MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cusgredg Structured version   Visualization version   GIF version

Theorem cusgredg 29358
Description: In a complete simple graph, the edges are all the pairs of different vertices. (Contributed by Alexander van der Vekens, 12-Jan-2018.) (Revised by AV, 1-Nov-2020.)
Hypotheses
Ref Expression
iscusgrvtx.v 𝑉 = (Vtx‘𝐺)
iscusgredg.v 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
cusgredg (𝐺 ∈ ComplUSGraph → 𝐸 = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2})
Distinct variable groups:   𝑥,𝐺   𝑥,𝑉
Allowed substitution hint:   𝐸(𝑥)

Proof of Theorem cusgredg
Dummy variables 𝑣 𝑛 𝑝 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iscusgrvtx.v . . 3 𝑉 = (Vtx‘𝐺)
2 iscusgredg.v . . 3 𝐸 = (Edg‘𝐺)
31, 2iscusgredg 29357 . 2 (𝐺 ∈ ComplUSGraph ↔ (𝐺 ∈ USGraph ∧ ∀𝑣𝑉𝑛 ∈ (𝑉 ∖ {𝑣}){𝑛, 𝑣} ∈ 𝐸))
4 usgredgss 29093 . . . . 5 (𝐺 ∈ USGraph → (Edg‘𝐺) ⊆ {𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑥) = 2})
51pweqi 4582 . . . . . 6 𝒫 𝑉 = 𝒫 (Vtx‘𝐺)
65rabeqi 3422 . . . . 5 {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} = {𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑥) = 2}
74, 2, 63sstr4g 4003 . . . 4 (𝐺 ∈ USGraph → 𝐸 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2})
87adantr 480 . . 3 ((𝐺 ∈ USGraph ∧ ∀𝑣𝑉𝑛 ∈ (𝑉 ∖ {𝑣}){𝑛, 𝑣} ∈ 𝐸) → 𝐸 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2})
9 elss2prb 14460 . . . . 5 (𝑝 ∈ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} ↔ ∃𝑦𝑉𝑧𝑉 (𝑦𝑧𝑝 = {𝑦, 𝑧}))
10 sneq 4602 . . . . . . . . . . . . . . 15 (𝑣 = 𝑦 → {𝑣} = {𝑦})
1110difeq2d 4092 . . . . . . . . . . . . . 14 (𝑣 = 𝑦 → (𝑉 ∖ {𝑣}) = (𝑉 ∖ {𝑦}))
12 preq2 4701 . . . . . . . . . . . . . . 15 (𝑣 = 𝑦 → {𝑛, 𝑣} = {𝑛, 𝑦})
1312eleq1d 2814 . . . . . . . . . . . . . 14 (𝑣 = 𝑦 → ({𝑛, 𝑣} ∈ 𝐸 ↔ {𝑛, 𝑦} ∈ 𝐸))
1411, 13raleqbidv 3321 . . . . . . . . . . . . 13 (𝑣 = 𝑦 → (∀𝑛 ∈ (𝑉 ∖ {𝑣}){𝑛, 𝑣} ∈ 𝐸 ↔ ∀𝑛 ∈ (𝑉 ∖ {𝑦}){𝑛, 𝑦} ∈ 𝐸))
1514rspcv 3587 . . . . . . . . . . . 12 (𝑦𝑉 → (∀𝑣𝑉𝑛 ∈ (𝑉 ∖ {𝑣}){𝑛, 𝑣} ∈ 𝐸 → ∀𝑛 ∈ (𝑉 ∖ {𝑦}){𝑛, 𝑦} ∈ 𝐸))
1615adantr 480 . . . . . . . . . . 11 ((𝑦𝑉𝑧𝑉) → (∀𝑣𝑉𝑛 ∈ (𝑉 ∖ {𝑣}){𝑛, 𝑣} ∈ 𝐸 → ∀𝑛 ∈ (𝑉 ∖ {𝑦}){𝑛, 𝑦} ∈ 𝐸))
1716adantr 480 . . . . . . . . . 10 (((𝑦𝑉𝑧𝑉) ∧ (𝑦𝑧𝑝 = {𝑦, 𝑧})) → (∀𝑣𝑉𝑛 ∈ (𝑉 ∖ {𝑣}){𝑛, 𝑣} ∈ 𝐸 → ∀𝑛 ∈ (𝑉 ∖ {𝑦}){𝑛, 𝑦} ∈ 𝐸))
18 simpr 484 . . . . . . . . . . . . 13 ((𝑦𝑉𝑧𝑉) → 𝑧𝑉)
19 necom 2979 . . . . . . . . . . . . . . 15 (𝑦𝑧𝑧𝑦)
2019biimpi 216 . . . . . . . . . . . . . 14 (𝑦𝑧𝑧𝑦)
2120adantr 480 . . . . . . . . . . . . 13 ((𝑦𝑧𝑝 = {𝑦, 𝑧}) → 𝑧𝑦)
2218, 21anim12i 613 . . . . . . . . . . . 12 (((𝑦𝑉𝑧𝑉) ∧ (𝑦𝑧𝑝 = {𝑦, 𝑧})) → (𝑧𝑉𝑧𝑦))
23 eldifsn 4753 . . . . . . . . . . . 12 (𝑧 ∈ (𝑉 ∖ {𝑦}) ↔ (𝑧𝑉𝑧𝑦))
2422, 23sylibr 234 . . . . . . . . . . 11 (((𝑦𝑉𝑧𝑉) ∧ (𝑦𝑧𝑝 = {𝑦, 𝑧})) → 𝑧 ∈ (𝑉 ∖ {𝑦}))
25 preq1 4700 . . . . . . . . . . . . 13 (𝑛 = 𝑧 → {𝑛, 𝑦} = {𝑧, 𝑦})
2625eleq1d 2814 . . . . . . . . . . . 12 (𝑛 = 𝑧 → ({𝑛, 𝑦} ∈ 𝐸 ↔ {𝑧, 𝑦} ∈ 𝐸))
2726rspcv 3587 . . . . . . . . . . 11 (𝑧 ∈ (𝑉 ∖ {𝑦}) → (∀𝑛 ∈ (𝑉 ∖ {𝑦}){𝑛, 𝑦} ∈ 𝐸 → {𝑧, 𝑦} ∈ 𝐸))
2824, 27syl 17 . . . . . . . . . 10 (((𝑦𝑉𝑧𝑉) ∧ (𝑦𝑧𝑝 = {𝑦, 𝑧})) → (∀𝑛 ∈ (𝑉 ∖ {𝑦}){𝑛, 𝑦} ∈ 𝐸 → {𝑧, 𝑦} ∈ 𝐸))
29 id 22 . . . . . . . . . . . . . . . 16 (𝑝 = {𝑦, 𝑧} → 𝑝 = {𝑦, 𝑧})
30 prcom 4699 . . . . . . . . . . . . . . . 16 {𝑦, 𝑧} = {𝑧, 𝑦}
3129, 30eqtr2di 2782 . . . . . . . . . . . . . . 15 (𝑝 = {𝑦, 𝑧} → {𝑧, 𝑦} = 𝑝)
3231eleq1d 2814 . . . . . . . . . . . . . 14 (𝑝 = {𝑦, 𝑧} → ({𝑧, 𝑦} ∈ 𝐸𝑝𝐸))
3332biimpd 229 . . . . . . . . . . . . 13 (𝑝 = {𝑦, 𝑧} → ({𝑧, 𝑦} ∈ 𝐸𝑝𝐸))
3433a1d 25 . . . . . . . . . . . 12 (𝑝 = {𝑦, 𝑧} → (𝐺 ∈ USGraph → ({𝑧, 𝑦} ∈ 𝐸𝑝𝐸)))
3534ad2antll 729 . . . . . . . . . . 11 (((𝑦𝑉𝑧𝑉) ∧ (𝑦𝑧𝑝 = {𝑦, 𝑧})) → (𝐺 ∈ USGraph → ({𝑧, 𝑦} ∈ 𝐸𝑝𝐸)))
3635com23 86 . . . . . . . . . 10 (((𝑦𝑉𝑧𝑉) ∧ (𝑦𝑧𝑝 = {𝑦, 𝑧})) → ({𝑧, 𝑦} ∈ 𝐸 → (𝐺 ∈ USGraph → 𝑝𝐸)))
3717, 28, 363syld 60 . . . . . . . . 9 (((𝑦𝑉𝑧𝑉) ∧ (𝑦𝑧𝑝 = {𝑦, 𝑧})) → (∀𝑣𝑉𝑛 ∈ (𝑉 ∖ {𝑣}){𝑛, 𝑣} ∈ 𝐸 → (𝐺 ∈ USGraph → 𝑝𝐸)))
3837ex 412 . . . . . . . 8 ((𝑦𝑉𝑧𝑉) → ((𝑦𝑧𝑝 = {𝑦, 𝑧}) → (∀𝑣𝑉𝑛 ∈ (𝑉 ∖ {𝑣}){𝑛, 𝑣} ∈ 𝐸 → (𝐺 ∈ USGraph → 𝑝𝐸))))
3938rexlimivv 3180 . . . . . . 7 (∃𝑦𝑉𝑧𝑉 (𝑦𝑧𝑝 = {𝑦, 𝑧}) → (∀𝑣𝑉𝑛 ∈ (𝑉 ∖ {𝑣}){𝑛, 𝑣} ∈ 𝐸 → (𝐺 ∈ USGraph → 𝑝𝐸)))
4039com13 88 . . . . . 6 (𝐺 ∈ USGraph → (∀𝑣𝑉𝑛 ∈ (𝑉 ∖ {𝑣}){𝑛, 𝑣} ∈ 𝐸 → (∃𝑦𝑉𝑧𝑉 (𝑦𝑧𝑝 = {𝑦, 𝑧}) → 𝑝𝐸)))
4140imp 406 . . . . 5 ((𝐺 ∈ USGraph ∧ ∀𝑣𝑉𝑛 ∈ (𝑉 ∖ {𝑣}){𝑛, 𝑣} ∈ 𝐸) → (∃𝑦𝑉𝑧𝑉 (𝑦𝑧𝑝 = {𝑦, 𝑧}) → 𝑝𝐸))
429, 41biimtrid 242 . . . 4 ((𝐺 ∈ USGraph ∧ ∀𝑣𝑉𝑛 ∈ (𝑉 ∖ {𝑣}){𝑛, 𝑣} ∈ 𝐸) → (𝑝 ∈ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} → 𝑝𝐸))
4342ssrdv 3955 . . 3 ((𝐺 ∈ USGraph ∧ ∀𝑣𝑉𝑛 ∈ (𝑉 ∖ {𝑣}){𝑛, 𝑣} ∈ 𝐸) → {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} ⊆ 𝐸)
448, 43eqssd 3967 . 2 ((𝐺 ∈ USGraph ∧ ∀𝑣𝑉𝑛 ∈ (𝑉 ∖ {𝑣}){𝑛, 𝑣} ∈ 𝐸) → 𝐸 = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2})
453, 44sylbi 217 1 (𝐺 ∈ ComplUSGraph → 𝐸 = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2926  wral 3045  wrex 3054  {crab 3408  cdif 3914  wss 3917  𝒫 cpw 4566  {csn 4592  {cpr 4594  cfv 6514  2c2 12248  chash 14302  Vtxcvtx 28930  Edgcedg 28981  USGraphcusgr 29083  ComplUSGraphccusgr 29344
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-oadd 8441  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-dju 9861  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-n0 12450  df-xnn0 12523  df-z 12537  df-uz 12801  df-fz 13476  df-hash 14303  df-edg 28982  df-upgr 29016  df-umgr 29017  df-usgr 29085  df-nbgr 29267  df-uvtx 29320  df-cplgr 29345  df-cusgr 29346
This theorem is referenced by:  cusgrfilem1  29390
  Copyright terms: Public domain W3C validator