {𝑣}){𝑛, 𝑣} ∈ 𝐸) → 𝐸 = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2})
453, 44sylbi 216 1 (𝐺 ∈ ComplUSGraph → 𝐸 = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  wne 2930  wral 3051  wrex 3060  {crab 3419  cdif 3936  wss 3939  𝒫 cpw 4596  {csn 4622  {cpr 4624  cfv 6541  2c2 12295  chash 14319  Vtxcvtx 28825  Edgcedg 28876  USGraphcusgr 28978  ComplUSGraphccusgr 29239
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5292  ax-nul 5299  ax-pow 5357  ax-pr 5421  ax-un 7736  ax-cnex 11192  ax-resscn 11193  ax-1cn 11194  ax-icn 11195  ax-addcl 11196  ax-addrcl 11197  ax-mulcl 11198  ax-mulrcl 11199  ax-mulcom 11200  ax-addass 11201  ax-mulass 11202  ax-distr 11203  ax-i2m1 11204  ax-1ne0 11205  ax-1rid 11206  ax-rnegex 11207  ax-rrecex 11208  ax-cnre 11209  ax-pre-lttri 11210  ax-pre-lttrn 11211  ax-pre-ltadd 11212  ax-pre-mulgt0 11213
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3769  df-csb 3885  df-dif 3942  df-un 3944  df-in 3946  df-ss 3956  df-pss 3958  df-nul 4317  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-op 4629  df-uni 4902  df-int 4943  df-iun 4991  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5568  df-eprel 5574  df-po 5582  df-so 5583  df-fr 5625  df-we 5627  df-xp 5676  df-rel 5677  df-cnv 5678  df-co 5679  df-dm 5680  df-rn 5681  df-res 5682  df-ima 5683  df-pred 6298  df-ord 6365  df-on 6366  df-lim 6367  df-suc 6368  df-iota 6493  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7867  df-1st 7989  df-2nd 7990  df-frecs 8283  df-wrecs 8314  df-recs 8388  df-rdg 8427  df-1o 8483  df-2o 8484  df-oadd 8487  df-er 8721  df-en 8961  df-dom 8962  df-sdom 8963  df-fin 8964  df-dju 9922  df-card 9960  df-pnf 11278  df-mnf 11279  df-xr 11280  df-ltxr 11281  df-le 11282  df-sub 11474  df-neg 11475  df-nn 12241  df-2 12303  df-n0 12501  df-xnn0 12573  df-z 12587  df-uz 12851  df-fz 13515  df-hash 14320  df-edg 28877  df-upgr 28911  df-umgr 28912  df-usgr 28980  df-nbgr 29162  df-uvtx 29215  df-cplgr 29240  df-cusgr 29241
This theorem is referenced by:  cusgrfilem1  29285
  Copyright terms: Public domain W3C validator