MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  phimullem Structured version   Visualization version   GIF version

Theorem phimullem 16651
Description: Lemma for phimul 16652. (Contributed by Mario Carneiro, 24-Feb-2014.)
Hypotheses
Ref Expression
crth.1 𝑆 = (0..^(𝑀 · 𝑁))
crth.2 𝑇 = ((0..^𝑀) × (0..^𝑁))
crth.3 𝐹 = (𝑥𝑆 ↦ ⟨(𝑥 mod 𝑀), (𝑥 mod 𝑁)⟩)
crth.4 (𝜑 → (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1))
phimul.4 𝑈 = {𝑦 ∈ (0..^𝑀) ∣ (𝑦 gcd 𝑀) = 1}
phimul.5 𝑉 = {𝑦 ∈ (0..^𝑁) ∣ (𝑦 gcd 𝑁) = 1}
phimul.6 𝑊 = {𝑦𝑆 ∣ (𝑦 gcd (𝑀 · 𝑁)) = 1}
Assertion
Ref Expression
phimullem (𝜑 → (ϕ‘(𝑀 · 𝑁)) = ((ϕ‘𝑀) · (ϕ‘𝑁)))
Distinct variable groups:   𝑦,𝐹   𝑥,𝑦,𝑀   𝜑,𝑥,𝑦   𝑥,𝑆,𝑦   𝑥,𝑇   𝑥,𝑁,𝑦
Allowed substitution hints:   𝑇(𝑦)   𝑈(𝑥,𝑦)   𝐹(𝑥)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem phimullem
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7364 . . . . . . . . . . . . . 14 (𝑦 = 𝑤 → (𝑦 gcd (𝑀 · 𝑁)) = (𝑤 gcd (𝑀 · 𝑁)))
21eqeq1d 2738 . . . . . . . . . . . . 13 (𝑦 = 𝑤 → ((𝑦 gcd (𝑀 · 𝑁)) = 1 ↔ (𝑤 gcd (𝑀 · 𝑁)) = 1))
3 phimul.6 . . . . . . . . . . . . 13 𝑊 = {𝑦𝑆 ∣ (𝑦 gcd (𝑀 · 𝑁)) = 1}
42, 3elrab2 3648 . . . . . . . . . . . 12 (𝑤𝑊 ↔ (𝑤𝑆 ∧ (𝑤 gcd (𝑀 · 𝑁)) = 1))
54simplbi 498 . . . . . . . . . . 11 (𝑤𝑊𝑤𝑆)
6 oveq1 7364 . . . . . . . . . . . . 13 (𝑥 = 𝑤 → (𝑥 mod 𝑀) = (𝑤 mod 𝑀))
7 oveq1 7364 . . . . . . . . . . . . 13 (𝑥 = 𝑤 → (𝑥 mod 𝑁) = (𝑤 mod 𝑁))
86, 7opeq12d 4838 . . . . . . . . . . . 12 (𝑥 = 𝑤 → ⟨(𝑥 mod 𝑀), (𝑥 mod 𝑁)⟩ = ⟨(𝑤 mod 𝑀), (𝑤 mod 𝑁)⟩)
9 crth.3 . . . . . . . . . . . 12 𝐹 = (𝑥𝑆 ↦ ⟨(𝑥 mod 𝑀), (𝑥 mod 𝑁)⟩)
10 opex 5421 . . . . . . . . . . . 12 ⟨(𝑤 mod 𝑀), (𝑤 mod 𝑁)⟩ ∈ V
118, 9, 10fvmpt 6948 . . . . . . . . . . 11 (𝑤𝑆 → (𝐹𝑤) = ⟨(𝑤 mod 𝑀), (𝑤 mod 𝑁)⟩)
125, 11syl 17 . . . . . . . . . 10 (𝑤𝑊 → (𝐹𝑤) = ⟨(𝑤 mod 𝑀), (𝑤 mod 𝑁)⟩)
1312adantl 482 . . . . . . . . 9 ((𝜑𝑤𝑊) → (𝐹𝑤) = ⟨(𝑤 mod 𝑀), (𝑤 mod 𝑁)⟩)
14 crth.1 . . . . . . . . . . . . . . 15 𝑆 = (0..^(𝑀 · 𝑁))
155, 14eleqtrdi 2848 . . . . . . . . . . . . . 14 (𝑤𝑊𝑤 ∈ (0..^(𝑀 · 𝑁)))
1615adantl 482 . . . . . . . . . . . . 13 ((𝜑𝑤𝑊) → 𝑤 ∈ (0..^(𝑀 · 𝑁)))
17 elfzoelz 13572 . . . . . . . . . . . . 13 (𝑤 ∈ (0..^(𝑀 · 𝑁)) → 𝑤 ∈ ℤ)
1816, 17syl 17 . . . . . . . . . . . 12 ((𝜑𝑤𝑊) → 𝑤 ∈ ℤ)
19 crth.4 . . . . . . . . . . . . . 14 (𝜑 → (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1))
2019simp1d 1142 . . . . . . . . . . . . 13 (𝜑𝑀 ∈ ℕ)
2120adantr 481 . . . . . . . . . . . 12 ((𝜑𝑤𝑊) → 𝑀 ∈ ℕ)
22 zmodfzo 13799 . . . . . . . . . . . 12 ((𝑤 ∈ ℤ ∧ 𝑀 ∈ ℕ) → (𝑤 mod 𝑀) ∈ (0..^𝑀))
2318, 21, 22syl2anc 584 . . . . . . . . . . 11 ((𝜑𝑤𝑊) → (𝑤 mod 𝑀) ∈ (0..^𝑀))
24 modgcd 16413 . . . . . . . . . . . . 13 ((𝑤 ∈ ℤ ∧ 𝑀 ∈ ℕ) → ((𝑤 mod 𝑀) gcd 𝑀) = (𝑤 gcd 𝑀))
2518, 21, 24syl2anc 584 . . . . . . . . . . . 12 ((𝜑𝑤𝑊) → ((𝑤 mod 𝑀) gcd 𝑀) = (𝑤 gcd 𝑀))
2621nnzd 12526 . . . . . . . . . . . . . . . . 17 ((𝜑𝑤𝑊) → 𝑀 ∈ ℤ)
27 gcddvds 16383 . . . . . . . . . . . . . . . . 17 ((𝑤 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝑤 gcd 𝑀) ∥ 𝑤 ∧ (𝑤 gcd 𝑀) ∥ 𝑀))
2818, 26, 27syl2anc 584 . . . . . . . . . . . . . . . 16 ((𝜑𝑤𝑊) → ((𝑤 gcd 𝑀) ∥ 𝑤 ∧ (𝑤 gcd 𝑀) ∥ 𝑀))
2928simpld 495 . . . . . . . . . . . . . . 15 ((𝜑𝑤𝑊) → (𝑤 gcd 𝑀) ∥ 𝑤)
30 nnne0 12187 . . . . . . . . . . . . . . . . . . 19 (𝑀 ∈ ℕ → 𝑀 ≠ 0)
31 simpr 485 . . . . . . . . . . . . . . . . . . . 20 ((𝑤 = 0 ∧ 𝑀 = 0) → 𝑀 = 0)
3231necon3ai 2968 . . . . . . . . . . . . . . . . . . 19 (𝑀 ≠ 0 → ¬ (𝑤 = 0 ∧ 𝑀 = 0))
3321, 30, 323syl 18 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑤𝑊) → ¬ (𝑤 = 0 ∧ 𝑀 = 0))
34 gcdn0cl 16382 . . . . . . . . . . . . . . . . . 18 (((𝑤 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ ¬ (𝑤 = 0 ∧ 𝑀 = 0)) → (𝑤 gcd 𝑀) ∈ ℕ)
3518, 26, 33, 34syl21anc 836 . . . . . . . . . . . . . . . . 17 ((𝜑𝑤𝑊) → (𝑤 gcd 𝑀) ∈ ℕ)
3635nnzd 12526 . . . . . . . . . . . . . . . 16 ((𝜑𝑤𝑊) → (𝑤 gcd 𝑀) ∈ ℤ)
3719simp2d 1143 . . . . . . . . . . . . . . . . . 18 (𝜑𝑁 ∈ ℕ)
3837adantr 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑤𝑊) → 𝑁 ∈ ℕ)
3938nnzd 12526 . . . . . . . . . . . . . . . 16 ((𝜑𝑤𝑊) → 𝑁 ∈ ℤ)
4028simprd 496 . . . . . . . . . . . . . . . 16 ((𝜑𝑤𝑊) → (𝑤 gcd 𝑀) ∥ 𝑀)
4136, 26, 39, 40dvdsmultr1d 16179 . . . . . . . . . . . . . . 15 ((𝜑𝑤𝑊) → (𝑤 gcd 𝑀) ∥ (𝑀 · 𝑁))
4221, 38nnmulcld 12206 . . . . . . . . . . . . . . . . 17 ((𝜑𝑤𝑊) → (𝑀 · 𝑁) ∈ ℕ)
4342nnzd 12526 . . . . . . . . . . . . . . . 16 ((𝜑𝑤𝑊) → (𝑀 · 𝑁) ∈ ℤ)
44 nnne0 12187 . . . . . . . . . . . . . . . . 17 ((𝑀 · 𝑁) ∈ ℕ → (𝑀 · 𝑁) ≠ 0)
45 simpr 485 . . . . . . . . . . . . . . . . . 18 ((𝑤 = 0 ∧ (𝑀 · 𝑁) = 0) → (𝑀 · 𝑁) = 0)
4645necon3ai 2968 . . . . . . . . . . . . . . . . 17 ((𝑀 · 𝑁) ≠ 0 → ¬ (𝑤 = 0 ∧ (𝑀 · 𝑁) = 0))
4742, 44, 463syl 18 . . . . . . . . . . . . . . . 16 ((𝜑𝑤𝑊) → ¬ (𝑤 = 0 ∧ (𝑀 · 𝑁) = 0))
48 dvdslegcd 16384 . . . . . . . . . . . . . . . 16 ((((𝑤 gcd 𝑀) ∈ ℤ ∧ 𝑤 ∈ ℤ ∧ (𝑀 · 𝑁) ∈ ℤ) ∧ ¬ (𝑤 = 0 ∧ (𝑀 · 𝑁) = 0)) → (((𝑤 gcd 𝑀) ∥ 𝑤 ∧ (𝑤 gcd 𝑀) ∥ (𝑀 · 𝑁)) → (𝑤 gcd 𝑀) ≤ (𝑤 gcd (𝑀 · 𝑁))))
4936, 18, 43, 47, 48syl31anc 1373 . . . . . . . . . . . . . . 15 ((𝜑𝑤𝑊) → (((𝑤 gcd 𝑀) ∥ 𝑤 ∧ (𝑤 gcd 𝑀) ∥ (𝑀 · 𝑁)) → (𝑤 gcd 𝑀) ≤ (𝑤 gcd (𝑀 · 𝑁))))
5029, 41, 49mp2and 697 . . . . . . . . . . . . . 14 ((𝜑𝑤𝑊) → (𝑤 gcd 𝑀) ≤ (𝑤 gcd (𝑀 · 𝑁)))
514simprbi 497 . . . . . . . . . . . . . . 15 (𝑤𝑊 → (𝑤 gcd (𝑀 · 𝑁)) = 1)
5251adantl 482 . . . . . . . . . . . . . 14 ((𝜑𝑤𝑊) → (𝑤 gcd (𝑀 · 𝑁)) = 1)
5350, 52breqtrd 5131 . . . . . . . . . . . . 13 ((𝜑𝑤𝑊) → (𝑤 gcd 𝑀) ≤ 1)
54 nnle1eq1 12183 . . . . . . . . . . . . . 14 ((𝑤 gcd 𝑀) ∈ ℕ → ((𝑤 gcd 𝑀) ≤ 1 ↔ (𝑤 gcd 𝑀) = 1))
5535, 54syl 17 . . . . . . . . . . . . 13 ((𝜑𝑤𝑊) → ((𝑤 gcd 𝑀) ≤ 1 ↔ (𝑤 gcd 𝑀) = 1))
5653, 55mpbid 231 . . . . . . . . . . . 12 ((𝜑𝑤𝑊) → (𝑤 gcd 𝑀) = 1)
5725, 56eqtrd 2776 . . . . . . . . . . 11 ((𝜑𝑤𝑊) → ((𝑤 mod 𝑀) gcd 𝑀) = 1)
58 oveq1 7364 . . . . . . . . . . . . 13 (𝑦 = (𝑤 mod 𝑀) → (𝑦 gcd 𝑀) = ((𝑤 mod 𝑀) gcd 𝑀))
5958eqeq1d 2738 . . . . . . . . . . . 12 (𝑦 = (𝑤 mod 𝑀) → ((𝑦 gcd 𝑀) = 1 ↔ ((𝑤 mod 𝑀) gcd 𝑀) = 1))
60 phimul.4 . . . . . . . . . . . 12 𝑈 = {𝑦 ∈ (0..^𝑀) ∣ (𝑦 gcd 𝑀) = 1}
6159, 60elrab2 3648 . . . . . . . . . . 11 ((𝑤 mod 𝑀) ∈ 𝑈 ↔ ((𝑤 mod 𝑀) ∈ (0..^𝑀) ∧ ((𝑤 mod 𝑀) gcd 𝑀) = 1))
6223, 57, 61sylanbrc 583 . . . . . . . . . 10 ((𝜑𝑤𝑊) → (𝑤 mod 𝑀) ∈ 𝑈)
63 zmodfzo 13799 . . . . . . . . . . . 12 ((𝑤 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑤 mod 𝑁) ∈ (0..^𝑁))
6418, 38, 63syl2anc 584 . . . . . . . . . . 11 ((𝜑𝑤𝑊) → (𝑤 mod 𝑁) ∈ (0..^𝑁))
65 modgcd 16413 . . . . . . . . . . . . 13 ((𝑤 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑤 mod 𝑁) gcd 𝑁) = (𝑤 gcd 𝑁))
6618, 38, 65syl2anc 584 . . . . . . . . . . . 12 ((𝜑𝑤𝑊) → ((𝑤 mod 𝑁) gcd 𝑁) = (𝑤 gcd 𝑁))
67 gcddvds 16383 . . . . . . . . . . . . . . . . 17 ((𝑤 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑤 gcd 𝑁) ∥ 𝑤 ∧ (𝑤 gcd 𝑁) ∥ 𝑁))
6818, 39, 67syl2anc 584 . . . . . . . . . . . . . . . 16 ((𝜑𝑤𝑊) → ((𝑤 gcd 𝑁) ∥ 𝑤 ∧ (𝑤 gcd 𝑁) ∥ 𝑁))
6968simpld 495 . . . . . . . . . . . . . . 15 ((𝜑𝑤𝑊) → (𝑤 gcd 𝑁) ∥ 𝑤)
70 nnne0 12187 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
71 simpr 485 . . . . . . . . . . . . . . . . . . . 20 ((𝑤 = 0 ∧ 𝑁 = 0) → 𝑁 = 0)
7271necon3ai 2968 . . . . . . . . . . . . . . . . . . 19 (𝑁 ≠ 0 → ¬ (𝑤 = 0 ∧ 𝑁 = 0))
7338, 70, 723syl 18 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑤𝑊) → ¬ (𝑤 = 0 ∧ 𝑁 = 0))
74 gcdn0cl 16382 . . . . . . . . . . . . . . . . . 18 (((𝑤 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑤 = 0 ∧ 𝑁 = 0)) → (𝑤 gcd 𝑁) ∈ ℕ)
7518, 39, 73, 74syl21anc 836 . . . . . . . . . . . . . . . . 17 ((𝜑𝑤𝑊) → (𝑤 gcd 𝑁) ∈ ℕ)
7675nnzd 12526 . . . . . . . . . . . . . . . 16 ((𝜑𝑤𝑊) → (𝑤 gcd 𝑁) ∈ ℤ)
7768simprd 496 . . . . . . . . . . . . . . . 16 ((𝜑𝑤𝑊) → (𝑤 gcd 𝑁) ∥ 𝑁)
78 dvdsmul2 16161 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∥ (𝑀 · 𝑁))
7926, 39, 78syl2anc 584 . . . . . . . . . . . . . . . 16 ((𝜑𝑤𝑊) → 𝑁 ∥ (𝑀 · 𝑁))
8076, 39, 43, 77, 79dvdstrd 16177 . . . . . . . . . . . . . . 15 ((𝜑𝑤𝑊) → (𝑤 gcd 𝑁) ∥ (𝑀 · 𝑁))
81 dvdslegcd 16384 . . . . . . . . . . . . . . . 16 ((((𝑤 gcd 𝑁) ∈ ℤ ∧ 𝑤 ∈ ℤ ∧ (𝑀 · 𝑁) ∈ ℤ) ∧ ¬ (𝑤 = 0 ∧ (𝑀 · 𝑁) = 0)) → (((𝑤 gcd 𝑁) ∥ 𝑤 ∧ (𝑤 gcd 𝑁) ∥ (𝑀 · 𝑁)) → (𝑤 gcd 𝑁) ≤ (𝑤 gcd (𝑀 · 𝑁))))
8276, 18, 43, 47, 81syl31anc 1373 . . . . . . . . . . . . . . 15 ((𝜑𝑤𝑊) → (((𝑤 gcd 𝑁) ∥ 𝑤 ∧ (𝑤 gcd 𝑁) ∥ (𝑀 · 𝑁)) → (𝑤 gcd 𝑁) ≤ (𝑤 gcd (𝑀 · 𝑁))))
8369, 80, 82mp2and 697 . . . . . . . . . . . . . 14 ((𝜑𝑤𝑊) → (𝑤 gcd 𝑁) ≤ (𝑤 gcd (𝑀 · 𝑁)))
8483, 52breqtrd 5131 . . . . . . . . . . . . 13 ((𝜑𝑤𝑊) → (𝑤 gcd 𝑁) ≤ 1)
85 nnle1eq1 12183 . . . . . . . . . . . . . 14 ((𝑤 gcd 𝑁) ∈ ℕ → ((𝑤 gcd 𝑁) ≤ 1 ↔ (𝑤 gcd 𝑁) = 1))
8675, 85syl 17 . . . . . . . . . . . . 13 ((𝜑𝑤𝑊) → ((𝑤 gcd 𝑁) ≤ 1 ↔ (𝑤 gcd 𝑁) = 1))
8784, 86mpbid 231 . . . . . . . . . . . 12 ((𝜑𝑤𝑊) → (𝑤 gcd 𝑁) = 1)
8866, 87eqtrd 2776 . . . . . . . . . . 11 ((𝜑𝑤𝑊) → ((𝑤 mod 𝑁) gcd 𝑁) = 1)
89 oveq1 7364 . . . . . . . . . . . . 13 (𝑦 = (𝑤 mod 𝑁) → (𝑦 gcd 𝑁) = ((𝑤 mod 𝑁) gcd 𝑁))
9089eqeq1d 2738 . . . . . . . . . . . 12 (𝑦 = (𝑤 mod 𝑁) → ((𝑦 gcd 𝑁) = 1 ↔ ((𝑤 mod 𝑁) gcd 𝑁) = 1))
91 phimul.5 . . . . . . . . . . . 12 𝑉 = {𝑦 ∈ (0..^𝑁) ∣ (𝑦 gcd 𝑁) = 1}
9290, 91elrab2 3648 . . . . . . . . . . 11 ((𝑤 mod 𝑁) ∈ 𝑉 ↔ ((𝑤 mod 𝑁) ∈ (0..^𝑁) ∧ ((𝑤 mod 𝑁) gcd 𝑁) = 1))
9364, 88, 92sylanbrc 583 . . . . . . . . . 10 ((𝜑𝑤𝑊) → (𝑤 mod 𝑁) ∈ 𝑉)
9462, 93opelxpd 5671 . . . . . . . . 9 ((𝜑𝑤𝑊) → ⟨(𝑤 mod 𝑀), (𝑤 mod 𝑁)⟩ ∈ (𝑈 × 𝑉))
9513, 94eqeltrd 2838 . . . . . . . 8 ((𝜑𝑤𝑊) → (𝐹𝑤) ∈ (𝑈 × 𝑉))
9695ralrimiva 3143 . . . . . . 7 (𝜑 → ∀𝑤𝑊 (𝐹𝑤) ∈ (𝑈 × 𝑉))
97 crth.2 . . . . . . . . . 10 𝑇 = ((0..^𝑀) × (0..^𝑁))
9814, 97, 9, 19crth 16650 . . . . . . . . 9 (𝜑𝐹:𝑆1-1-onto𝑇)
99 f1ofn 6785 . . . . . . . . 9 (𝐹:𝑆1-1-onto𝑇𝐹 Fn 𝑆)
100 fnfun 6602 . . . . . . . . 9 (𝐹 Fn 𝑆 → Fun 𝐹)
10198, 99, 1003syl 18 . . . . . . . 8 (𝜑 → Fun 𝐹)
1023ssrab3 4040 . . . . . . . . 9 𝑊𝑆
103 fndm 6605 . . . . . . . . . 10 (𝐹 Fn 𝑆 → dom 𝐹 = 𝑆)
10498, 99, 1033syl 18 . . . . . . . . 9 (𝜑 → dom 𝐹 = 𝑆)
105102, 104sseqtrrid 3997 . . . . . . . 8 (𝜑𝑊 ⊆ dom 𝐹)
106 funimass4 6907 . . . . . . . 8 ((Fun 𝐹𝑊 ⊆ dom 𝐹) → ((𝐹𝑊) ⊆ (𝑈 × 𝑉) ↔ ∀𝑤𝑊 (𝐹𝑤) ∈ (𝑈 × 𝑉)))
107101, 105, 106syl2anc 584 . . . . . . 7 (𝜑 → ((𝐹𝑊) ⊆ (𝑈 × 𝑉) ↔ ∀𝑤𝑊 (𝐹𝑤) ∈ (𝑈 × 𝑉)))
10896, 107mpbird 256 . . . . . 6 (𝜑 → (𝐹𝑊) ⊆ (𝑈 × 𝑉))
10960ssrab3 4040 . . . . . . . . . . 11 𝑈 ⊆ (0..^𝑀)
11091ssrab3 4040 . . . . . . . . . . 11 𝑉 ⊆ (0..^𝑁)
111 xpss12 5648 . . . . . . . . . . 11 ((𝑈 ⊆ (0..^𝑀) ∧ 𝑉 ⊆ (0..^𝑁)) → (𝑈 × 𝑉) ⊆ ((0..^𝑀) × (0..^𝑁)))
112109, 110, 111mp2an 690 . . . . . . . . . 10 (𝑈 × 𝑉) ⊆ ((0..^𝑀) × (0..^𝑁))
113112, 97sseqtrri 3981 . . . . . . . . 9 (𝑈 × 𝑉) ⊆ 𝑇
114113sseli 3940 . . . . . . . 8 (𝑧 ∈ (𝑈 × 𝑉) → 𝑧𝑇)
115 f1ocnvfv2 7223 . . . . . . . 8 ((𝐹:𝑆1-1-onto𝑇𝑧𝑇) → (𝐹‘(𝐹𝑧)) = 𝑧)
11698, 114, 115syl2an 596 . . . . . . 7 ((𝜑𝑧 ∈ (𝑈 × 𝑉)) → (𝐹‘(𝐹𝑧)) = 𝑧)
117 f1ocnv 6796 . . . . . . . . . . 11 (𝐹:𝑆1-1-onto𝑇𝐹:𝑇1-1-onto𝑆)
118 f1of 6784 . . . . . . . . . . 11 (𝐹:𝑇1-1-onto𝑆𝐹:𝑇𝑆)
11998, 117, 1183syl 18 . . . . . . . . . 10 (𝜑𝐹:𝑇𝑆)
120 ffvelcdm 7032 . . . . . . . . . 10 ((𝐹:𝑇𝑆𝑧𝑇) → (𝐹𝑧) ∈ 𝑆)
121119, 114, 120syl2an 596 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝑈 × 𝑉)) → (𝐹𝑧) ∈ 𝑆)
122121, 14eleqtrdi 2848 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (𝑈 × 𝑉)) → (𝐹𝑧) ∈ (0..^(𝑀 · 𝑁)))
123 elfzoelz 13572 . . . . . . . . . . . . 13 ((𝐹𝑧) ∈ (0..^(𝑀 · 𝑁)) → (𝐹𝑧) ∈ ℤ)
124122, 123syl 17 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (𝑈 × 𝑉)) → (𝐹𝑧) ∈ ℤ)
12520adantr 481 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (𝑈 × 𝑉)) → 𝑀 ∈ ℕ)
126 modgcd 16413 . . . . . . . . . . . 12 (((𝐹𝑧) ∈ ℤ ∧ 𝑀 ∈ ℕ) → (((𝐹𝑧) mod 𝑀) gcd 𝑀) = ((𝐹𝑧) gcd 𝑀))
127124, 125, 126syl2anc 584 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (𝑈 × 𝑉)) → (((𝐹𝑧) mod 𝑀) gcd 𝑀) = ((𝐹𝑧) gcd 𝑀))
128 oveq1 7364 . . . . . . . . . . . . . . . . . . . 20 (𝑤 = (𝐹𝑧) → (𝑤 mod 𝑀) = ((𝐹𝑧) mod 𝑀))
129 oveq1 7364 . . . . . . . . . . . . . . . . . . . 20 (𝑤 = (𝐹𝑧) → (𝑤 mod 𝑁) = ((𝐹𝑧) mod 𝑁))
130128, 129opeq12d 4838 . . . . . . . . . . . . . . . . . . 19 (𝑤 = (𝐹𝑧) → ⟨(𝑤 mod 𝑀), (𝑤 mod 𝑁)⟩ = ⟨((𝐹𝑧) mod 𝑀), ((𝐹𝑧) mod 𝑁)⟩)
1318cbvmptv 5218 . . . . . . . . . . . . . . . . . . . 20 (𝑥𝑆 ↦ ⟨(𝑥 mod 𝑀), (𝑥 mod 𝑁)⟩) = (𝑤𝑆 ↦ ⟨(𝑤 mod 𝑀), (𝑤 mod 𝑁)⟩)
1329, 131eqtri 2764 . . . . . . . . . . . . . . . . . . 19 𝐹 = (𝑤𝑆 ↦ ⟨(𝑤 mod 𝑀), (𝑤 mod 𝑁)⟩)
133 opex 5421 . . . . . . . . . . . . . . . . . . 19 ⟨((𝐹𝑧) mod 𝑀), ((𝐹𝑧) mod 𝑁)⟩ ∈ V
134130, 132, 133fvmpt 6948 . . . . . . . . . . . . . . . . . 18 ((𝐹𝑧) ∈ 𝑆 → (𝐹‘(𝐹𝑧)) = ⟨((𝐹𝑧) mod 𝑀), ((𝐹𝑧) mod 𝑁)⟩)
135121, 134syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑𝑧 ∈ (𝑈 × 𝑉)) → (𝐹‘(𝐹𝑧)) = ⟨((𝐹𝑧) mod 𝑀), ((𝐹𝑧) mod 𝑁)⟩)
136116, 135eqtr3d 2778 . . . . . . . . . . . . . . . 16 ((𝜑𝑧 ∈ (𝑈 × 𝑉)) → 𝑧 = ⟨((𝐹𝑧) mod 𝑀), ((𝐹𝑧) mod 𝑁)⟩)
137 simpr 485 . . . . . . . . . . . . . . . 16 ((𝜑𝑧 ∈ (𝑈 × 𝑉)) → 𝑧 ∈ (𝑈 × 𝑉))
138136, 137eqeltrrd 2839 . . . . . . . . . . . . . . 15 ((𝜑𝑧 ∈ (𝑈 × 𝑉)) → ⟨((𝐹𝑧) mod 𝑀), ((𝐹𝑧) mod 𝑁)⟩ ∈ (𝑈 × 𝑉))
139 opelxp 5669 . . . . . . . . . . . . . . 15 (⟨((𝐹𝑧) mod 𝑀), ((𝐹𝑧) mod 𝑁)⟩ ∈ (𝑈 × 𝑉) ↔ (((𝐹𝑧) mod 𝑀) ∈ 𝑈 ∧ ((𝐹𝑧) mod 𝑁) ∈ 𝑉))
140138, 139sylib 217 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ (𝑈 × 𝑉)) → (((𝐹𝑧) mod 𝑀) ∈ 𝑈 ∧ ((𝐹𝑧) mod 𝑁) ∈ 𝑉))
141140simpld 495 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (𝑈 × 𝑉)) → ((𝐹𝑧) mod 𝑀) ∈ 𝑈)
142 oveq1 7364 . . . . . . . . . . . . . . 15 (𝑦 = ((𝐹𝑧) mod 𝑀) → (𝑦 gcd 𝑀) = (((𝐹𝑧) mod 𝑀) gcd 𝑀))
143142eqeq1d 2738 . . . . . . . . . . . . . 14 (𝑦 = ((𝐹𝑧) mod 𝑀) → ((𝑦 gcd 𝑀) = 1 ↔ (((𝐹𝑧) mod 𝑀) gcd 𝑀) = 1))
144143, 60elrab2 3648 . . . . . . . . . . . . 13 (((𝐹𝑧) mod 𝑀) ∈ 𝑈 ↔ (((𝐹𝑧) mod 𝑀) ∈ (0..^𝑀) ∧ (((𝐹𝑧) mod 𝑀) gcd 𝑀) = 1))
145141, 144sylib 217 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (𝑈 × 𝑉)) → (((𝐹𝑧) mod 𝑀) ∈ (0..^𝑀) ∧ (((𝐹𝑧) mod 𝑀) gcd 𝑀) = 1))
146145simprd 496 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (𝑈 × 𝑉)) → (((𝐹𝑧) mod 𝑀) gcd 𝑀) = 1)
147127, 146eqtr3d 2778 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝑈 × 𝑉)) → ((𝐹𝑧) gcd 𝑀) = 1)
14837adantr 481 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (𝑈 × 𝑉)) → 𝑁 ∈ ℕ)
149 modgcd 16413 . . . . . . . . . . . 12 (((𝐹𝑧) ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝐹𝑧) mod 𝑁) gcd 𝑁) = ((𝐹𝑧) gcd 𝑁))
150124, 148, 149syl2anc 584 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (𝑈 × 𝑉)) → (((𝐹𝑧) mod 𝑁) gcd 𝑁) = ((𝐹𝑧) gcd 𝑁))
151140simprd 496 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (𝑈 × 𝑉)) → ((𝐹𝑧) mod 𝑁) ∈ 𝑉)
152 oveq1 7364 . . . . . . . . . . . . . . 15 (𝑦 = ((𝐹𝑧) mod 𝑁) → (𝑦 gcd 𝑁) = (((𝐹𝑧) mod 𝑁) gcd 𝑁))
153152eqeq1d 2738 . . . . . . . . . . . . . 14 (𝑦 = ((𝐹𝑧) mod 𝑁) → ((𝑦 gcd 𝑁) = 1 ↔ (((𝐹𝑧) mod 𝑁) gcd 𝑁) = 1))
154153, 91elrab2 3648 . . . . . . . . . . . . 13 (((𝐹𝑧) mod 𝑁) ∈ 𝑉 ↔ (((𝐹𝑧) mod 𝑁) ∈ (0..^𝑁) ∧ (((𝐹𝑧) mod 𝑁) gcd 𝑁) = 1))
155151, 154sylib 217 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (𝑈 × 𝑉)) → (((𝐹𝑧) mod 𝑁) ∈ (0..^𝑁) ∧ (((𝐹𝑧) mod 𝑁) gcd 𝑁) = 1))
156155simprd 496 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (𝑈 × 𝑉)) → (((𝐹𝑧) mod 𝑁) gcd 𝑁) = 1)
157150, 156eqtr3d 2778 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝑈 × 𝑉)) → ((𝐹𝑧) gcd 𝑁) = 1)
15820nnzd 12526 . . . . . . . . . . . 12 (𝜑𝑀 ∈ ℤ)
159158adantr 481 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (𝑈 × 𝑉)) → 𝑀 ∈ ℤ)
16037nnzd 12526 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℤ)
161160adantr 481 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (𝑈 × 𝑉)) → 𝑁 ∈ ℤ)
162 rpmul 16535 . . . . . . . . . . 11 (((𝐹𝑧) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((((𝐹𝑧) gcd 𝑀) = 1 ∧ ((𝐹𝑧) gcd 𝑁) = 1) → ((𝐹𝑧) gcd (𝑀 · 𝑁)) = 1))
163124, 159, 161, 162syl3anc 1371 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝑈 × 𝑉)) → ((((𝐹𝑧) gcd 𝑀) = 1 ∧ ((𝐹𝑧) gcd 𝑁) = 1) → ((𝐹𝑧) gcd (𝑀 · 𝑁)) = 1))
164147, 157, 163mp2and 697 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝑈 × 𝑉)) → ((𝐹𝑧) gcd (𝑀 · 𝑁)) = 1)
165 oveq1 7364 . . . . . . . . . . 11 (𝑦 = (𝐹𝑧) → (𝑦 gcd (𝑀 · 𝑁)) = ((𝐹𝑧) gcd (𝑀 · 𝑁)))
166165eqeq1d 2738 . . . . . . . . . 10 (𝑦 = (𝐹𝑧) → ((𝑦 gcd (𝑀 · 𝑁)) = 1 ↔ ((𝐹𝑧) gcd (𝑀 · 𝑁)) = 1))
167166, 3elrab2 3648 . . . . . . . . 9 ((𝐹𝑧) ∈ 𝑊 ↔ ((𝐹𝑧) ∈ 𝑆 ∧ ((𝐹𝑧) gcd (𝑀 · 𝑁)) = 1))
168121, 164, 167sylanbrc 583 . . . . . . . 8 ((𝜑𝑧 ∈ (𝑈 × 𝑉)) → (𝐹𝑧) ∈ 𝑊)
169 funfvima2 7181 . . . . . . . . . 10 ((Fun 𝐹𝑊 ⊆ dom 𝐹) → ((𝐹𝑧) ∈ 𝑊 → (𝐹‘(𝐹𝑧)) ∈ (𝐹𝑊)))
170101, 105, 169syl2anc 584 . . . . . . . . 9 (𝜑 → ((𝐹𝑧) ∈ 𝑊 → (𝐹‘(𝐹𝑧)) ∈ (𝐹𝑊)))
171170imp 407 . . . . . . . 8 ((𝜑 ∧ (𝐹𝑧) ∈ 𝑊) → (𝐹‘(𝐹𝑧)) ∈ (𝐹𝑊))
172168, 171syldan 591 . . . . . . 7 ((𝜑𝑧 ∈ (𝑈 × 𝑉)) → (𝐹‘(𝐹𝑧)) ∈ (𝐹𝑊))
173116, 172eqeltrrd 2839 . . . . . 6 ((𝜑𝑧 ∈ (𝑈 × 𝑉)) → 𝑧 ∈ (𝐹𝑊))
174108, 173eqelssd 3965 . . . . 5 (𝜑 → (𝐹𝑊) = (𝑈 × 𝑉))
175 f1of1 6783 . . . . . . 7 (𝐹:𝑆1-1-onto𝑇𝐹:𝑆1-1𝑇)
17698, 175syl 17 . . . . . 6 (𝜑𝐹:𝑆1-1𝑇)
177 fzofi 13879 . . . . . . . . . 10 (0..^(𝑀 · 𝑁)) ∈ Fin
17814, 177eqeltri 2834 . . . . . . . . 9 𝑆 ∈ Fin
179 ssfi 9117 . . . . . . . . 9 ((𝑆 ∈ Fin ∧ 𝑊𝑆) → 𝑊 ∈ Fin)
180178, 102, 179mp2an 690 . . . . . . . 8 𝑊 ∈ Fin
181180elexi 3464 . . . . . . 7 𝑊 ∈ V
182181f1imaen 8956 . . . . . 6 ((𝐹:𝑆1-1𝑇𝑊𝑆) → (𝐹𝑊) ≈ 𝑊)
183176, 102, 182sylancl 586 . . . . 5 (𝜑 → (𝐹𝑊) ≈ 𝑊)
184174, 183eqbrtrrd 5129 . . . 4 (𝜑 → (𝑈 × 𝑉) ≈ 𝑊)
185 fzofi 13879 . . . . . . . 8 (0..^𝑀) ∈ Fin
186 ssrab2 4037 . . . . . . . 8 {𝑦 ∈ (0..^𝑀) ∣ (𝑦 gcd 𝑀) = 1} ⊆ (0..^𝑀)
187 ssfi 9117 . . . . . . . 8 (((0..^𝑀) ∈ Fin ∧ {𝑦 ∈ (0..^𝑀) ∣ (𝑦 gcd 𝑀) = 1} ⊆ (0..^𝑀)) → {𝑦 ∈ (0..^𝑀) ∣ (𝑦 gcd 𝑀) = 1} ∈ Fin)
188185, 186, 187mp2an 690 . . . . . . 7 {𝑦 ∈ (0..^𝑀) ∣ (𝑦 gcd 𝑀) = 1} ∈ Fin
18960, 188eqeltri 2834 . . . . . 6 𝑈 ∈ Fin
190 fzofi 13879 . . . . . . . 8 (0..^𝑁) ∈ Fin
191 ssrab2 4037 . . . . . . . 8 {𝑦 ∈ (0..^𝑁) ∣ (𝑦 gcd 𝑁) = 1} ⊆ (0..^𝑁)
192 ssfi 9117 . . . . . . . 8 (((0..^𝑁) ∈ Fin ∧ {𝑦 ∈ (0..^𝑁) ∣ (𝑦 gcd 𝑁) = 1} ⊆ (0..^𝑁)) → {𝑦 ∈ (0..^𝑁) ∣ (𝑦 gcd 𝑁) = 1} ∈ Fin)
193190, 191, 192mp2an 690 . . . . . . 7 {𝑦 ∈ (0..^𝑁) ∣ (𝑦 gcd 𝑁) = 1} ∈ Fin
19491, 193eqeltri 2834 . . . . . 6 𝑉 ∈ Fin
195 xpfi 9261 . . . . . 6 ((𝑈 ∈ Fin ∧ 𝑉 ∈ Fin) → (𝑈 × 𝑉) ∈ Fin)
196189, 194, 195mp2an 690 . . . . 5 (𝑈 × 𝑉) ∈ Fin
197 hashen 14247 . . . . 5 (((𝑈 × 𝑉) ∈ Fin ∧ 𝑊 ∈ Fin) → ((♯‘(𝑈 × 𝑉)) = (♯‘𝑊) ↔ (𝑈 × 𝑉) ≈ 𝑊))
198196, 180, 197mp2an 690 . . . 4 ((♯‘(𝑈 × 𝑉)) = (♯‘𝑊) ↔ (𝑈 × 𝑉) ≈ 𝑊)
199184, 198sylibr 233 . . 3 (𝜑 → (♯‘(𝑈 × 𝑉)) = (♯‘𝑊))
200 hashxp 14334 . . . 4 ((𝑈 ∈ Fin ∧ 𝑉 ∈ Fin) → (♯‘(𝑈 × 𝑉)) = ((♯‘𝑈) · (♯‘𝑉)))
201189, 194, 200mp2an 690 . . 3 (♯‘(𝑈 × 𝑉)) = ((♯‘𝑈) · (♯‘𝑉))
202199, 201eqtr3di 2791 . 2 (𝜑 → (♯‘𝑊) = ((♯‘𝑈) · (♯‘𝑉)))
20320, 37nnmulcld 12206 . . 3 (𝜑 → (𝑀 · 𝑁) ∈ ℕ)
204 dfphi2 16646 . . . 4 ((𝑀 · 𝑁) ∈ ℕ → (ϕ‘(𝑀 · 𝑁)) = (♯‘{𝑦 ∈ (0..^(𝑀 · 𝑁)) ∣ (𝑦 gcd (𝑀 · 𝑁)) = 1}))
20514rabeqi 3420 . . . . . 6 {𝑦𝑆 ∣ (𝑦 gcd (𝑀 · 𝑁)) = 1} = {𝑦 ∈ (0..^(𝑀 · 𝑁)) ∣ (𝑦 gcd (𝑀 · 𝑁)) = 1}
2063, 205eqtri 2764 . . . . 5 𝑊 = {𝑦 ∈ (0..^(𝑀 · 𝑁)) ∣ (𝑦 gcd (𝑀 · 𝑁)) = 1}
207206fveq2i 6845 . . . 4 (♯‘𝑊) = (♯‘{𝑦 ∈ (0..^(𝑀 · 𝑁)) ∣ (𝑦 gcd (𝑀 · 𝑁)) = 1})
208204, 207eqtr4di 2794 . . 3 ((𝑀 · 𝑁) ∈ ℕ → (ϕ‘(𝑀 · 𝑁)) = (♯‘𝑊))
209203, 208syl 17 . 2 (𝜑 → (ϕ‘(𝑀 · 𝑁)) = (♯‘𝑊))
210 dfphi2 16646 . . . . 5 (𝑀 ∈ ℕ → (ϕ‘𝑀) = (♯‘{𝑦 ∈ (0..^𝑀) ∣ (𝑦 gcd 𝑀) = 1}))
21160fveq2i 6845 . . . . 5 (♯‘𝑈) = (♯‘{𝑦 ∈ (0..^𝑀) ∣ (𝑦 gcd 𝑀) = 1})
212210, 211eqtr4di 2794 . . . 4 (𝑀 ∈ ℕ → (ϕ‘𝑀) = (♯‘𝑈))
21320, 212syl 17 . . 3 (𝜑 → (ϕ‘𝑀) = (♯‘𝑈))
214 dfphi2 16646 . . . . 5 (𝑁 ∈ ℕ → (ϕ‘𝑁) = (♯‘{𝑦 ∈ (0..^𝑁) ∣ (𝑦 gcd 𝑁) = 1}))
21591fveq2i 6845 . . . . 5 (♯‘𝑉) = (♯‘{𝑦 ∈ (0..^𝑁) ∣ (𝑦 gcd 𝑁) = 1})
216214, 215eqtr4di 2794 . . . 4 (𝑁 ∈ ℕ → (ϕ‘𝑁) = (♯‘𝑉))
21737, 216syl 17 . . 3 (𝜑 → (ϕ‘𝑁) = (♯‘𝑉))
218213, 217oveq12d 7375 . 2 (𝜑 → ((ϕ‘𝑀) · (ϕ‘𝑁)) = ((♯‘𝑈) · (♯‘𝑉)))
219202, 209, 2183eqtr4d 2786 1 (𝜑 → (ϕ‘(𝑀 · 𝑁)) = ((ϕ‘𝑀) · (ϕ‘𝑁)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2943  wral 3064  {crab 3407  wss 3910  cop 4592   class class class wbr 5105  cmpt 5188   × cxp 5631  ccnv 5632  dom cdm 5633  cima 5636  Fun wfun 6490   Fn wfn 6491  wf 6492  1-1wf1 6493  1-1-ontowf1o 6495  cfv 6496  (class class class)co 7357  cen 8880  Fincfn 8883  0cc0 11051  1c1 11052   · cmul 11056  cle 11190  cn 12153  cz 12499  ..^cfzo 13567   mod cmo 13774  chash 14230  cdvds 16136   gcd cgcd 16374  ϕcphi 16636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-oadd 8416  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-sup 9378  df-inf 9379  df-dju 9837  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-n0 12414  df-xnn0 12486  df-z 12500  df-uz 12764  df-rp 12916  df-fz 13425  df-fzo 13568  df-fl 13697  df-mod 13775  df-seq 13907  df-exp 13968  df-hash 14231  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-dvds 16137  df-gcd 16375  df-phi 16638
This theorem is referenced by:  phimul  16652
  Copyright terms: Public domain W3C validator