MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ttukey2g Structured version   Visualization version   GIF version

Theorem ttukey2g 10535
Description: The Teichmüller-Tukey Lemma ttukey 10537 with a slightly stronger conclusion: we can set up the maximal element of 𝐴 so that it also contains some given 𝐵𝐴 as a subset. (Contributed by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
ttukey2g (( 𝐴 ∈ dom card ∧ 𝐵𝐴 ∧ ∀𝑥(𝑥𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴)) → ∃𝑥𝐴 (𝐵𝑥 ∧ ∀𝑦𝐴 ¬ 𝑥𝑦))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦

Proof of Theorem ttukey2g
Dummy variables 𝑤 𝑓 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 difss 4116 . . . 4 ( 𝐴𝐵) ⊆ 𝐴
2 ssnum 10058 . . . 4 (( 𝐴 ∈ dom card ∧ ( 𝐴𝐵) ⊆ 𝐴) → ( 𝐴𝐵) ∈ dom card)
31, 2mpan2 691 . . 3 ( 𝐴 ∈ dom card → ( 𝐴𝐵) ∈ dom card)
4 isnum3 9973 . . . . 5 (( 𝐴𝐵) ∈ dom card ↔ (card‘( 𝐴𝐵)) ≈ ( 𝐴𝐵))
5 bren 8974 . . . . 5 ((card‘( 𝐴𝐵)) ≈ ( 𝐴𝐵) ↔ ∃𝑓 𝑓:(card‘( 𝐴𝐵))–1-1-onto→( 𝐴𝐵))
64, 5bitri 275 . . . 4 (( 𝐴𝐵) ∈ dom card ↔ ∃𝑓 𝑓:(card‘( 𝐴𝐵))–1-1-onto→( 𝐴𝐵))
7 simp1 1136 . . . . . . 7 ((𝑓:(card‘( 𝐴𝐵))–1-1-onto→( 𝐴𝐵) ∧ 𝐵𝐴 ∧ ∀𝑥(𝑥𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴)) → 𝑓:(card‘( 𝐴𝐵))–1-1-onto→( 𝐴𝐵))
8 simp2 1137 . . . . . . 7 ((𝑓:(card‘( 𝐴𝐵))–1-1-onto→( 𝐴𝐵) ∧ 𝐵𝐴 ∧ ∀𝑥(𝑥𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴)) → 𝐵𝐴)
9 simp3 1138 . . . . . . 7 ((𝑓:(card‘( 𝐴𝐵))–1-1-onto→( 𝐴𝐵) ∧ 𝐵𝐴 ∧ ∀𝑥(𝑥𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴)) → ∀𝑥(𝑥𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴))
10 dmeq 5888 . . . . . . . . . . 11 (𝑤 = 𝑧 → dom 𝑤 = dom 𝑧)
1110unieqd 4901 . . . . . . . . . . 11 (𝑤 = 𝑧 dom 𝑤 = dom 𝑧)
1210, 11eqeq12d 2752 . . . . . . . . . 10 (𝑤 = 𝑧 → (dom 𝑤 = dom 𝑤 ↔ dom 𝑧 = dom 𝑧))
1310eqeq1d 2738 . . . . . . . . . . 11 (𝑤 = 𝑧 → (dom 𝑤 = ∅ ↔ dom 𝑧 = ∅))
14 rneq 5921 . . . . . . . . . . . 12 (𝑤 = 𝑧 → ran 𝑤 = ran 𝑧)
1514unieqd 4901 . . . . . . . . . . 11 (𝑤 = 𝑧 ran 𝑤 = ran 𝑧)
1613, 15ifbieq2d 4532 . . . . . . . . . 10 (𝑤 = 𝑧 → if(dom 𝑤 = ∅, 𝐵, ran 𝑤) = if(dom 𝑧 = ∅, 𝐵, ran 𝑧))
17 id 22 . . . . . . . . . . . 12 (𝑤 = 𝑧𝑤 = 𝑧)
1817, 11fveq12d 6888 . . . . . . . . . . 11 (𝑤 = 𝑧 → (𝑤 dom 𝑤) = (𝑧 dom 𝑧))
1911fveq2d 6885 . . . . . . . . . . . . . . 15 (𝑤 = 𝑧 → (𝑓 dom 𝑤) = (𝑓 dom 𝑧))
2019sneqd 4618 . . . . . . . . . . . . . 14 (𝑤 = 𝑧 → {(𝑓 dom 𝑤)} = {(𝑓 dom 𝑧)})
2118, 20uneq12d 4149 . . . . . . . . . . . . 13 (𝑤 = 𝑧 → ((𝑤 dom 𝑤) ∪ {(𝑓 dom 𝑤)}) = ((𝑧 dom 𝑧) ∪ {(𝑓 dom 𝑧)}))
2221eleq1d 2820 . . . . . . . . . . . 12 (𝑤 = 𝑧 → (((𝑤 dom 𝑤) ∪ {(𝑓 dom 𝑤)}) ∈ 𝐴 ↔ ((𝑧 dom 𝑧) ∪ {(𝑓 dom 𝑧)}) ∈ 𝐴))
2322, 20ifbieq1d 4530 . . . . . . . . . . 11 (𝑤 = 𝑧 → if(((𝑤 dom 𝑤) ∪ {(𝑓 dom 𝑤)}) ∈ 𝐴, {(𝑓 dom 𝑤)}, ∅) = if(((𝑧 dom 𝑧) ∪ {(𝑓 dom 𝑧)}) ∈ 𝐴, {(𝑓 dom 𝑧)}, ∅))
2418, 23uneq12d 4149 . . . . . . . . . 10 (𝑤 = 𝑧 → ((𝑤 dom 𝑤) ∪ if(((𝑤 dom 𝑤) ∪ {(𝑓 dom 𝑤)}) ∈ 𝐴, {(𝑓 dom 𝑤)}, ∅)) = ((𝑧 dom 𝑧) ∪ if(((𝑧 dom 𝑧) ∪ {(𝑓 dom 𝑧)}) ∈ 𝐴, {(𝑓 dom 𝑧)}, ∅)))
2512, 16, 24ifbieq12d 4534 . . . . . . . . 9 (𝑤 = 𝑧 → if(dom 𝑤 = dom 𝑤, if(dom 𝑤 = ∅, 𝐵, ran 𝑤), ((𝑤 dom 𝑤) ∪ if(((𝑤 dom 𝑤) ∪ {(𝑓 dom 𝑤)}) ∈ 𝐴, {(𝑓 dom 𝑤)}, ∅))) = if(dom 𝑧 = dom 𝑧, if(dom 𝑧 = ∅, 𝐵, ran 𝑧), ((𝑧 dom 𝑧) ∪ if(((𝑧 dom 𝑧) ∪ {(𝑓 dom 𝑧)}) ∈ 𝐴, {(𝑓 dom 𝑧)}, ∅))))
2625cbvmptv 5230 . . . . . . . 8 (𝑤 ∈ V ↦ if(dom 𝑤 = dom 𝑤, if(dom 𝑤 = ∅, 𝐵, ran 𝑤), ((𝑤 dom 𝑤) ∪ if(((𝑤 dom 𝑤) ∪ {(𝑓 dom 𝑤)}) ∈ 𝐴, {(𝑓 dom 𝑤)}, ∅)))) = (𝑧 ∈ V ↦ if(dom 𝑧 = dom 𝑧, if(dom 𝑧 = ∅, 𝐵, ran 𝑧), ((𝑧 dom 𝑧) ∪ if(((𝑧 dom 𝑧) ∪ {(𝑓 dom 𝑧)}) ∈ 𝐴, {(𝑓 dom 𝑧)}, ∅))))
27 recseq 8393 . . . . . . . 8 ((𝑤 ∈ V ↦ if(dom 𝑤 = dom 𝑤, if(dom 𝑤 = ∅, 𝐵, ran 𝑤), ((𝑤 dom 𝑤) ∪ if(((𝑤 dom 𝑤) ∪ {(𝑓 dom 𝑤)}) ∈ 𝐴, {(𝑓 dom 𝑤)}, ∅)))) = (𝑧 ∈ V ↦ if(dom 𝑧 = dom 𝑧, if(dom 𝑧 = ∅, 𝐵, ran 𝑧), ((𝑧 dom 𝑧) ∪ if(((𝑧 dom 𝑧) ∪ {(𝑓 dom 𝑧)}) ∈ 𝐴, {(𝑓 dom 𝑧)}, ∅)))) → recs((𝑤 ∈ V ↦ if(dom 𝑤 = dom 𝑤, if(dom 𝑤 = ∅, 𝐵, ran 𝑤), ((𝑤 dom 𝑤) ∪ if(((𝑤 dom 𝑤) ∪ {(𝑓 dom 𝑤)}) ∈ 𝐴, {(𝑓 dom 𝑤)}, ∅))))) = recs((𝑧 ∈ V ↦ if(dom 𝑧 = dom 𝑧, if(dom 𝑧 = ∅, 𝐵, ran 𝑧), ((𝑧 dom 𝑧) ∪ if(((𝑧 dom 𝑧) ∪ {(𝑓 dom 𝑧)}) ∈ 𝐴, {(𝑓 dom 𝑧)}, ∅))))))
2826, 27ax-mp 5 . . . . . . 7 recs((𝑤 ∈ V ↦ if(dom 𝑤 = dom 𝑤, if(dom 𝑤 = ∅, 𝐵, ran 𝑤), ((𝑤 dom 𝑤) ∪ if(((𝑤 dom 𝑤) ∪ {(𝑓 dom 𝑤)}) ∈ 𝐴, {(𝑓 dom 𝑤)}, ∅))))) = recs((𝑧 ∈ V ↦ if(dom 𝑧 = dom 𝑧, if(dom 𝑧 = ∅, 𝐵, ran 𝑧), ((𝑧 dom 𝑧) ∪ if(((𝑧 dom 𝑧) ∪ {(𝑓 dom 𝑧)}) ∈ 𝐴, {(𝑓 dom 𝑧)}, ∅)))))
297, 8, 9, 28ttukeylem7 10534 . . . . . 6 ((𝑓:(card‘( 𝐴𝐵))–1-1-onto→( 𝐴𝐵) ∧ 𝐵𝐴 ∧ ∀𝑥(𝑥𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴)) → ∃𝑥𝐴 (𝐵𝑥 ∧ ∀𝑦𝐴 ¬ 𝑥𝑦))
30293expib 1122 . . . . 5 (𝑓:(card‘( 𝐴𝐵))–1-1-onto→( 𝐴𝐵) → ((𝐵𝐴 ∧ ∀𝑥(𝑥𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴)) → ∃𝑥𝐴 (𝐵𝑥 ∧ ∀𝑦𝐴 ¬ 𝑥𝑦)))
3130exlimiv 1930 . . . 4 (∃𝑓 𝑓:(card‘( 𝐴𝐵))–1-1-onto→( 𝐴𝐵) → ((𝐵𝐴 ∧ ∀𝑥(𝑥𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴)) → ∃𝑥𝐴 (𝐵𝑥 ∧ ∀𝑦𝐴 ¬ 𝑥𝑦)))
326, 31sylbi 217 . . 3 (( 𝐴𝐵) ∈ dom card → ((𝐵𝐴 ∧ ∀𝑥(𝑥𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴)) → ∃𝑥𝐴 (𝐵𝑥 ∧ ∀𝑦𝐴 ¬ 𝑥𝑦)))
333, 32syl 17 . 2 ( 𝐴 ∈ dom card → ((𝐵𝐴 ∧ ∀𝑥(𝑥𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴)) → ∃𝑥𝐴 (𝐵𝑥 ∧ ∀𝑦𝐴 ¬ 𝑥𝑦)))
34333impib 1116 1 (( 𝐴 ∈ dom card ∧ 𝐵𝐴 ∧ ∀𝑥(𝑥𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴)) → ∃𝑥𝐴 (𝐵𝑥 ∧ ∀𝑦𝐴 ¬ 𝑥𝑦))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086  wal 1538   = wceq 1540  wex 1779  wcel 2109  wral 3052  wrex 3061  Vcvv 3464  cdif 3928  cun 3929  cin 3930  wss 3931  wpss 3932  c0 4313  ifcif 4505  𝒫 cpw 4580  {csn 4606   cuni 4888   class class class wbr 5124  cmpt 5206  dom cdm 5659  ran crn 5660  1-1-ontowf1o 6535  cfv 6536  recscrecs 8389  cen 8961  Fincfn 8964  cardccrd 9954
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-om 7867  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-1o 8485  df-er 8724  df-en 8965  df-dom 8966  df-fin 8968  df-card 9958
This theorem is referenced by:  ttukeyg  10536
  Copyright terms: Public domain W3C validator