MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ttukey2g Structured version   Visualization version   GIF version

Theorem ttukey2g 10272
Description: The Teichmüller-Tukey Lemma ttukey 10274 with a slightly stronger conclusion: we can set up the maximal element of 𝐴 so that it also contains some given 𝐵𝐴 as a subset. (Contributed by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
ttukey2g (( 𝐴 ∈ dom card ∧ 𝐵𝐴 ∧ ∀𝑥(𝑥𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴)) → ∃𝑥𝐴 (𝐵𝑥 ∧ ∀𝑦𝐴 ¬ 𝑥𝑦))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦

Proof of Theorem ttukey2g
Dummy variables 𝑤 𝑓 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 difss 4066 . . . 4 ( 𝐴𝐵) ⊆ 𝐴
2 ssnum 9795 . . . 4 (( 𝐴 ∈ dom card ∧ ( 𝐴𝐵) ⊆ 𝐴) → ( 𝐴𝐵) ∈ dom card)
31, 2mpan2 688 . . 3 ( 𝐴 ∈ dom card → ( 𝐴𝐵) ∈ dom card)
4 isnum3 9712 . . . . 5 (( 𝐴𝐵) ∈ dom card ↔ (card‘( 𝐴𝐵)) ≈ ( 𝐴𝐵))
5 bren 8743 . . . . 5 ((card‘( 𝐴𝐵)) ≈ ( 𝐴𝐵) ↔ ∃𝑓 𝑓:(card‘( 𝐴𝐵))–1-1-onto→( 𝐴𝐵))
64, 5bitri 274 . . . 4 (( 𝐴𝐵) ∈ dom card ↔ ∃𝑓 𝑓:(card‘( 𝐴𝐵))–1-1-onto→( 𝐴𝐵))
7 simp1 1135 . . . . . . 7 ((𝑓:(card‘( 𝐴𝐵))–1-1-onto→( 𝐴𝐵) ∧ 𝐵𝐴 ∧ ∀𝑥(𝑥𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴)) → 𝑓:(card‘( 𝐴𝐵))–1-1-onto→( 𝐴𝐵))
8 simp2 1136 . . . . . . 7 ((𝑓:(card‘( 𝐴𝐵))–1-1-onto→( 𝐴𝐵) ∧ 𝐵𝐴 ∧ ∀𝑥(𝑥𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴)) → 𝐵𝐴)
9 simp3 1137 . . . . . . 7 ((𝑓:(card‘( 𝐴𝐵))–1-1-onto→( 𝐴𝐵) ∧ 𝐵𝐴 ∧ ∀𝑥(𝑥𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴)) → ∀𝑥(𝑥𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴))
10 dmeq 5812 . . . . . . . . . . 11 (𝑤 = 𝑧 → dom 𝑤 = dom 𝑧)
1110unieqd 4853 . . . . . . . . . . 11 (𝑤 = 𝑧 dom 𝑤 = dom 𝑧)
1210, 11eqeq12d 2754 . . . . . . . . . 10 (𝑤 = 𝑧 → (dom 𝑤 = dom 𝑤 ↔ dom 𝑧 = dom 𝑧))
1310eqeq1d 2740 . . . . . . . . . . 11 (𝑤 = 𝑧 → (dom 𝑤 = ∅ ↔ dom 𝑧 = ∅))
14 rneq 5845 . . . . . . . . . . . 12 (𝑤 = 𝑧 → ran 𝑤 = ran 𝑧)
1514unieqd 4853 . . . . . . . . . . 11 (𝑤 = 𝑧 ran 𝑤 = ran 𝑧)
1613, 15ifbieq2d 4485 . . . . . . . . . 10 (𝑤 = 𝑧 → if(dom 𝑤 = ∅, 𝐵, ran 𝑤) = if(dom 𝑧 = ∅, 𝐵, ran 𝑧))
17 id 22 . . . . . . . . . . . 12 (𝑤 = 𝑧𝑤 = 𝑧)
1817, 11fveq12d 6781 . . . . . . . . . . 11 (𝑤 = 𝑧 → (𝑤 dom 𝑤) = (𝑧 dom 𝑧))
1911fveq2d 6778 . . . . . . . . . . . . . . 15 (𝑤 = 𝑧 → (𝑓 dom 𝑤) = (𝑓 dom 𝑧))
2019sneqd 4573 . . . . . . . . . . . . . 14 (𝑤 = 𝑧 → {(𝑓 dom 𝑤)} = {(𝑓 dom 𝑧)})
2118, 20uneq12d 4098 . . . . . . . . . . . . 13 (𝑤 = 𝑧 → ((𝑤 dom 𝑤) ∪ {(𝑓 dom 𝑤)}) = ((𝑧 dom 𝑧) ∪ {(𝑓 dom 𝑧)}))
2221eleq1d 2823 . . . . . . . . . . . 12 (𝑤 = 𝑧 → (((𝑤 dom 𝑤) ∪ {(𝑓 dom 𝑤)}) ∈ 𝐴 ↔ ((𝑧 dom 𝑧) ∪ {(𝑓 dom 𝑧)}) ∈ 𝐴))
2322, 20ifbieq1d 4483 . . . . . . . . . . 11 (𝑤 = 𝑧 → if(((𝑤 dom 𝑤) ∪ {(𝑓 dom 𝑤)}) ∈ 𝐴, {(𝑓 dom 𝑤)}, ∅) = if(((𝑧 dom 𝑧) ∪ {(𝑓 dom 𝑧)}) ∈ 𝐴, {(𝑓 dom 𝑧)}, ∅))
2418, 23uneq12d 4098 . . . . . . . . . 10 (𝑤 = 𝑧 → ((𝑤 dom 𝑤) ∪ if(((𝑤 dom 𝑤) ∪ {(𝑓 dom 𝑤)}) ∈ 𝐴, {(𝑓 dom 𝑤)}, ∅)) = ((𝑧 dom 𝑧) ∪ if(((𝑧 dom 𝑧) ∪ {(𝑓 dom 𝑧)}) ∈ 𝐴, {(𝑓 dom 𝑧)}, ∅)))
2512, 16, 24ifbieq12d 4487 . . . . . . . . 9 (𝑤 = 𝑧 → if(dom 𝑤 = dom 𝑤, if(dom 𝑤 = ∅, 𝐵, ran 𝑤), ((𝑤 dom 𝑤) ∪ if(((𝑤 dom 𝑤) ∪ {(𝑓 dom 𝑤)}) ∈ 𝐴, {(𝑓 dom 𝑤)}, ∅))) = if(dom 𝑧 = dom 𝑧, if(dom 𝑧 = ∅, 𝐵, ran 𝑧), ((𝑧 dom 𝑧) ∪ if(((𝑧 dom 𝑧) ∪ {(𝑓 dom 𝑧)}) ∈ 𝐴, {(𝑓 dom 𝑧)}, ∅))))
2625cbvmptv 5187 . . . . . . . 8 (𝑤 ∈ V ↦ if(dom 𝑤 = dom 𝑤, if(dom 𝑤 = ∅, 𝐵, ran 𝑤), ((𝑤 dom 𝑤) ∪ if(((𝑤 dom 𝑤) ∪ {(𝑓 dom 𝑤)}) ∈ 𝐴, {(𝑓 dom 𝑤)}, ∅)))) = (𝑧 ∈ V ↦ if(dom 𝑧 = dom 𝑧, if(dom 𝑧 = ∅, 𝐵, ran 𝑧), ((𝑧 dom 𝑧) ∪ if(((𝑧 dom 𝑧) ∪ {(𝑓 dom 𝑧)}) ∈ 𝐴, {(𝑓 dom 𝑧)}, ∅))))
27 recseq 8205 . . . . . . . 8 ((𝑤 ∈ V ↦ if(dom 𝑤 = dom 𝑤, if(dom 𝑤 = ∅, 𝐵, ran 𝑤), ((𝑤 dom 𝑤) ∪ if(((𝑤 dom 𝑤) ∪ {(𝑓 dom 𝑤)}) ∈ 𝐴, {(𝑓 dom 𝑤)}, ∅)))) = (𝑧 ∈ V ↦ if(dom 𝑧 = dom 𝑧, if(dom 𝑧 = ∅, 𝐵, ran 𝑧), ((𝑧 dom 𝑧) ∪ if(((𝑧 dom 𝑧) ∪ {(𝑓 dom 𝑧)}) ∈ 𝐴, {(𝑓 dom 𝑧)}, ∅)))) → recs((𝑤 ∈ V ↦ if(dom 𝑤 = dom 𝑤, if(dom 𝑤 = ∅, 𝐵, ran 𝑤), ((𝑤 dom 𝑤) ∪ if(((𝑤 dom 𝑤) ∪ {(𝑓 dom 𝑤)}) ∈ 𝐴, {(𝑓 dom 𝑤)}, ∅))))) = recs((𝑧 ∈ V ↦ if(dom 𝑧 = dom 𝑧, if(dom 𝑧 = ∅, 𝐵, ran 𝑧), ((𝑧 dom 𝑧) ∪ if(((𝑧 dom 𝑧) ∪ {(𝑓 dom 𝑧)}) ∈ 𝐴, {(𝑓 dom 𝑧)}, ∅))))))
2826, 27ax-mp 5 . . . . . . 7 recs((𝑤 ∈ V ↦ if(dom 𝑤 = dom 𝑤, if(dom 𝑤 = ∅, 𝐵, ran 𝑤), ((𝑤 dom 𝑤) ∪ if(((𝑤 dom 𝑤) ∪ {(𝑓 dom 𝑤)}) ∈ 𝐴, {(𝑓 dom 𝑤)}, ∅))))) = recs((𝑧 ∈ V ↦ if(dom 𝑧 = dom 𝑧, if(dom 𝑧 = ∅, 𝐵, ran 𝑧), ((𝑧 dom 𝑧) ∪ if(((𝑧 dom 𝑧) ∪ {(𝑓 dom 𝑧)}) ∈ 𝐴, {(𝑓 dom 𝑧)}, ∅)))))
297, 8, 9, 28ttukeylem7 10271 . . . . . 6 ((𝑓:(card‘( 𝐴𝐵))–1-1-onto→( 𝐴𝐵) ∧ 𝐵𝐴 ∧ ∀𝑥(𝑥𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴)) → ∃𝑥𝐴 (𝐵𝑥 ∧ ∀𝑦𝐴 ¬ 𝑥𝑦))
30293expib 1121 . . . . 5 (𝑓:(card‘( 𝐴𝐵))–1-1-onto→( 𝐴𝐵) → ((𝐵𝐴 ∧ ∀𝑥(𝑥𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴)) → ∃𝑥𝐴 (𝐵𝑥 ∧ ∀𝑦𝐴 ¬ 𝑥𝑦)))
3130exlimiv 1933 . . . 4 (∃𝑓 𝑓:(card‘( 𝐴𝐵))–1-1-onto→( 𝐴𝐵) → ((𝐵𝐴 ∧ ∀𝑥(𝑥𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴)) → ∃𝑥𝐴 (𝐵𝑥 ∧ ∀𝑦𝐴 ¬ 𝑥𝑦)))
326, 31sylbi 216 . . 3 (( 𝐴𝐵) ∈ dom card → ((𝐵𝐴 ∧ ∀𝑥(𝑥𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴)) → ∃𝑥𝐴 (𝐵𝑥 ∧ ∀𝑦𝐴 ¬ 𝑥𝑦)))
333, 32syl 17 . 2 ( 𝐴 ∈ dom card → ((𝐵𝐴 ∧ ∀𝑥(𝑥𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴)) → ∃𝑥𝐴 (𝐵𝑥 ∧ ∀𝑦𝐴 ¬ 𝑥𝑦)))
34333impib 1115 1 (( 𝐴 ∈ dom card ∧ 𝐵𝐴 ∧ ∀𝑥(𝑥𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴)) → ∃𝑥𝐴 (𝐵𝑥 ∧ ∀𝑦𝐴 ¬ 𝑥𝑦))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086  wal 1537   = wceq 1539  wex 1782  wcel 2106  wral 3064  wrex 3065  Vcvv 3432  cdif 3884  cun 3885  cin 3886  wss 3887  wpss 3888  c0 4256  ifcif 4459  𝒫 cpw 4533  {csn 4561   cuni 4839   class class class wbr 5074  cmpt 5157  dom cdm 5589  ran crn 5590  1-1-ontowf1o 6432  cfv 6433  recscrecs 8201  cen 8730  Fincfn 8733  cardccrd 9693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-fin 8737  df-card 9697
This theorem is referenced by:  ttukeyg  10273
  Copyright terms: Public domain W3C validator