MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfac12r Structured version   Visualization version   GIF version

Theorem dfac12r 9574
Description: The axiom of choice holds iff every ordinal has a well-orderable powerset. This version of dfac12 9577 does not assume the Axiom of Regularity. (Contributed by Mario Carneiro, 29-May-2015.)
Assertion
Ref Expression
dfac12r (∀𝑥 ∈ On 𝒫 𝑥 ∈ dom card ↔ (𝑅1 “ On) ⊆ dom card)

Proof of Theorem dfac12r
Dummy variables 𝑎 𝑏 𝑓 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rankwflemb 9224 . . . 4 (𝑦 (𝑅1 “ On) ↔ ∃𝑧 ∈ On 𝑦 ∈ (𝑅1‘suc 𝑧))
2 harcl 9027 . . . . . . . . 9 (har‘(𝑅1𝑧)) ∈ On
3 pweq 4557 . . . . . . . . . . 11 (𝑥 = (har‘(𝑅1𝑧)) → 𝒫 𝑥 = 𝒫 (har‘(𝑅1𝑧)))
43eleq1d 2899 . . . . . . . . . 10 (𝑥 = (har‘(𝑅1𝑧)) → (𝒫 𝑥 ∈ dom card ↔ 𝒫 (har‘(𝑅1𝑧)) ∈ dom card))
54rspcv 3620 . . . . . . . . 9 ((har‘(𝑅1𝑧)) ∈ On → (∀𝑥 ∈ On 𝒫 𝑥 ∈ dom card → 𝒫 (har‘(𝑅1𝑧)) ∈ dom card))
62, 5ax-mp 5 . . . . . . . 8 (∀𝑥 ∈ On 𝒫 𝑥 ∈ dom card → 𝒫 (har‘(𝑅1𝑧)) ∈ dom card)
7 cardid2 9384 . . . . . . . 8 (𝒫 (har‘(𝑅1𝑧)) ∈ dom card → (card‘𝒫 (har‘(𝑅1𝑧))) ≈ 𝒫 (har‘(𝑅1𝑧)))
8 ensym 8560 . . . . . . . 8 ((card‘𝒫 (har‘(𝑅1𝑧))) ≈ 𝒫 (har‘(𝑅1𝑧)) → 𝒫 (har‘(𝑅1𝑧)) ≈ (card‘𝒫 (har‘(𝑅1𝑧))))
9 bren 8520 . . . . . . . . 9 (𝒫 (har‘(𝑅1𝑧)) ≈ (card‘𝒫 (har‘(𝑅1𝑧))) ↔ ∃𝑓 𝑓:𝒫 (har‘(𝑅1𝑧))–1-1-onto→(card‘𝒫 (har‘(𝑅1𝑧))))
10 simpr 487 . . . . . . . . . . . 12 ((𝑓:𝒫 (har‘(𝑅1𝑧))–1-1-onto→(card‘𝒫 (har‘(𝑅1𝑧))) ∧ 𝑧 ∈ On) → 𝑧 ∈ On)
11 f1of1 6616 . . . . . . . . . . . . . 14 (𝑓:𝒫 (har‘(𝑅1𝑧))–1-1-onto→(card‘𝒫 (har‘(𝑅1𝑧))) → 𝑓:𝒫 (har‘(𝑅1𝑧))–1-1→(card‘𝒫 (har‘(𝑅1𝑧))))
1211adantr 483 . . . . . . . . . . . . 13 ((𝑓:𝒫 (har‘(𝑅1𝑧))–1-1-onto→(card‘𝒫 (har‘(𝑅1𝑧))) ∧ 𝑧 ∈ On) → 𝑓:𝒫 (har‘(𝑅1𝑧))–1-1→(card‘𝒫 (har‘(𝑅1𝑧))))
13 cardon 9375 . . . . . . . . . . . . . 14 (card‘𝒫 (har‘(𝑅1𝑧))) ∈ On
1413onssi 7554 . . . . . . . . . . . . 13 (card‘𝒫 (har‘(𝑅1𝑧))) ⊆ On
15 f1ss 6582 . . . . . . . . . . . . 13 ((𝑓:𝒫 (har‘(𝑅1𝑧))–1-1→(card‘𝒫 (har‘(𝑅1𝑧))) ∧ (card‘𝒫 (har‘(𝑅1𝑧))) ⊆ On) → 𝑓:𝒫 (har‘(𝑅1𝑧))–1-1→On)
1612, 14, 15sylancl 588 . . . . . . . . . . . 12 ((𝑓:𝒫 (har‘(𝑅1𝑧))–1-1-onto→(card‘𝒫 (har‘(𝑅1𝑧))) ∧ 𝑧 ∈ On) → 𝑓:𝒫 (har‘(𝑅1𝑧))–1-1→On)
17 fveq2 6672 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑏 → (rank‘𝑦) = (rank‘𝑏))
1817oveq2d 7174 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑏 → (suc ran ran 𝑥 ·o (rank‘𝑦)) = (suc ran ran 𝑥 ·o (rank‘𝑏)))
19 suceq 6258 . . . . . . . . . . . . . . . . . . . . 21 ((rank‘𝑦) = (rank‘𝑏) → suc (rank‘𝑦) = suc (rank‘𝑏))
2017, 19syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑏 → suc (rank‘𝑦) = suc (rank‘𝑏))
2120fveq2d 6676 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑏 → (𝑥‘suc (rank‘𝑦)) = (𝑥‘suc (rank‘𝑏)))
22 id 22 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑏𝑦 = 𝑏)
2321, 22fveq12d 6679 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑏 → ((𝑥‘suc (rank‘𝑦))‘𝑦) = ((𝑥‘suc (rank‘𝑏))‘𝑏))
2418, 23oveq12d 7176 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑏 → ((suc ran ran 𝑥 ·o (rank‘𝑦)) +o ((𝑥‘suc (rank‘𝑦))‘𝑦)) = ((suc ran ran 𝑥 ·o (rank‘𝑏)) +o ((𝑥‘suc (rank‘𝑏))‘𝑏)))
25 imaeq2 5927 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑏 → ((OrdIso( E , ran (𝑥 dom 𝑥)) ∘ (𝑥 dom 𝑥)) “ 𝑦) = ((OrdIso( E , ran (𝑥 dom 𝑥)) ∘ (𝑥 dom 𝑥)) “ 𝑏))
2625fveq2d 6676 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑏 → (𝑓‘((OrdIso( E , ran (𝑥 dom 𝑥)) ∘ (𝑥 dom 𝑥)) “ 𝑦)) = (𝑓‘((OrdIso( E , ran (𝑥 dom 𝑥)) ∘ (𝑥 dom 𝑥)) “ 𝑏)))
2724, 26ifeq12d 4489 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑏 → if(dom 𝑥 = dom 𝑥, ((suc ran ran 𝑥 ·o (rank‘𝑦)) +o ((𝑥‘suc (rank‘𝑦))‘𝑦)), (𝑓‘((OrdIso( E , ran (𝑥 dom 𝑥)) ∘ (𝑥 dom 𝑥)) “ 𝑦))) = if(dom 𝑥 = dom 𝑥, ((suc ran ran 𝑥 ·o (rank‘𝑏)) +o ((𝑥‘suc (rank‘𝑏))‘𝑏)), (𝑓‘((OrdIso( E , ran (𝑥 dom 𝑥)) ∘ (𝑥 dom 𝑥)) “ 𝑏))))
2827cbvmptv 5171 . . . . . . . . . . . . . . 15 (𝑦 ∈ (𝑅1‘dom 𝑥) ↦ if(dom 𝑥 = dom 𝑥, ((suc ran ran 𝑥 ·o (rank‘𝑦)) +o ((𝑥‘suc (rank‘𝑦))‘𝑦)), (𝑓‘((OrdIso( E , ran (𝑥 dom 𝑥)) ∘ (𝑥 dom 𝑥)) “ 𝑦)))) = (𝑏 ∈ (𝑅1‘dom 𝑥) ↦ if(dom 𝑥 = dom 𝑥, ((suc ran ran 𝑥 ·o (rank‘𝑏)) +o ((𝑥‘suc (rank‘𝑏))‘𝑏)), (𝑓‘((OrdIso( E , ran (𝑥 dom 𝑥)) ∘ (𝑥 dom 𝑥)) “ 𝑏))))
29 dmeq 5774 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑎 → dom 𝑥 = dom 𝑎)
3029fveq2d 6676 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑎 → (𝑅1‘dom 𝑥) = (𝑅1‘dom 𝑎))
3129unieqd 4854 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑎 dom 𝑥 = dom 𝑎)
3229, 31eqeq12d 2839 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑎 → (dom 𝑥 = dom 𝑥 ↔ dom 𝑎 = dom 𝑎))
33 rneq 5808 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 𝑎 → ran 𝑥 = ran 𝑎)
3433unieqd 4854 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑎 ran 𝑥 = ran 𝑎)
3534rneqd 5810 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑎 → ran ran 𝑥 = ran ran 𝑎)
3635unieqd 4854 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑎 ran ran 𝑥 = ran ran 𝑎)
37 suceq 6258 . . . . . . . . . . . . . . . . . . . 20 ( ran ran 𝑥 = ran ran 𝑎 → suc ran ran 𝑥 = suc ran ran 𝑎)
3836, 37syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑎 → suc ran ran 𝑥 = suc ran ran 𝑎)
3938oveq1d 7173 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑎 → (suc ran ran 𝑥 ·o (rank‘𝑏)) = (suc ran ran 𝑎 ·o (rank‘𝑏)))
40 fveq1 6671 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑎 → (𝑥‘suc (rank‘𝑏)) = (𝑎‘suc (rank‘𝑏)))
4140fveq1d 6674 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑎 → ((𝑥‘suc (rank‘𝑏))‘𝑏) = ((𝑎‘suc (rank‘𝑏))‘𝑏))
4239, 41oveq12d 7176 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑎 → ((suc ran ran 𝑥 ·o (rank‘𝑏)) +o ((𝑥‘suc (rank‘𝑏))‘𝑏)) = ((suc ran ran 𝑎 ·o (rank‘𝑏)) +o ((𝑎‘suc (rank‘𝑏))‘𝑏)))
43 id 22 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = 𝑎𝑥 = 𝑎)
4443, 31fveq12d 6679 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 𝑎 → (𝑥 dom 𝑥) = (𝑎 dom 𝑎))
4544rneqd 5810 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑎 → ran (𝑥 dom 𝑥) = ran (𝑎 dom 𝑎))
46 oieq2 8979 . . . . . . . . . . . . . . . . . . . . . 22 (ran (𝑥 dom 𝑥) = ran (𝑎 dom 𝑎) → OrdIso( E , ran (𝑥 dom 𝑥)) = OrdIso( E , ran (𝑎 dom 𝑎)))
4745, 46syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑎 → OrdIso( E , ran (𝑥 dom 𝑥)) = OrdIso( E , ran (𝑎 dom 𝑎)))
4847cnveqd 5748 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑎OrdIso( E , ran (𝑥 dom 𝑥)) = OrdIso( E , ran (𝑎 dom 𝑎)))
4948, 44coeq12d 5737 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑎 → (OrdIso( E , ran (𝑥 dom 𝑥)) ∘ (𝑥 dom 𝑥)) = (OrdIso( E , ran (𝑎 dom 𝑎)) ∘ (𝑎 dom 𝑎)))
5049imaeq1d 5930 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑎 → ((OrdIso( E , ran (𝑥 dom 𝑥)) ∘ (𝑥 dom 𝑥)) “ 𝑏) = ((OrdIso( E , ran (𝑎 dom 𝑎)) ∘ (𝑎 dom 𝑎)) “ 𝑏))
5150fveq2d 6676 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑎 → (𝑓‘((OrdIso( E , ran (𝑥 dom 𝑥)) ∘ (𝑥 dom 𝑥)) “ 𝑏)) = (𝑓‘((OrdIso( E , ran (𝑎 dom 𝑎)) ∘ (𝑎 dom 𝑎)) “ 𝑏)))
5232, 42, 51ifbieq12d 4496 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑎 → if(dom 𝑥 = dom 𝑥, ((suc ran ran 𝑥 ·o (rank‘𝑏)) +o ((𝑥‘suc (rank‘𝑏))‘𝑏)), (𝑓‘((OrdIso( E , ran (𝑥 dom 𝑥)) ∘ (𝑥 dom 𝑥)) “ 𝑏))) = if(dom 𝑎 = dom 𝑎, ((suc ran ran 𝑎 ·o (rank‘𝑏)) +o ((𝑎‘suc (rank‘𝑏))‘𝑏)), (𝑓‘((OrdIso( E , ran (𝑎 dom 𝑎)) ∘ (𝑎 dom 𝑎)) “ 𝑏))))
5330, 52mpteq12dv 5153 . . . . . . . . . . . . . . 15 (𝑥 = 𝑎 → (𝑏 ∈ (𝑅1‘dom 𝑥) ↦ if(dom 𝑥 = dom 𝑥, ((suc ran ran 𝑥 ·o (rank‘𝑏)) +o ((𝑥‘suc (rank‘𝑏))‘𝑏)), (𝑓‘((OrdIso( E , ran (𝑥 dom 𝑥)) ∘ (𝑥 dom 𝑥)) “ 𝑏)))) = (𝑏 ∈ (𝑅1‘dom 𝑎) ↦ if(dom 𝑎 = dom 𝑎, ((suc ran ran 𝑎 ·o (rank‘𝑏)) +o ((𝑎‘suc (rank‘𝑏))‘𝑏)), (𝑓‘((OrdIso( E , ran (𝑎 dom 𝑎)) ∘ (𝑎 dom 𝑎)) “ 𝑏)))))
5428, 53syl5eq 2870 . . . . . . . . . . . . . 14 (𝑥 = 𝑎 → (𝑦 ∈ (𝑅1‘dom 𝑥) ↦ if(dom 𝑥 = dom 𝑥, ((suc ran ran 𝑥 ·o (rank‘𝑦)) +o ((𝑥‘suc (rank‘𝑦))‘𝑦)), (𝑓‘((OrdIso( E , ran (𝑥 dom 𝑥)) ∘ (𝑥 dom 𝑥)) “ 𝑦)))) = (𝑏 ∈ (𝑅1‘dom 𝑎) ↦ if(dom 𝑎 = dom 𝑎, ((suc ran ran 𝑎 ·o (rank‘𝑏)) +o ((𝑎‘suc (rank‘𝑏))‘𝑏)), (𝑓‘((OrdIso( E , ran (𝑎 dom 𝑎)) ∘ (𝑎 dom 𝑎)) “ 𝑏)))))
5554cbvmptv 5171 . . . . . . . . . . . . 13 (𝑥 ∈ V ↦ (𝑦 ∈ (𝑅1‘dom 𝑥) ↦ if(dom 𝑥 = dom 𝑥, ((suc ran ran 𝑥 ·o (rank‘𝑦)) +o ((𝑥‘suc (rank‘𝑦))‘𝑦)), (𝑓‘((OrdIso( E , ran (𝑥 dom 𝑥)) ∘ (𝑥 dom 𝑥)) “ 𝑦))))) = (𝑎 ∈ V ↦ (𝑏 ∈ (𝑅1‘dom 𝑎) ↦ if(dom 𝑎 = dom 𝑎, ((suc ran ran 𝑎 ·o (rank‘𝑏)) +o ((𝑎‘suc (rank‘𝑏))‘𝑏)), (𝑓‘((OrdIso( E , ran (𝑎 dom 𝑎)) ∘ (𝑎 dom 𝑎)) “ 𝑏)))))
56 recseq 8012 . . . . . . . . . . . . 13 ((𝑥 ∈ V ↦ (𝑦 ∈ (𝑅1‘dom 𝑥) ↦ if(dom 𝑥 = dom 𝑥, ((suc ran ran 𝑥 ·o (rank‘𝑦)) +o ((𝑥‘suc (rank‘𝑦))‘𝑦)), (𝑓‘((OrdIso( E , ran (𝑥 dom 𝑥)) ∘ (𝑥 dom 𝑥)) “ 𝑦))))) = (𝑎 ∈ V ↦ (𝑏 ∈ (𝑅1‘dom 𝑎) ↦ if(dom 𝑎 = dom 𝑎, ((suc ran ran 𝑎 ·o (rank‘𝑏)) +o ((𝑎‘suc (rank‘𝑏))‘𝑏)), (𝑓‘((OrdIso( E , ran (𝑎 dom 𝑎)) ∘ (𝑎 dom 𝑎)) “ 𝑏))))) → recs((𝑥 ∈ V ↦ (𝑦 ∈ (𝑅1‘dom 𝑥) ↦ if(dom 𝑥 = dom 𝑥, ((suc ran ran 𝑥 ·o (rank‘𝑦)) +o ((𝑥‘suc (rank‘𝑦))‘𝑦)), (𝑓‘((OrdIso( E , ran (𝑥 dom 𝑥)) ∘ (𝑥 dom 𝑥)) “ 𝑦)))))) = recs((𝑎 ∈ V ↦ (𝑏 ∈ (𝑅1‘dom 𝑎) ↦ if(dom 𝑎 = dom 𝑎, ((suc ran ran 𝑎 ·o (rank‘𝑏)) +o ((𝑎‘suc (rank‘𝑏))‘𝑏)), (𝑓‘((OrdIso( E , ran (𝑎 dom 𝑎)) ∘ (𝑎 dom 𝑎)) “ 𝑏)))))))
5755, 56ax-mp 5 . . . . . . . . . . . 12 recs((𝑥 ∈ V ↦ (𝑦 ∈ (𝑅1‘dom 𝑥) ↦ if(dom 𝑥 = dom 𝑥, ((suc ran ran 𝑥 ·o (rank‘𝑦)) +o ((𝑥‘suc (rank‘𝑦))‘𝑦)), (𝑓‘((OrdIso( E , ran (𝑥 dom 𝑥)) ∘ (𝑥 dom 𝑥)) “ 𝑦)))))) = recs((𝑎 ∈ V ↦ (𝑏 ∈ (𝑅1‘dom 𝑎) ↦ if(dom 𝑎 = dom 𝑎, ((suc ran ran 𝑎 ·o (rank‘𝑏)) +o ((𝑎‘suc (rank‘𝑏))‘𝑏)), (𝑓‘((OrdIso( E , ran (𝑎 dom 𝑎)) ∘ (𝑎 dom 𝑎)) “ 𝑏))))))
5810, 16, 57dfac12lem3 9573 . . . . . . . . . . 11 ((𝑓:𝒫 (har‘(𝑅1𝑧))–1-1-onto→(card‘𝒫 (har‘(𝑅1𝑧))) ∧ 𝑧 ∈ On) → (𝑅1𝑧) ∈ dom card)
5958ex 415 . . . . . . . . . 10 (𝑓:𝒫 (har‘(𝑅1𝑧))–1-1-onto→(card‘𝒫 (har‘(𝑅1𝑧))) → (𝑧 ∈ On → (𝑅1𝑧) ∈ dom card))
6059exlimiv 1931 . . . . . . . . 9 (∃𝑓 𝑓:𝒫 (har‘(𝑅1𝑧))–1-1-onto→(card‘𝒫 (har‘(𝑅1𝑧))) → (𝑧 ∈ On → (𝑅1𝑧) ∈ dom card))
619, 60sylbi 219 . . . . . . . 8 (𝒫 (har‘(𝑅1𝑧)) ≈ (card‘𝒫 (har‘(𝑅1𝑧))) → (𝑧 ∈ On → (𝑅1𝑧) ∈ dom card))
626, 7, 8, 614syl 19 . . . . . . 7 (∀𝑥 ∈ On 𝒫 𝑥 ∈ dom card → (𝑧 ∈ On → (𝑅1𝑧) ∈ dom card))
6362imp 409 . . . . . 6 ((∀𝑥 ∈ On 𝒫 𝑥 ∈ dom card ∧ 𝑧 ∈ On) → (𝑅1𝑧) ∈ dom card)
64 r1suc 9201 . . . . . . . . 9 (𝑧 ∈ On → (𝑅1‘suc 𝑧) = 𝒫 (𝑅1𝑧))
6564adantl 484 . . . . . . . 8 ((∀𝑥 ∈ On 𝒫 𝑥 ∈ dom card ∧ 𝑧 ∈ On) → (𝑅1‘suc 𝑧) = 𝒫 (𝑅1𝑧))
6665eleq2d 2900 . . . . . . 7 ((∀𝑥 ∈ On 𝒫 𝑥 ∈ dom card ∧ 𝑧 ∈ On) → (𝑦 ∈ (𝑅1‘suc 𝑧) ↔ 𝑦 ∈ 𝒫 (𝑅1𝑧)))
67 elpwi 4550 . . . . . . 7 (𝑦 ∈ 𝒫 (𝑅1𝑧) → 𝑦 ⊆ (𝑅1𝑧))
6866, 67syl6bi 255 . . . . . 6 ((∀𝑥 ∈ On 𝒫 𝑥 ∈ dom card ∧ 𝑧 ∈ On) → (𝑦 ∈ (𝑅1‘suc 𝑧) → 𝑦 ⊆ (𝑅1𝑧)))
69 ssnum 9467 . . . . . 6 (((𝑅1𝑧) ∈ dom card ∧ 𝑦 ⊆ (𝑅1𝑧)) → 𝑦 ∈ dom card)
7063, 68, 69syl6an 682 . . . . 5 ((∀𝑥 ∈ On 𝒫 𝑥 ∈ dom card ∧ 𝑧 ∈ On) → (𝑦 ∈ (𝑅1‘suc 𝑧) → 𝑦 ∈ dom card))
7170rexlimdva 3286 . . . 4 (∀𝑥 ∈ On 𝒫 𝑥 ∈ dom card → (∃𝑧 ∈ On 𝑦 ∈ (𝑅1‘suc 𝑧) → 𝑦 ∈ dom card))
721, 71syl5bi 244 . . 3 (∀𝑥 ∈ On 𝒫 𝑥 ∈ dom card → (𝑦 (𝑅1 “ On) → 𝑦 ∈ dom card))
7372ssrdv 3975 . 2 (∀𝑥 ∈ On 𝒫 𝑥 ∈ dom card → (𝑅1 “ On) ⊆ dom card)
74 onwf 9261 . . . . . 6 On ⊆ (𝑅1 “ On)
7574sseli 3965 . . . . 5 (𝑥 ∈ On → 𝑥 (𝑅1 “ On))
76 pwwf 9238 . . . . 5 (𝑥 (𝑅1 “ On) ↔ 𝒫 𝑥 (𝑅1 “ On))
7775, 76sylib 220 . . . 4 (𝑥 ∈ On → 𝒫 𝑥 (𝑅1 “ On))
78 ssel 3963 . . . 4 ( (𝑅1 “ On) ⊆ dom card → (𝒫 𝑥 (𝑅1 “ On) → 𝒫 𝑥 ∈ dom card))
7977, 78syl5 34 . . 3 ( (𝑅1 “ On) ⊆ dom card → (𝑥 ∈ On → 𝒫 𝑥 ∈ dom card))
8079ralrimiv 3183 . 2 ( (𝑅1 “ On) ⊆ dom card → ∀𝑥 ∈ On 𝒫 𝑥 ∈ dom card)
8173, 80impbii 211 1 (∀𝑥 ∈ On 𝒫 𝑥 ∈ dom card ↔ (𝑅1 “ On) ⊆ dom card)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wex 1780  wcel 2114  wral 3140  wrex 3141  Vcvv 3496  wss 3938  ifcif 4469  𝒫 cpw 4541   cuni 4840   class class class wbr 5068  cmpt 5148   E cep 5466  ccnv 5556  dom cdm 5557  ran crn 5558  cima 5560  ccom 5561  Oncon0 6193  suc csuc 6195  1-1wf1 6354  1-1-ontowf1o 6356  cfv 6357  (class class class)co 7158  recscrecs 8009   +o coa 8101   ·o comu 8102  cen 8508  OrdIsocoi 8975  harchar 9022  𝑅1cr1 9193  rankcrnk 9194  cardccrd 9366
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-oadd 8108  df-omul 8109  df-er 8291  df-en 8512  df-dom 8513  df-oi 8976  df-har 9024  df-r1 9195  df-rank 9196  df-card 9370
This theorem is referenced by:  dfac12a  9576
  Copyright terms: Public domain W3C validator