MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ttukey2g Structured version   Visualization version   GIF version

Theorem ttukey2g 10407
Description: The Teichmüller-Tukey Lemma ttukey 10409 with a slightly stronger conclusion: we can set up the maximal element of 𝐴 so that it also contains some given 𝐵𝐴 as a subset. (Contributed by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
ttukey2g (( 𝐴 ∈ dom card ∧ 𝐵𝐴 ∧ ∀𝑥(𝑥𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴)) → ∃𝑥𝐴 (𝐵𝑥 ∧ ∀𝑦𝐴 ¬ 𝑥𝑦))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦

Proof of Theorem ttukey2g
Dummy variables 𝑤 𝑓 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 difss 4086 . . . 4 ( 𝐴𝐵) ⊆ 𝐴
2 ssnum 9930 . . . 4 (( 𝐴 ∈ dom card ∧ ( 𝐴𝐵) ⊆ 𝐴) → ( 𝐴𝐵) ∈ dom card)
31, 2mpan2 691 . . 3 ( 𝐴 ∈ dom card → ( 𝐴𝐵) ∈ dom card)
4 isnum3 9847 . . . . 5 (( 𝐴𝐵) ∈ dom card ↔ (card‘( 𝐴𝐵)) ≈ ( 𝐴𝐵))
5 bren 8879 . . . . 5 ((card‘( 𝐴𝐵)) ≈ ( 𝐴𝐵) ↔ ∃𝑓 𝑓:(card‘( 𝐴𝐵))–1-1-onto→( 𝐴𝐵))
64, 5bitri 275 . . . 4 (( 𝐴𝐵) ∈ dom card ↔ ∃𝑓 𝑓:(card‘( 𝐴𝐵))–1-1-onto→( 𝐴𝐵))
7 simp1 1136 . . . . . . 7 ((𝑓:(card‘( 𝐴𝐵))–1-1-onto→( 𝐴𝐵) ∧ 𝐵𝐴 ∧ ∀𝑥(𝑥𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴)) → 𝑓:(card‘( 𝐴𝐵))–1-1-onto→( 𝐴𝐵))
8 simp2 1137 . . . . . . 7 ((𝑓:(card‘( 𝐴𝐵))–1-1-onto→( 𝐴𝐵) ∧ 𝐵𝐴 ∧ ∀𝑥(𝑥𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴)) → 𝐵𝐴)
9 simp3 1138 . . . . . . 7 ((𝑓:(card‘( 𝐴𝐵))–1-1-onto→( 𝐴𝐵) ∧ 𝐵𝐴 ∧ ∀𝑥(𝑥𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴)) → ∀𝑥(𝑥𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴))
10 dmeq 5843 . . . . . . . . . . 11 (𝑤 = 𝑧 → dom 𝑤 = dom 𝑧)
1110unieqd 4872 . . . . . . . . . . 11 (𝑤 = 𝑧 dom 𝑤 = dom 𝑧)
1210, 11eqeq12d 2747 . . . . . . . . . 10 (𝑤 = 𝑧 → (dom 𝑤 = dom 𝑤 ↔ dom 𝑧 = dom 𝑧))
1310eqeq1d 2733 . . . . . . . . . . 11 (𝑤 = 𝑧 → (dom 𝑤 = ∅ ↔ dom 𝑧 = ∅))
14 rneq 5876 . . . . . . . . . . . 12 (𝑤 = 𝑧 → ran 𝑤 = ran 𝑧)
1514unieqd 4872 . . . . . . . . . . 11 (𝑤 = 𝑧 ran 𝑤 = ran 𝑧)
1613, 15ifbieq2d 4502 . . . . . . . . . 10 (𝑤 = 𝑧 → if(dom 𝑤 = ∅, 𝐵, ran 𝑤) = if(dom 𝑧 = ∅, 𝐵, ran 𝑧))
17 id 22 . . . . . . . . . . . 12 (𝑤 = 𝑧𝑤 = 𝑧)
1817, 11fveq12d 6829 . . . . . . . . . . 11 (𝑤 = 𝑧 → (𝑤 dom 𝑤) = (𝑧 dom 𝑧))
1911fveq2d 6826 . . . . . . . . . . . . . . 15 (𝑤 = 𝑧 → (𝑓 dom 𝑤) = (𝑓 dom 𝑧))
2019sneqd 4588 . . . . . . . . . . . . . 14 (𝑤 = 𝑧 → {(𝑓 dom 𝑤)} = {(𝑓 dom 𝑧)})
2118, 20uneq12d 4119 . . . . . . . . . . . . 13 (𝑤 = 𝑧 → ((𝑤 dom 𝑤) ∪ {(𝑓 dom 𝑤)}) = ((𝑧 dom 𝑧) ∪ {(𝑓 dom 𝑧)}))
2221eleq1d 2816 . . . . . . . . . . . 12 (𝑤 = 𝑧 → (((𝑤 dom 𝑤) ∪ {(𝑓 dom 𝑤)}) ∈ 𝐴 ↔ ((𝑧 dom 𝑧) ∪ {(𝑓 dom 𝑧)}) ∈ 𝐴))
2322, 20ifbieq1d 4500 . . . . . . . . . . 11 (𝑤 = 𝑧 → if(((𝑤 dom 𝑤) ∪ {(𝑓 dom 𝑤)}) ∈ 𝐴, {(𝑓 dom 𝑤)}, ∅) = if(((𝑧 dom 𝑧) ∪ {(𝑓 dom 𝑧)}) ∈ 𝐴, {(𝑓 dom 𝑧)}, ∅))
2418, 23uneq12d 4119 . . . . . . . . . 10 (𝑤 = 𝑧 → ((𝑤 dom 𝑤) ∪ if(((𝑤 dom 𝑤) ∪ {(𝑓 dom 𝑤)}) ∈ 𝐴, {(𝑓 dom 𝑤)}, ∅)) = ((𝑧 dom 𝑧) ∪ if(((𝑧 dom 𝑧) ∪ {(𝑓 dom 𝑧)}) ∈ 𝐴, {(𝑓 dom 𝑧)}, ∅)))
2512, 16, 24ifbieq12d 4504 . . . . . . . . 9 (𝑤 = 𝑧 → if(dom 𝑤 = dom 𝑤, if(dom 𝑤 = ∅, 𝐵, ran 𝑤), ((𝑤 dom 𝑤) ∪ if(((𝑤 dom 𝑤) ∪ {(𝑓 dom 𝑤)}) ∈ 𝐴, {(𝑓 dom 𝑤)}, ∅))) = if(dom 𝑧 = dom 𝑧, if(dom 𝑧 = ∅, 𝐵, ran 𝑧), ((𝑧 dom 𝑧) ∪ if(((𝑧 dom 𝑧) ∪ {(𝑓 dom 𝑧)}) ∈ 𝐴, {(𝑓 dom 𝑧)}, ∅))))
2625cbvmptv 5195 . . . . . . . 8 (𝑤 ∈ V ↦ if(dom 𝑤 = dom 𝑤, if(dom 𝑤 = ∅, 𝐵, ran 𝑤), ((𝑤 dom 𝑤) ∪ if(((𝑤 dom 𝑤) ∪ {(𝑓 dom 𝑤)}) ∈ 𝐴, {(𝑓 dom 𝑤)}, ∅)))) = (𝑧 ∈ V ↦ if(dom 𝑧 = dom 𝑧, if(dom 𝑧 = ∅, 𝐵, ran 𝑧), ((𝑧 dom 𝑧) ∪ if(((𝑧 dom 𝑧) ∪ {(𝑓 dom 𝑧)}) ∈ 𝐴, {(𝑓 dom 𝑧)}, ∅))))
27 recseq 8293 . . . . . . . 8 ((𝑤 ∈ V ↦ if(dom 𝑤 = dom 𝑤, if(dom 𝑤 = ∅, 𝐵, ran 𝑤), ((𝑤 dom 𝑤) ∪ if(((𝑤 dom 𝑤) ∪ {(𝑓 dom 𝑤)}) ∈ 𝐴, {(𝑓 dom 𝑤)}, ∅)))) = (𝑧 ∈ V ↦ if(dom 𝑧 = dom 𝑧, if(dom 𝑧 = ∅, 𝐵, ran 𝑧), ((𝑧 dom 𝑧) ∪ if(((𝑧 dom 𝑧) ∪ {(𝑓 dom 𝑧)}) ∈ 𝐴, {(𝑓 dom 𝑧)}, ∅)))) → recs((𝑤 ∈ V ↦ if(dom 𝑤 = dom 𝑤, if(dom 𝑤 = ∅, 𝐵, ran 𝑤), ((𝑤 dom 𝑤) ∪ if(((𝑤 dom 𝑤) ∪ {(𝑓 dom 𝑤)}) ∈ 𝐴, {(𝑓 dom 𝑤)}, ∅))))) = recs((𝑧 ∈ V ↦ if(dom 𝑧 = dom 𝑧, if(dom 𝑧 = ∅, 𝐵, ran 𝑧), ((𝑧 dom 𝑧) ∪ if(((𝑧 dom 𝑧) ∪ {(𝑓 dom 𝑧)}) ∈ 𝐴, {(𝑓 dom 𝑧)}, ∅))))))
2826, 27ax-mp 5 . . . . . . 7 recs((𝑤 ∈ V ↦ if(dom 𝑤 = dom 𝑤, if(dom 𝑤 = ∅, 𝐵, ran 𝑤), ((𝑤 dom 𝑤) ∪ if(((𝑤 dom 𝑤) ∪ {(𝑓 dom 𝑤)}) ∈ 𝐴, {(𝑓 dom 𝑤)}, ∅))))) = recs((𝑧 ∈ V ↦ if(dom 𝑧 = dom 𝑧, if(dom 𝑧 = ∅, 𝐵, ran 𝑧), ((𝑧 dom 𝑧) ∪ if(((𝑧 dom 𝑧) ∪ {(𝑓 dom 𝑧)}) ∈ 𝐴, {(𝑓 dom 𝑧)}, ∅)))))
297, 8, 9, 28ttukeylem7 10406 . . . . . 6 ((𝑓:(card‘( 𝐴𝐵))–1-1-onto→( 𝐴𝐵) ∧ 𝐵𝐴 ∧ ∀𝑥(𝑥𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴)) → ∃𝑥𝐴 (𝐵𝑥 ∧ ∀𝑦𝐴 ¬ 𝑥𝑦))
30293expib 1122 . . . . 5 (𝑓:(card‘( 𝐴𝐵))–1-1-onto→( 𝐴𝐵) → ((𝐵𝐴 ∧ ∀𝑥(𝑥𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴)) → ∃𝑥𝐴 (𝐵𝑥 ∧ ∀𝑦𝐴 ¬ 𝑥𝑦)))
3130exlimiv 1931 . . . 4 (∃𝑓 𝑓:(card‘( 𝐴𝐵))–1-1-onto→( 𝐴𝐵) → ((𝐵𝐴 ∧ ∀𝑥(𝑥𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴)) → ∃𝑥𝐴 (𝐵𝑥 ∧ ∀𝑦𝐴 ¬ 𝑥𝑦)))
326, 31sylbi 217 . . 3 (( 𝐴𝐵) ∈ dom card → ((𝐵𝐴 ∧ ∀𝑥(𝑥𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴)) → ∃𝑥𝐴 (𝐵𝑥 ∧ ∀𝑦𝐴 ¬ 𝑥𝑦)))
333, 32syl 17 . 2 ( 𝐴 ∈ dom card → ((𝐵𝐴 ∧ ∀𝑥(𝑥𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴)) → ∃𝑥𝐴 (𝐵𝑥 ∧ ∀𝑦𝐴 ¬ 𝑥𝑦)))
34333impib 1116 1 (( 𝐴 ∈ dom card ∧ 𝐵𝐴 ∧ ∀𝑥(𝑥𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴)) → ∃𝑥𝐴 (𝐵𝑥 ∧ ∀𝑦𝐴 ¬ 𝑥𝑦))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086  wal 1539   = wceq 1541  wex 1780  wcel 2111  wral 3047  wrex 3056  Vcvv 3436  cdif 3899  cun 3900  cin 3901  wss 3902  wpss 3903  c0 4283  ifcif 4475  𝒫 cpw 4550  {csn 4576   cuni 4859   class class class wbr 5091  cmpt 5172  dom cdm 5616  ran crn 5617  1-1-ontowf1o 6480  cfv 6481  recscrecs 8290  cen 8866  Fincfn 8869  cardccrd 9828
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-1o 8385  df-er 8622  df-en 8870  df-dom 8871  df-fin 8873  df-card 9832
This theorem is referenced by:  ttukeyg  10408
  Copyright terms: Public domain W3C validator