| Step | Hyp | Ref
| Expression |
| 1 | | iscusgrvtx.v |
. . 3
⊢ 𝑉 = (Vtx‘𝐺) |
| 2 | | iscusgredg.v |
. . 3
⊢ 𝐸 = (Edg‘𝐺) |
| 3 | 1, 2 | iscusgredg 29402 |
. 2
⊢ (𝐺 ∈ ComplUSGraph ↔
(𝐺 ∈ USGraph ∧
∀𝑣 ∈ 𝑉 ∀𝑛 ∈ (𝑉 ∖ {𝑣}){𝑛, 𝑣} ∈ 𝐸)) |
| 4 | | usgredgss 29138 |
. . . . 5
⊢ (𝐺 ∈ USGraph →
(Edg‘𝐺) ⊆
{𝑥 ∈ 𝒫
(Vtx‘𝐺) ∣
(♯‘𝑥) =
2}) |
| 5 | 1 | pweqi 4591 |
. . . . . 6
⊢ 𝒫
𝑉 = 𝒫
(Vtx‘𝐺) |
| 6 | 5 | rabeqi 3429 |
. . . . 5
⊢ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} = {𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑥) = 2} |
| 7 | 4, 2, 6 | 3sstr4g 4012 |
. . . 4
⊢ (𝐺 ∈ USGraph → 𝐸 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}) |
| 8 | 7 | adantr 480 |
. . 3
⊢ ((𝐺 ∈ USGraph ∧
∀𝑣 ∈ 𝑉 ∀𝑛 ∈ (𝑉 ∖ {𝑣}){𝑛, 𝑣} ∈ 𝐸) → 𝐸 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}) |
| 9 | | elss2prb 14506 |
. . . . 5
⊢ (𝑝 ∈ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} ↔ ∃𝑦 ∈ 𝑉 ∃𝑧 ∈ 𝑉 (𝑦 ≠ 𝑧 ∧ 𝑝 = {𝑦, 𝑧})) |
| 10 | | sneq 4611 |
. . . . . . . . . . . . . . 15
⊢ (𝑣 = 𝑦 → {𝑣} = {𝑦}) |
| 11 | 10 | difeq2d 4101 |
. . . . . . . . . . . . . 14
⊢ (𝑣 = 𝑦 → (𝑉 ∖ {𝑣}) = (𝑉 ∖ {𝑦})) |
| 12 | | preq2 4710 |
. . . . . . . . . . . . . . 15
⊢ (𝑣 = 𝑦 → {𝑛, 𝑣} = {𝑛, 𝑦}) |
| 13 | 12 | eleq1d 2819 |
. . . . . . . . . . . . . 14
⊢ (𝑣 = 𝑦 → ({𝑛, 𝑣} ∈ 𝐸 ↔ {𝑛, 𝑦} ∈ 𝐸)) |
| 14 | 11, 13 | raleqbidv 3325 |
. . . . . . . . . . . . 13
⊢ (𝑣 = 𝑦 → (∀𝑛 ∈ (𝑉 ∖ {𝑣}){𝑛, 𝑣} ∈ 𝐸 ↔ ∀𝑛 ∈ (𝑉 ∖ {𝑦}){𝑛, 𝑦} ∈ 𝐸)) |
| 15 | 14 | rspcv 3597 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ 𝑉 → (∀𝑣 ∈ 𝑉 ∀𝑛 ∈ (𝑉 ∖ {𝑣}){𝑛, 𝑣} ∈ 𝐸 → ∀𝑛 ∈ (𝑉 ∖ {𝑦}){𝑛, 𝑦} ∈ 𝐸)) |
| 16 | 15 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉) → (∀𝑣 ∈ 𝑉 ∀𝑛 ∈ (𝑉 ∖ {𝑣}){𝑛, 𝑣} ∈ 𝐸 → ∀𝑛 ∈ (𝑉 ∖ {𝑦}){𝑛, 𝑦} ∈ 𝐸)) |
| 17 | 16 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉) ∧ (𝑦 ≠ 𝑧 ∧ 𝑝 = {𝑦, 𝑧})) → (∀𝑣 ∈ 𝑉 ∀𝑛 ∈ (𝑉 ∖ {𝑣}){𝑛, 𝑣} ∈ 𝐸 → ∀𝑛 ∈ (𝑉 ∖ {𝑦}){𝑛, 𝑦} ∈ 𝐸)) |
| 18 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ ((𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉) → 𝑧 ∈ 𝑉) |
| 19 | | necom 2985 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ≠ 𝑧 ↔ 𝑧 ≠ 𝑦) |
| 20 | 19 | biimpi 216 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ≠ 𝑧 → 𝑧 ≠ 𝑦) |
| 21 | 20 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝑦 ≠ 𝑧 ∧ 𝑝 = {𝑦, 𝑧}) → 𝑧 ≠ 𝑦) |
| 22 | 18, 21 | anim12i 613 |
. . . . . . . . . . . 12
⊢ (((𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉) ∧ (𝑦 ≠ 𝑧 ∧ 𝑝 = {𝑦, 𝑧})) → (𝑧 ∈ 𝑉 ∧ 𝑧 ≠ 𝑦)) |
| 23 | | eldifsn 4762 |
. . . . . . . . . . . 12
⊢ (𝑧 ∈ (𝑉 ∖ {𝑦}) ↔ (𝑧 ∈ 𝑉 ∧ 𝑧 ≠ 𝑦)) |
| 24 | 22, 23 | sylibr 234 |
. . . . . . . . . . 11
⊢ (((𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉) ∧ (𝑦 ≠ 𝑧 ∧ 𝑝 = {𝑦, 𝑧})) → 𝑧 ∈ (𝑉 ∖ {𝑦})) |
| 25 | | preq1 4709 |
. . . . . . . . . . . . 13
⊢ (𝑛 = 𝑧 → {𝑛, 𝑦} = {𝑧, 𝑦}) |
| 26 | 25 | eleq1d 2819 |
. . . . . . . . . . . 12
⊢ (𝑛 = 𝑧 → ({𝑛, 𝑦} ∈ 𝐸 ↔ {𝑧, 𝑦} ∈ 𝐸)) |
| 27 | 26 | rspcv 3597 |
. . . . . . . . . . 11
⊢ (𝑧 ∈ (𝑉 ∖ {𝑦}) → (∀𝑛 ∈ (𝑉 ∖ {𝑦}){𝑛, 𝑦} ∈ 𝐸 → {𝑧, 𝑦} ∈ 𝐸)) |
| 28 | 24, 27 | syl 17 |
. . . . . . . . . 10
⊢ (((𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉) ∧ (𝑦 ≠ 𝑧 ∧ 𝑝 = {𝑦, 𝑧})) → (∀𝑛 ∈ (𝑉 ∖ {𝑦}){𝑛, 𝑦} ∈ 𝐸 → {𝑧, 𝑦} ∈ 𝐸)) |
| 29 | | id 22 |
. . . . . . . . . . . . . . . 16
⊢ (𝑝 = {𝑦, 𝑧} → 𝑝 = {𝑦, 𝑧}) |
| 30 | | prcom 4708 |
. . . . . . . . . . . . . . . 16
⊢ {𝑦, 𝑧} = {𝑧, 𝑦} |
| 31 | 29, 30 | eqtr2di 2787 |
. . . . . . . . . . . . . . 15
⊢ (𝑝 = {𝑦, 𝑧} → {𝑧, 𝑦} = 𝑝) |
| 32 | 31 | eleq1d 2819 |
. . . . . . . . . . . . . 14
⊢ (𝑝 = {𝑦, 𝑧} → ({𝑧, 𝑦} ∈ 𝐸 ↔ 𝑝 ∈ 𝐸)) |
| 33 | 32 | biimpd 229 |
. . . . . . . . . . . . 13
⊢ (𝑝 = {𝑦, 𝑧} → ({𝑧, 𝑦} ∈ 𝐸 → 𝑝 ∈ 𝐸)) |
| 34 | 33 | a1d 25 |
. . . . . . . . . . . 12
⊢ (𝑝 = {𝑦, 𝑧} → (𝐺 ∈ USGraph → ({𝑧, 𝑦} ∈ 𝐸 → 𝑝 ∈ 𝐸))) |
| 35 | 34 | ad2antll 729 |
. . . . . . . . . . 11
⊢ (((𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉) ∧ (𝑦 ≠ 𝑧 ∧ 𝑝 = {𝑦, 𝑧})) → (𝐺 ∈ USGraph → ({𝑧, 𝑦} ∈ 𝐸 → 𝑝 ∈ 𝐸))) |
| 36 | 35 | com23 86 |
. . . . . . . . . 10
⊢ (((𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉) ∧ (𝑦 ≠ 𝑧 ∧ 𝑝 = {𝑦, 𝑧})) → ({𝑧, 𝑦} ∈ 𝐸 → (𝐺 ∈ USGraph → 𝑝 ∈ 𝐸))) |
| 37 | 17, 28, 36 | 3syld 60 |
. . . . . . . . 9
⊢ (((𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉) ∧ (𝑦 ≠ 𝑧 ∧ 𝑝 = {𝑦, 𝑧})) → (∀𝑣 ∈ 𝑉 ∀𝑛 ∈ (𝑉 ∖ {𝑣}){𝑛, 𝑣} ∈ 𝐸 → (𝐺 ∈ USGraph → 𝑝 ∈ 𝐸))) |
| 38 | 37 | ex 412 |
. . . . . . . 8
⊢ ((𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉) → ((𝑦 ≠ 𝑧 ∧ 𝑝 = {𝑦, 𝑧}) → (∀𝑣 ∈ 𝑉 ∀𝑛 ∈ (𝑉 ∖ {𝑣}){𝑛, 𝑣} ∈ 𝐸 → (𝐺 ∈ USGraph → 𝑝 ∈ 𝐸)))) |
| 39 | 38 | rexlimivv 3186 |
. . . . . . 7
⊢
(∃𝑦 ∈
𝑉 ∃𝑧 ∈ 𝑉 (𝑦 ≠ 𝑧 ∧ 𝑝 = {𝑦, 𝑧}) → (∀𝑣 ∈ 𝑉 ∀𝑛 ∈ (𝑉 ∖ {𝑣}){𝑛, 𝑣} ∈ 𝐸 → (𝐺 ∈ USGraph → 𝑝 ∈ 𝐸))) |
| 40 | 39 | com13 88 |
. . . . . 6
⊢ (𝐺 ∈ USGraph →
(∀𝑣 ∈ 𝑉 ∀𝑛 ∈ (𝑉 ∖ {𝑣}){𝑛, 𝑣} ∈ 𝐸 → (∃𝑦 ∈ 𝑉 ∃𝑧 ∈ 𝑉 (𝑦 ≠ 𝑧 ∧ 𝑝 = {𝑦, 𝑧}) → 𝑝 ∈ 𝐸))) |
| 41 | 40 | imp 406 |
. . . . 5
⊢ ((𝐺 ∈ USGraph ∧
∀𝑣 ∈ 𝑉 ∀𝑛 ∈ (𝑉 ∖ {𝑣}){𝑛, 𝑣} ∈ 𝐸) → (∃𝑦 ∈ 𝑉 ∃𝑧 ∈ 𝑉 (𝑦 ≠ 𝑧 ∧ 𝑝 = {𝑦, 𝑧}) → 𝑝 ∈ 𝐸)) |
| 42 | 9, 41 | biimtrid 242 |
. . . 4
⊢ ((𝐺 ∈ USGraph ∧
∀𝑣 ∈ 𝑉 ∀𝑛 ∈ (𝑉 ∖ {𝑣}){𝑛, 𝑣} ∈ 𝐸) → (𝑝 ∈ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} → 𝑝 ∈ 𝐸)) |
| 43 | 42 | ssrdv 3964 |
. . 3
⊢ ((𝐺 ∈ USGraph ∧
∀𝑣 ∈ 𝑉 ∀𝑛 ∈ (𝑉 ∖ {𝑣}){𝑛, 𝑣} ∈ 𝐸) → {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} ⊆ 𝐸) |
| 44 | 8, 43 | eqssd 3976 |
. 2
⊢ ((𝐺 ∈ USGraph ∧
∀𝑣 ∈ 𝑉 ∀𝑛 ∈ (𝑉 ∖ {𝑣}){𝑛, 𝑣} ∈ 𝐸) → 𝐸 = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}) |
| 45 | 3, 44 | sylbi 217 |
1
⊢ (𝐺 ∈ ComplUSGraph →
𝐸 = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}) |