Step | Hyp | Ref
| Expression |
1 | | oveq1 7262 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑤 → (𝑦 gcd (𝑀 · 𝑁)) = (𝑤 gcd (𝑀 · 𝑁))) |
2 | 1 | eqeq1d 2740 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑤 → ((𝑦 gcd (𝑀 · 𝑁)) = 1 ↔ (𝑤 gcd (𝑀 · 𝑁)) = 1)) |
3 | | phimul.6 |
. . . . . . . . . . . . 13
⊢ 𝑊 = {𝑦 ∈ 𝑆 ∣ (𝑦 gcd (𝑀 · 𝑁)) = 1} |
4 | 2, 3 | elrab2 3620 |
. . . . . . . . . . . 12
⊢ (𝑤 ∈ 𝑊 ↔ (𝑤 ∈ 𝑆 ∧ (𝑤 gcd (𝑀 · 𝑁)) = 1)) |
5 | 4 | simplbi 497 |
. . . . . . . . . . 11
⊢ (𝑤 ∈ 𝑊 → 𝑤 ∈ 𝑆) |
6 | | oveq1 7262 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑤 → (𝑥 mod 𝑀) = (𝑤 mod 𝑀)) |
7 | | oveq1 7262 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑤 → (𝑥 mod 𝑁) = (𝑤 mod 𝑁)) |
8 | 6, 7 | opeq12d 4809 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑤 → 〈(𝑥 mod 𝑀), (𝑥 mod 𝑁)〉 = 〈(𝑤 mod 𝑀), (𝑤 mod 𝑁)〉) |
9 | | crth.3 |
. . . . . . . . . . . 12
⊢ 𝐹 = (𝑥 ∈ 𝑆 ↦ 〈(𝑥 mod 𝑀), (𝑥 mod 𝑁)〉) |
10 | | opex 5373 |
. . . . . . . . . . . 12
⊢
〈(𝑤 mod 𝑀), (𝑤 mod 𝑁)〉 ∈ V |
11 | 8, 9, 10 | fvmpt 6857 |
. . . . . . . . . . 11
⊢ (𝑤 ∈ 𝑆 → (𝐹‘𝑤) = 〈(𝑤 mod 𝑀), (𝑤 mod 𝑁)〉) |
12 | 5, 11 | syl 17 |
. . . . . . . . . 10
⊢ (𝑤 ∈ 𝑊 → (𝐹‘𝑤) = 〈(𝑤 mod 𝑀), (𝑤 mod 𝑁)〉) |
13 | 12 | adantl 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑊) → (𝐹‘𝑤) = 〈(𝑤 mod 𝑀), (𝑤 mod 𝑁)〉) |
14 | | crth.1 |
. . . . . . . . . . . . . . 15
⊢ 𝑆 = (0..^(𝑀 · 𝑁)) |
15 | 5, 14 | eleqtrdi 2849 |
. . . . . . . . . . . . . 14
⊢ (𝑤 ∈ 𝑊 → 𝑤 ∈ (0..^(𝑀 · 𝑁))) |
16 | 15 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑊) → 𝑤 ∈ (0..^(𝑀 · 𝑁))) |
17 | | elfzoelz 13316 |
. . . . . . . . . . . . 13
⊢ (𝑤 ∈ (0..^(𝑀 · 𝑁)) → 𝑤 ∈ ℤ) |
18 | 16, 17 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑊) → 𝑤 ∈ ℤ) |
19 | | crth.4 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1)) |
20 | 19 | simp1d 1140 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑀 ∈ ℕ) |
21 | 20 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑊) → 𝑀 ∈ ℕ) |
22 | | zmodfzo 13542 |
. . . . . . . . . . . 12
⊢ ((𝑤 ∈ ℤ ∧ 𝑀 ∈ ℕ) → (𝑤 mod 𝑀) ∈ (0..^𝑀)) |
23 | 18, 21, 22 | syl2anc 583 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑊) → (𝑤 mod 𝑀) ∈ (0..^𝑀)) |
24 | | modgcd 16168 |
. . . . . . . . . . . . 13
⊢ ((𝑤 ∈ ℤ ∧ 𝑀 ∈ ℕ) → ((𝑤 mod 𝑀) gcd 𝑀) = (𝑤 gcd 𝑀)) |
25 | 18, 21, 24 | syl2anc 583 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑊) → ((𝑤 mod 𝑀) gcd 𝑀) = (𝑤 gcd 𝑀)) |
26 | 21 | nnzd 12354 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑊) → 𝑀 ∈ ℤ) |
27 | | gcddvds 16138 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑤 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝑤 gcd 𝑀) ∥ 𝑤 ∧ (𝑤 gcd 𝑀) ∥ 𝑀)) |
28 | 18, 26, 27 | syl2anc 583 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑊) → ((𝑤 gcd 𝑀) ∥ 𝑤 ∧ (𝑤 gcd 𝑀) ∥ 𝑀)) |
29 | 28 | simpld 494 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑊) → (𝑤 gcd 𝑀) ∥ 𝑤) |
30 | | nnne0 11937 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑀 ∈ ℕ → 𝑀 ≠ 0) |
31 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑤 = 0 ∧ 𝑀 = 0) → 𝑀 = 0) |
32 | 31 | necon3ai 2967 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑀 ≠ 0 → ¬ (𝑤 = 0 ∧ 𝑀 = 0)) |
33 | 21, 30, 32 | 3syl 18 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑊) → ¬ (𝑤 = 0 ∧ 𝑀 = 0)) |
34 | | gcdn0cl 16137 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑤 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ ¬
(𝑤 = 0 ∧ 𝑀 = 0)) → (𝑤 gcd 𝑀) ∈ ℕ) |
35 | 18, 26, 33, 34 | syl21anc 834 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑊) → (𝑤 gcd 𝑀) ∈ ℕ) |
36 | 35 | nnzd 12354 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑊) → (𝑤 gcd 𝑀) ∈ ℤ) |
37 | 19 | simp2d 1141 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝑁 ∈ ℕ) |
38 | 37 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑊) → 𝑁 ∈ ℕ) |
39 | 38 | nnzd 12354 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑊) → 𝑁 ∈ ℤ) |
40 | 28 | simprd 495 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑊) → (𝑤 gcd 𝑀) ∥ 𝑀) |
41 | 36, 26, 39, 40 | dvdsmultr1d 15934 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑊) → (𝑤 gcd 𝑀) ∥ (𝑀 · 𝑁)) |
42 | 21, 38 | nnmulcld 11956 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑊) → (𝑀 · 𝑁) ∈ ℕ) |
43 | 42 | nnzd 12354 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑊) → (𝑀 · 𝑁) ∈ ℤ) |
44 | | nnne0 11937 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑀 · 𝑁) ∈ ℕ → (𝑀 · 𝑁) ≠ 0) |
45 | | simpr 484 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑤 = 0 ∧ (𝑀 · 𝑁) = 0) → (𝑀 · 𝑁) = 0) |
46 | 45 | necon3ai 2967 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑀 · 𝑁) ≠ 0 → ¬ (𝑤 = 0 ∧ (𝑀 · 𝑁) = 0)) |
47 | 42, 44, 46 | 3syl 18 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑊) → ¬ (𝑤 = 0 ∧ (𝑀 · 𝑁) = 0)) |
48 | | dvdslegcd 16139 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑤 gcd 𝑀) ∈ ℤ ∧ 𝑤 ∈ ℤ ∧ (𝑀 · 𝑁) ∈ ℤ) ∧ ¬ (𝑤 = 0 ∧ (𝑀 · 𝑁) = 0)) → (((𝑤 gcd 𝑀) ∥ 𝑤 ∧ (𝑤 gcd 𝑀) ∥ (𝑀 · 𝑁)) → (𝑤 gcd 𝑀) ≤ (𝑤 gcd (𝑀 · 𝑁)))) |
49 | 36, 18, 43, 47, 48 | syl31anc 1371 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑊) → (((𝑤 gcd 𝑀) ∥ 𝑤 ∧ (𝑤 gcd 𝑀) ∥ (𝑀 · 𝑁)) → (𝑤 gcd 𝑀) ≤ (𝑤 gcd (𝑀 · 𝑁)))) |
50 | 29, 41, 49 | mp2and 695 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑊) → (𝑤 gcd 𝑀) ≤ (𝑤 gcd (𝑀 · 𝑁))) |
51 | 4 | simprbi 496 |
. . . . . . . . . . . . . . 15
⊢ (𝑤 ∈ 𝑊 → (𝑤 gcd (𝑀 · 𝑁)) = 1) |
52 | 51 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑊) → (𝑤 gcd (𝑀 · 𝑁)) = 1) |
53 | 50, 52 | breqtrd 5096 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑊) → (𝑤 gcd 𝑀) ≤ 1) |
54 | | nnle1eq1 11933 |
. . . . . . . . . . . . . 14
⊢ ((𝑤 gcd 𝑀) ∈ ℕ → ((𝑤 gcd 𝑀) ≤ 1 ↔ (𝑤 gcd 𝑀) = 1)) |
55 | 35, 54 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑊) → ((𝑤 gcd 𝑀) ≤ 1 ↔ (𝑤 gcd 𝑀) = 1)) |
56 | 53, 55 | mpbid 231 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑊) → (𝑤 gcd 𝑀) = 1) |
57 | 25, 56 | eqtrd 2778 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑊) → ((𝑤 mod 𝑀) gcd 𝑀) = 1) |
58 | | oveq1 7262 |
. . . . . . . . . . . . 13
⊢ (𝑦 = (𝑤 mod 𝑀) → (𝑦 gcd 𝑀) = ((𝑤 mod 𝑀) gcd 𝑀)) |
59 | 58 | eqeq1d 2740 |
. . . . . . . . . . . 12
⊢ (𝑦 = (𝑤 mod 𝑀) → ((𝑦 gcd 𝑀) = 1 ↔ ((𝑤 mod 𝑀) gcd 𝑀) = 1)) |
60 | | phimul.4 |
. . . . . . . . . . . 12
⊢ 𝑈 = {𝑦 ∈ (0..^𝑀) ∣ (𝑦 gcd 𝑀) = 1} |
61 | 59, 60 | elrab2 3620 |
. . . . . . . . . . 11
⊢ ((𝑤 mod 𝑀) ∈ 𝑈 ↔ ((𝑤 mod 𝑀) ∈ (0..^𝑀) ∧ ((𝑤 mod 𝑀) gcd 𝑀) = 1)) |
62 | 23, 57, 61 | sylanbrc 582 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑊) → (𝑤 mod 𝑀) ∈ 𝑈) |
63 | | zmodfzo 13542 |
. . . . . . . . . . . 12
⊢ ((𝑤 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑤 mod 𝑁) ∈ (0..^𝑁)) |
64 | 18, 38, 63 | syl2anc 583 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑊) → (𝑤 mod 𝑁) ∈ (0..^𝑁)) |
65 | | modgcd 16168 |
. . . . . . . . . . . . 13
⊢ ((𝑤 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑤 mod 𝑁) gcd 𝑁) = (𝑤 gcd 𝑁)) |
66 | 18, 38, 65 | syl2anc 583 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑊) → ((𝑤 mod 𝑁) gcd 𝑁) = (𝑤 gcd 𝑁)) |
67 | | gcddvds 16138 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑤 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑤 gcd 𝑁) ∥ 𝑤 ∧ (𝑤 gcd 𝑁) ∥ 𝑁)) |
68 | 18, 39, 67 | syl2anc 583 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑊) → ((𝑤 gcd 𝑁) ∥ 𝑤 ∧ (𝑤 gcd 𝑁) ∥ 𝑁)) |
69 | 68 | simpld 494 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑊) → (𝑤 gcd 𝑁) ∥ 𝑤) |
70 | | nnne0 11937 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑁 ∈ ℕ → 𝑁 ≠ 0) |
71 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑤 = 0 ∧ 𝑁 = 0) → 𝑁 = 0) |
72 | 71 | necon3ai 2967 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑁 ≠ 0 → ¬ (𝑤 = 0 ∧ 𝑁 = 0)) |
73 | 38, 70, 72 | 3syl 18 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑊) → ¬ (𝑤 = 0 ∧ 𝑁 = 0)) |
74 | | gcdn0cl 16137 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑤 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬
(𝑤 = 0 ∧ 𝑁 = 0)) → (𝑤 gcd 𝑁) ∈ ℕ) |
75 | 18, 39, 73, 74 | syl21anc 834 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑊) → (𝑤 gcd 𝑁) ∈ ℕ) |
76 | 75 | nnzd 12354 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑊) → (𝑤 gcd 𝑁) ∈ ℤ) |
77 | 68 | simprd 495 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑊) → (𝑤 gcd 𝑁) ∥ 𝑁) |
78 | | dvdsmul2 15916 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∥ (𝑀 · 𝑁)) |
79 | 26, 39, 78 | syl2anc 583 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑊) → 𝑁 ∥ (𝑀 · 𝑁)) |
80 | 76, 39, 43, 77, 79 | dvdstrd 15932 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑊) → (𝑤 gcd 𝑁) ∥ (𝑀 · 𝑁)) |
81 | | dvdslegcd 16139 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑤 gcd 𝑁) ∈ ℤ ∧ 𝑤 ∈ ℤ ∧ (𝑀 · 𝑁) ∈ ℤ) ∧ ¬ (𝑤 = 0 ∧ (𝑀 · 𝑁) = 0)) → (((𝑤 gcd 𝑁) ∥ 𝑤 ∧ (𝑤 gcd 𝑁) ∥ (𝑀 · 𝑁)) → (𝑤 gcd 𝑁) ≤ (𝑤 gcd (𝑀 · 𝑁)))) |
82 | 76, 18, 43, 47, 81 | syl31anc 1371 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑊) → (((𝑤 gcd 𝑁) ∥ 𝑤 ∧ (𝑤 gcd 𝑁) ∥ (𝑀 · 𝑁)) → (𝑤 gcd 𝑁) ≤ (𝑤 gcd (𝑀 · 𝑁)))) |
83 | 69, 80, 82 | mp2and 695 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑊) → (𝑤 gcd 𝑁) ≤ (𝑤 gcd (𝑀 · 𝑁))) |
84 | 83, 52 | breqtrd 5096 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑊) → (𝑤 gcd 𝑁) ≤ 1) |
85 | | nnle1eq1 11933 |
. . . . . . . . . . . . . 14
⊢ ((𝑤 gcd 𝑁) ∈ ℕ → ((𝑤 gcd 𝑁) ≤ 1 ↔ (𝑤 gcd 𝑁) = 1)) |
86 | 75, 85 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑊) → ((𝑤 gcd 𝑁) ≤ 1 ↔ (𝑤 gcd 𝑁) = 1)) |
87 | 84, 86 | mpbid 231 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑊) → (𝑤 gcd 𝑁) = 1) |
88 | 66, 87 | eqtrd 2778 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑊) → ((𝑤 mod 𝑁) gcd 𝑁) = 1) |
89 | | oveq1 7262 |
. . . . . . . . . . . . 13
⊢ (𝑦 = (𝑤 mod 𝑁) → (𝑦 gcd 𝑁) = ((𝑤 mod 𝑁) gcd 𝑁)) |
90 | 89 | eqeq1d 2740 |
. . . . . . . . . . . 12
⊢ (𝑦 = (𝑤 mod 𝑁) → ((𝑦 gcd 𝑁) = 1 ↔ ((𝑤 mod 𝑁) gcd 𝑁) = 1)) |
91 | | phimul.5 |
. . . . . . . . . . . 12
⊢ 𝑉 = {𝑦 ∈ (0..^𝑁) ∣ (𝑦 gcd 𝑁) = 1} |
92 | 90, 91 | elrab2 3620 |
. . . . . . . . . . 11
⊢ ((𝑤 mod 𝑁) ∈ 𝑉 ↔ ((𝑤 mod 𝑁) ∈ (0..^𝑁) ∧ ((𝑤 mod 𝑁) gcd 𝑁) = 1)) |
93 | 64, 88, 92 | sylanbrc 582 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑊) → (𝑤 mod 𝑁) ∈ 𝑉) |
94 | 62, 93 | opelxpd 5618 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑊) → 〈(𝑤 mod 𝑀), (𝑤 mod 𝑁)〉 ∈ (𝑈 × 𝑉)) |
95 | 13, 94 | eqeltrd 2839 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑊) → (𝐹‘𝑤) ∈ (𝑈 × 𝑉)) |
96 | 95 | ralrimiva 3107 |
. . . . . . 7
⊢ (𝜑 → ∀𝑤 ∈ 𝑊 (𝐹‘𝑤) ∈ (𝑈 × 𝑉)) |
97 | | crth.2 |
. . . . . . . . . 10
⊢ 𝑇 = ((0..^𝑀) × (0..^𝑁)) |
98 | 14, 97, 9, 19 | crth 16407 |
. . . . . . . . 9
⊢ (𝜑 → 𝐹:𝑆–1-1-onto→𝑇) |
99 | | f1ofn 6701 |
. . . . . . . . 9
⊢ (𝐹:𝑆–1-1-onto→𝑇 → 𝐹 Fn 𝑆) |
100 | | fnfun 6517 |
. . . . . . . . 9
⊢ (𝐹 Fn 𝑆 → Fun 𝐹) |
101 | 98, 99, 100 | 3syl 18 |
. . . . . . . 8
⊢ (𝜑 → Fun 𝐹) |
102 | 3 | ssrab3 4011 |
. . . . . . . . 9
⊢ 𝑊 ⊆ 𝑆 |
103 | | fndm 6520 |
. . . . . . . . . 10
⊢ (𝐹 Fn 𝑆 → dom 𝐹 = 𝑆) |
104 | 98, 99, 103 | 3syl 18 |
. . . . . . . . 9
⊢ (𝜑 → dom 𝐹 = 𝑆) |
105 | 102, 104 | sseqtrrid 3970 |
. . . . . . . 8
⊢ (𝜑 → 𝑊 ⊆ dom 𝐹) |
106 | | funimass4 6816 |
. . . . . . . 8
⊢ ((Fun
𝐹 ∧ 𝑊 ⊆ dom 𝐹) → ((𝐹 “ 𝑊) ⊆ (𝑈 × 𝑉) ↔ ∀𝑤 ∈ 𝑊 (𝐹‘𝑤) ∈ (𝑈 × 𝑉))) |
107 | 101, 105,
106 | syl2anc 583 |
. . . . . . 7
⊢ (𝜑 → ((𝐹 “ 𝑊) ⊆ (𝑈 × 𝑉) ↔ ∀𝑤 ∈ 𝑊 (𝐹‘𝑤) ∈ (𝑈 × 𝑉))) |
108 | 96, 107 | mpbird 256 |
. . . . . 6
⊢ (𝜑 → (𝐹 “ 𝑊) ⊆ (𝑈 × 𝑉)) |
109 | 60 | ssrab3 4011 |
. . . . . . . . . . 11
⊢ 𝑈 ⊆ (0..^𝑀) |
110 | 91 | ssrab3 4011 |
. . . . . . . . . . 11
⊢ 𝑉 ⊆ (0..^𝑁) |
111 | | xpss12 5595 |
. . . . . . . . . . 11
⊢ ((𝑈 ⊆ (0..^𝑀) ∧ 𝑉 ⊆ (0..^𝑁)) → (𝑈 × 𝑉) ⊆ ((0..^𝑀) × (0..^𝑁))) |
112 | 109, 110,
111 | mp2an 688 |
. . . . . . . . . 10
⊢ (𝑈 × 𝑉) ⊆ ((0..^𝑀) × (0..^𝑁)) |
113 | 112, 97 | sseqtrri 3954 |
. . . . . . . . 9
⊢ (𝑈 × 𝑉) ⊆ 𝑇 |
114 | 113 | sseli 3913 |
. . . . . . . 8
⊢ (𝑧 ∈ (𝑈 × 𝑉) → 𝑧 ∈ 𝑇) |
115 | | f1ocnvfv2 7130 |
. . . . . . . 8
⊢ ((𝐹:𝑆–1-1-onto→𝑇 ∧ 𝑧 ∈ 𝑇) → (𝐹‘(◡𝐹‘𝑧)) = 𝑧) |
116 | 98, 114, 115 | syl2an 595 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ (𝑈 × 𝑉)) → (𝐹‘(◡𝐹‘𝑧)) = 𝑧) |
117 | | f1ocnv 6712 |
. . . . . . . . . . 11
⊢ (𝐹:𝑆–1-1-onto→𝑇 → ◡𝐹:𝑇–1-1-onto→𝑆) |
118 | | f1of 6700 |
. . . . . . . . . . 11
⊢ (◡𝐹:𝑇–1-1-onto→𝑆 → ◡𝐹:𝑇⟶𝑆) |
119 | 98, 117, 118 | 3syl 18 |
. . . . . . . . . 10
⊢ (𝜑 → ◡𝐹:𝑇⟶𝑆) |
120 | | ffvelrn 6941 |
. . . . . . . . . 10
⊢ ((◡𝐹:𝑇⟶𝑆 ∧ 𝑧 ∈ 𝑇) → (◡𝐹‘𝑧) ∈ 𝑆) |
121 | 119, 114,
120 | syl2an 595 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ (𝑈 × 𝑉)) → (◡𝐹‘𝑧) ∈ 𝑆) |
122 | 121, 14 | eleqtrdi 2849 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑧 ∈ (𝑈 × 𝑉)) → (◡𝐹‘𝑧) ∈ (0..^(𝑀 · 𝑁))) |
123 | | elfzoelz 13316 |
. . . . . . . . . . . . 13
⊢ ((◡𝐹‘𝑧) ∈ (0..^(𝑀 · 𝑁)) → (◡𝐹‘𝑧) ∈ ℤ) |
124 | 122, 123 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑧 ∈ (𝑈 × 𝑉)) → (◡𝐹‘𝑧) ∈ ℤ) |
125 | 20 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑧 ∈ (𝑈 × 𝑉)) → 𝑀 ∈ ℕ) |
126 | | modgcd 16168 |
. . . . . . . . . . . 12
⊢ (((◡𝐹‘𝑧) ∈ ℤ ∧ 𝑀 ∈ ℕ) → (((◡𝐹‘𝑧) mod 𝑀) gcd 𝑀) = ((◡𝐹‘𝑧) gcd 𝑀)) |
127 | 124, 125,
126 | syl2anc 583 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ (𝑈 × 𝑉)) → (((◡𝐹‘𝑧) mod 𝑀) gcd 𝑀) = ((◡𝐹‘𝑧) gcd 𝑀)) |
128 | | oveq1 7262 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑤 = (◡𝐹‘𝑧) → (𝑤 mod 𝑀) = ((◡𝐹‘𝑧) mod 𝑀)) |
129 | | oveq1 7262 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑤 = (◡𝐹‘𝑧) → (𝑤 mod 𝑁) = ((◡𝐹‘𝑧) mod 𝑁)) |
130 | 128, 129 | opeq12d 4809 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑤 = (◡𝐹‘𝑧) → 〈(𝑤 mod 𝑀), (𝑤 mod 𝑁)〉 = 〈((◡𝐹‘𝑧) mod 𝑀), ((◡𝐹‘𝑧) mod 𝑁)〉) |
131 | 8 | cbvmptv 5183 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 ∈ 𝑆 ↦ 〈(𝑥 mod 𝑀), (𝑥 mod 𝑁)〉) = (𝑤 ∈ 𝑆 ↦ 〈(𝑤 mod 𝑀), (𝑤 mod 𝑁)〉) |
132 | 9, 131 | eqtri 2766 |
. . . . . . . . . . . . . . . . . . 19
⊢ 𝐹 = (𝑤 ∈ 𝑆 ↦ 〈(𝑤 mod 𝑀), (𝑤 mod 𝑁)〉) |
133 | | opex 5373 |
. . . . . . . . . . . . . . . . . . 19
⊢
〈((◡𝐹‘𝑧) mod 𝑀), ((◡𝐹‘𝑧) mod 𝑁)〉 ∈ V |
134 | 130, 132,
133 | fvmpt 6857 |
. . . . . . . . . . . . . . . . . 18
⊢ ((◡𝐹‘𝑧) ∈ 𝑆 → (𝐹‘(◡𝐹‘𝑧)) = 〈((◡𝐹‘𝑧) mod 𝑀), ((◡𝐹‘𝑧) mod 𝑁)〉) |
135 | 121, 134 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑧 ∈ (𝑈 × 𝑉)) → (𝐹‘(◡𝐹‘𝑧)) = 〈((◡𝐹‘𝑧) mod 𝑀), ((◡𝐹‘𝑧) mod 𝑁)〉) |
136 | 116, 135 | eqtr3d 2780 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑧 ∈ (𝑈 × 𝑉)) → 𝑧 = 〈((◡𝐹‘𝑧) mod 𝑀), ((◡𝐹‘𝑧) mod 𝑁)〉) |
137 | | simpr 484 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑧 ∈ (𝑈 × 𝑉)) → 𝑧 ∈ (𝑈 × 𝑉)) |
138 | 136, 137 | eqeltrrd 2840 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑧 ∈ (𝑈 × 𝑉)) → 〈((◡𝐹‘𝑧) mod 𝑀), ((◡𝐹‘𝑧) mod 𝑁)〉 ∈ (𝑈 × 𝑉)) |
139 | | opelxp 5616 |
. . . . . . . . . . . . . . 15
⊢
(〈((◡𝐹‘𝑧) mod 𝑀), ((◡𝐹‘𝑧) mod 𝑁)〉 ∈ (𝑈 × 𝑉) ↔ (((◡𝐹‘𝑧) mod 𝑀) ∈ 𝑈 ∧ ((◡𝐹‘𝑧) mod 𝑁) ∈ 𝑉)) |
140 | 138, 139 | sylib 217 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑧 ∈ (𝑈 × 𝑉)) → (((◡𝐹‘𝑧) mod 𝑀) ∈ 𝑈 ∧ ((◡𝐹‘𝑧) mod 𝑁) ∈ 𝑉)) |
141 | 140 | simpld 494 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑧 ∈ (𝑈 × 𝑉)) → ((◡𝐹‘𝑧) mod 𝑀) ∈ 𝑈) |
142 | | oveq1 7262 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = ((◡𝐹‘𝑧) mod 𝑀) → (𝑦 gcd 𝑀) = (((◡𝐹‘𝑧) mod 𝑀) gcd 𝑀)) |
143 | 142 | eqeq1d 2740 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = ((◡𝐹‘𝑧) mod 𝑀) → ((𝑦 gcd 𝑀) = 1 ↔ (((◡𝐹‘𝑧) mod 𝑀) gcd 𝑀) = 1)) |
144 | 143, 60 | elrab2 3620 |
. . . . . . . . . . . . 13
⊢ (((◡𝐹‘𝑧) mod 𝑀) ∈ 𝑈 ↔ (((◡𝐹‘𝑧) mod 𝑀) ∈ (0..^𝑀) ∧ (((◡𝐹‘𝑧) mod 𝑀) gcd 𝑀) = 1)) |
145 | 141, 144 | sylib 217 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑧 ∈ (𝑈 × 𝑉)) → (((◡𝐹‘𝑧) mod 𝑀) ∈ (0..^𝑀) ∧ (((◡𝐹‘𝑧) mod 𝑀) gcd 𝑀) = 1)) |
146 | 145 | simprd 495 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ (𝑈 × 𝑉)) → (((◡𝐹‘𝑧) mod 𝑀) gcd 𝑀) = 1) |
147 | 127, 146 | eqtr3d 2780 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ (𝑈 × 𝑉)) → ((◡𝐹‘𝑧) gcd 𝑀) = 1) |
148 | 37 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑧 ∈ (𝑈 × 𝑉)) → 𝑁 ∈ ℕ) |
149 | | modgcd 16168 |
. . . . . . . . . . . 12
⊢ (((◡𝐹‘𝑧) ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((◡𝐹‘𝑧) mod 𝑁) gcd 𝑁) = ((◡𝐹‘𝑧) gcd 𝑁)) |
150 | 124, 148,
149 | syl2anc 583 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ (𝑈 × 𝑉)) → (((◡𝐹‘𝑧) mod 𝑁) gcd 𝑁) = ((◡𝐹‘𝑧) gcd 𝑁)) |
151 | 140 | simprd 495 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑧 ∈ (𝑈 × 𝑉)) → ((◡𝐹‘𝑧) mod 𝑁) ∈ 𝑉) |
152 | | oveq1 7262 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = ((◡𝐹‘𝑧) mod 𝑁) → (𝑦 gcd 𝑁) = (((◡𝐹‘𝑧) mod 𝑁) gcd 𝑁)) |
153 | 152 | eqeq1d 2740 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = ((◡𝐹‘𝑧) mod 𝑁) → ((𝑦 gcd 𝑁) = 1 ↔ (((◡𝐹‘𝑧) mod 𝑁) gcd 𝑁) = 1)) |
154 | 153, 91 | elrab2 3620 |
. . . . . . . . . . . . 13
⊢ (((◡𝐹‘𝑧) mod 𝑁) ∈ 𝑉 ↔ (((◡𝐹‘𝑧) mod 𝑁) ∈ (0..^𝑁) ∧ (((◡𝐹‘𝑧) mod 𝑁) gcd 𝑁) = 1)) |
155 | 151, 154 | sylib 217 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑧 ∈ (𝑈 × 𝑉)) → (((◡𝐹‘𝑧) mod 𝑁) ∈ (0..^𝑁) ∧ (((◡𝐹‘𝑧) mod 𝑁) gcd 𝑁) = 1)) |
156 | 155 | simprd 495 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ (𝑈 × 𝑉)) → (((◡𝐹‘𝑧) mod 𝑁) gcd 𝑁) = 1) |
157 | 150, 156 | eqtr3d 2780 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ (𝑈 × 𝑉)) → ((◡𝐹‘𝑧) gcd 𝑁) = 1) |
158 | 20 | nnzd 12354 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑀 ∈ ℤ) |
159 | 158 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ (𝑈 × 𝑉)) → 𝑀 ∈ ℤ) |
160 | 37 | nnzd 12354 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑁 ∈ ℤ) |
161 | 160 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ (𝑈 × 𝑉)) → 𝑁 ∈ ℤ) |
162 | | rpmul 16292 |
. . . . . . . . . . 11
⊢ (((◡𝐹‘𝑧) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((((◡𝐹‘𝑧) gcd 𝑀) = 1 ∧ ((◡𝐹‘𝑧) gcd 𝑁) = 1) → ((◡𝐹‘𝑧) gcd (𝑀 · 𝑁)) = 1)) |
163 | 124, 159,
161, 162 | syl3anc 1369 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ (𝑈 × 𝑉)) → ((((◡𝐹‘𝑧) gcd 𝑀) = 1 ∧ ((◡𝐹‘𝑧) gcd 𝑁) = 1) → ((◡𝐹‘𝑧) gcd (𝑀 · 𝑁)) = 1)) |
164 | 147, 157,
163 | mp2and 695 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ (𝑈 × 𝑉)) → ((◡𝐹‘𝑧) gcd (𝑀 · 𝑁)) = 1) |
165 | | oveq1 7262 |
. . . . . . . . . . 11
⊢ (𝑦 = (◡𝐹‘𝑧) → (𝑦 gcd (𝑀 · 𝑁)) = ((◡𝐹‘𝑧) gcd (𝑀 · 𝑁))) |
166 | 165 | eqeq1d 2740 |
. . . . . . . . . 10
⊢ (𝑦 = (◡𝐹‘𝑧) → ((𝑦 gcd (𝑀 · 𝑁)) = 1 ↔ ((◡𝐹‘𝑧) gcd (𝑀 · 𝑁)) = 1)) |
167 | 166, 3 | elrab2 3620 |
. . . . . . . . 9
⊢ ((◡𝐹‘𝑧) ∈ 𝑊 ↔ ((◡𝐹‘𝑧) ∈ 𝑆 ∧ ((◡𝐹‘𝑧) gcd (𝑀 · 𝑁)) = 1)) |
168 | 121, 164,
167 | sylanbrc 582 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ (𝑈 × 𝑉)) → (◡𝐹‘𝑧) ∈ 𝑊) |
169 | | funfvima2 7089 |
. . . . . . . . . 10
⊢ ((Fun
𝐹 ∧ 𝑊 ⊆ dom 𝐹) → ((◡𝐹‘𝑧) ∈ 𝑊 → (𝐹‘(◡𝐹‘𝑧)) ∈ (𝐹 “ 𝑊))) |
170 | 101, 105,
169 | syl2anc 583 |
. . . . . . . . 9
⊢ (𝜑 → ((◡𝐹‘𝑧) ∈ 𝑊 → (𝐹‘(◡𝐹‘𝑧)) ∈ (𝐹 “ 𝑊))) |
171 | 170 | imp 406 |
. . . . . . . 8
⊢ ((𝜑 ∧ (◡𝐹‘𝑧) ∈ 𝑊) → (𝐹‘(◡𝐹‘𝑧)) ∈ (𝐹 “ 𝑊)) |
172 | 168, 171 | syldan 590 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ (𝑈 × 𝑉)) → (𝐹‘(◡𝐹‘𝑧)) ∈ (𝐹 “ 𝑊)) |
173 | 116, 172 | eqeltrrd 2840 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ (𝑈 × 𝑉)) → 𝑧 ∈ (𝐹 “ 𝑊)) |
174 | 108, 173 | eqelssd 3938 |
. . . . 5
⊢ (𝜑 → (𝐹 “ 𝑊) = (𝑈 × 𝑉)) |
175 | | f1of1 6699 |
. . . . . . 7
⊢ (𝐹:𝑆–1-1-onto→𝑇 → 𝐹:𝑆–1-1→𝑇) |
176 | 98, 175 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝐹:𝑆–1-1→𝑇) |
177 | | fzofi 13622 |
. . . . . . . . . 10
⊢
(0..^(𝑀 ·
𝑁)) ∈
Fin |
178 | 14, 177 | eqeltri 2835 |
. . . . . . . . 9
⊢ 𝑆 ∈ Fin |
179 | | ssfi 8918 |
. . . . . . . . 9
⊢ ((𝑆 ∈ Fin ∧ 𝑊 ⊆ 𝑆) → 𝑊 ∈ Fin) |
180 | 178, 102,
179 | mp2an 688 |
. . . . . . . 8
⊢ 𝑊 ∈ Fin |
181 | 180 | elexi 3441 |
. . . . . . 7
⊢ 𝑊 ∈ V |
182 | 181 | f1imaen 8757 |
. . . . . 6
⊢ ((𝐹:𝑆–1-1→𝑇 ∧ 𝑊 ⊆ 𝑆) → (𝐹 “ 𝑊) ≈ 𝑊) |
183 | 176, 102,
182 | sylancl 585 |
. . . . 5
⊢ (𝜑 → (𝐹 “ 𝑊) ≈ 𝑊) |
184 | 174, 183 | eqbrtrrd 5094 |
. . . 4
⊢ (𝜑 → (𝑈 × 𝑉) ≈ 𝑊) |
185 | | fzofi 13622 |
. . . . . . . 8
⊢
(0..^𝑀) ∈
Fin |
186 | | ssrab2 4009 |
. . . . . . . 8
⊢ {𝑦 ∈ (0..^𝑀) ∣ (𝑦 gcd 𝑀) = 1} ⊆ (0..^𝑀) |
187 | | ssfi 8918 |
. . . . . . . 8
⊢
(((0..^𝑀) ∈ Fin
∧ {𝑦 ∈ (0..^𝑀) ∣ (𝑦 gcd 𝑀) = 1} ⊆ (0..^𝑀)) → {𝑦 ∈ (0..^𝑀) ∣ (𝑦 gcd 𝑀) = 1} ∈ Fin) |
188 | 185, 186,
187 | mp2an 688 |
. . . . . . 7
⊢ {𝑦 ∈ (0..^𝑀) ∣ (𝑦 gcd 𝑀) = 1} ∈ Fin |
189 | 60, 188 | eqeltri 2835 |
. . . . . 6
⊢ 𝑈 ∈ Fin |
190 | | fzofi 13622 |
. . . . . . . 8
⊢
(0..^𝑁) ∈
Fin |
191 | | ssrab2 4009 |
. . . . . . . 8
⊢ {𝑦 ∈ (0..^𝑁) ∣ (𝑦 gcd 𝑁) = 1} ⊆ (0..^𝑁) |
192 | | ssfi 8918 |
. . . . . . . 8
⊢
(((0..^𝑁) ∈ Fin
∧ {𝑦 ∈ (0..^𝑁) ∣ (𝑦 gcd 𝑁) = 1} ⊆ (0..^𝑁)) → {𝑦 ∈ (0..^𝑁) ∣ (𝑦 gcd 𝑁) = 1} ∈ Fin) |
193 | 190, 191,
192 | mp2an 688 |
. . . . . . 7
⊢ {𝑦 ∈ (0..^𝑁) ∣ (𝑦 gcd 𝑁) = 1} ∈ Fin |
194 | 91, 193 | eqeltri 2835 |
. . . . . 6
⊢ 𝑉 ∈ Fin |
195 | | xpfi 9015 |
. . . . . 6
⊢ ((𝑈 ∈ Fin ∧ 𝑉 ∈ Fin) → (𝑈 × 𝑉) ∈ Fin) |
196 | 189, 194,
195 | mp2an 688 |
. . . . 5
⊢ (𝑈 × 𝑉) ∈ Fin |
197 | | hashen 13989 |
. . . . 5
⊢ (((𝑈 × 𝑉) ∈ Fin ∧ 𝑊 ∈ Fin) → ((♯‘(𝑈 × 𝑉)) = (♯‘𝑊) ↔ (𝑈 × 𝑉) ≈ 𝑊)) |
198 | 196, 180,
197 | mp2an 688 |
. . . 4
⊢
((♯‘(𝑈
× 𝑉)) =
(♯‘𝑊) ↔
(𝑈 × 𝑉) ≈ 𝑊) |
199 | 184, 198 | sylibr 233 |
. . 3
⊢ (𝜑 → (♯‘(𝑈 × 𝑉)) = (♯‘𝑊)) |
200 | | hashxp 14077 |
. . . 4
⊢ ((𝑈 ∈ Fin ∧ 𝑉 ∈ Fin) →
(♯‘(𝑈 ×
𝑉)) = ((♯‘𝑈) · (♯‘𝑉))) |
201 | 189, 194,
200 | mp2an 688 |
. . 3
⊢
(♯‘(𝑈
× 𝑉)) =
((♯‘𝑈) ·
(♯‘𝑉)) |
202 | 199, 201 | eqtr3di 2794 |
. 2
⊢ (𝜑 → (♯‘𝑊) = ((♯‘𝑈) · (♯‘𝑉))) |
203 | 20, 37 | nnmulcld 11956 |
. . 3
⊢ (𝜑 → (𝑀 · 𝑁) ∈ ℕ) |
204 | | dfphi2 16403 |
. . . 4
⊢ ((𝑀 · 𝑁) ∈ ℕ → (ϕ‘(𝑀 · 𝑁)) = (♯‘{𝑦 ∈ (0..^(𝑀 · 𝑁)) ∣ (𝑦 gcd (𝑀 · 𝑁)) = 1})) |
205 | 14 | rabeqi 3406 |
. . . . . 6
⊢ {𝑦 ∈ 𝑆 ∣ (𝑦 gcd (𝑀 · 𝑁)) = 1} = {𝑦 ∈ (0..^(𝑀 · 𝑁)) ∣ (𝑦 gcd (𝑀 · 𝑁)) = 1} |
206 | 3, 205 | eqtri 2766 |
. . . . 5
⊢ 𝑊 = {𝑦 ∈ (0..^(𝑀 · 𝑁)) ∣ (𝑦 gcd (𝑀 · 𝑁)) = 1} |
207 | 206 | fveq2i 6759 |
. . . 4
⊢
(♯‘𝑊) =
(♯‘{𝑦 ∈
(0..^(𝑀 · 𝑁)) ∣ (𝑦 gcd (𝑀 · 𝑁)) = 1}) |
208 | 204, 207 | eqtr4di 2797 |
. . 3
⊢ ((𝑀 · 𝑁) ∈ ℕ → (ϕ‘(𝑀 · 𝑁)) = (♯‘𝑊)) |
209 | 203, 208 | syl 17 |
. 2
⊢ (𝜑 → (ϕ‘(𝑀 · 𝑁)) = (♯‘𝑊)) |
210 | | dfphi2 16403 |
. . . . 5
⊢ (𝑀 ∈ ℕ →
(ϕ‘𝑀) =
(♯‘{𝑦 ∈
(0..^𝑀) ∣ (𝑦 gcd 𝑀) = 1})) |
211 | 60 | fveq2i 6759 |
. . . . 5
⊢
(♯‘𝑈) =
(♯‘{𝑦 ∈
(0..^𝑀) ∣ (𝑦 gcd 𝑀) = 1}) |
212 | 210, 211 | eqtr4di 2797 |
. . . 4
⊢ (𝑀 ∈ ℕ →
(ϕ‘𝑀) =
(♯‘𝑈)) |
213 | 20, 212 | syl 17 |
. . 3
⊢ (𝜑 → (ϕ‘𝑀) = (♯‘𝑈)) |
214 | | dfphi2 16403 |
. . . . 5
⊢ (𝑁 ∈ ℕ →
(ϕ‘𝑁) =
(♯‘{𝑦 ∈
(0..^𝑁) ∣ (𝑦 gcd 𝑁) = 1})) |
215 | 91 | fveq2i 6759 |
. . . . 5
⊢
(♯‘𝑉) =
(♯‘{𝑦 ∈
(0..^𝑁) ∣ (𝑦 gcd 𝑁) = 1}) |
216 | 214, 215 | eqtr4di 2797 |
. . . 4
⊢ (𝑁 ∈ ℕ →
(ϕ‘𝑁) =
(♯‘𝑉)) |
217 | 37, 216 | syl 17 |
. . 3
⊢ (𝜑 → (ϕ‘𝑁) = (♯‘𝑉)) |
218 | 213, 217 | oveq12d 7273 |
. 2
⊢ (𝜑 → ((ϕ‘𝑀) · (ϕ‘𝑁)) = ((♯‘𝑈) · (♯‘𝑉))) |
219 | 202, 209,
218 | 3eqtr4d 2788 |
1
⊢ (𝜑 → (ϕ‘(𝑀 · 𝑁)) = ((ϕ‘𝑀) · (ϕ‘𝑁))) |