MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfac12r Structured version   Visualization version   GIF version

Theorem dfac12r 9564
Description: The axiom of choice holds iff every ordinal has a well-orderable powerset. This version of dfac12 9567 does not assume the Axiom of Regularity. (Contributed by Mario Carneiro, 29-May-2015.)
Assertion
Ref Expression
dfac12r (∀𝑥 ∈ On 𝒫 𝑥 ∈ dom card ↔ (𝑅1 “ On) ⊆ dom card)

Proof of Theorem dfac12r
Dummy variables 𝑎 𝑏 𝑓 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rankwflemb 9214 . . . 4 (𝑦 (𝑅1 “ On) ↔ ∃𝑧 ∈ On 𝑦 ∈ (𝑅1‘suc 𝑧))
2 harcl 9017 . . . . . . . . 9 (har‘(𝑅1𝑧)) ∈ On
3 pweq 4540 . . . . . . . . . . 11 (𝑥 = (har‘(𝑅1𝑧)) → 𝒫 𝑥 = 𝒫 (har‘(𝑅1𝑧)))
43eleq1d 2895 . . . . . . . . . 10 (𝑥 = (har‘(𝑅1𝑧)) → (𝒫 𝑥 ∈ dom card ↔ 𝒫 (har‘(𝑅1𝑧)) ∈ dom card))
54rspcv 3616 . . . . . . . . 9 ((har‘(𝑅1𝑧)) ∈ On → (∀𝑥 ∈ On 𝒫 𝑥 ∈ dom card → 𝒫 (har‘(𝑅1𝑧)) ∈ dom card))
62, 5ax-mp 5 . . . . . . . 8 (∀𝑥 ∈ On 𝒫 𝑥 ∈ dom card → 𝒫 (har‘(𝑅1𝑧)) ∈ dom card)
7 cardid2 9374 . . . . . . . 8 (𝒫 (har‘(𝑅1𝑧)) ∈ dom card → (card‘𝒫 (har‘(𝑅1𝑧))) ≈ 𝒫 (har‘(𝑅1𝑧)))
8 ensym 8550 . . . . . . . 8 ((card‘𝒫 (har‘(𝑅1𝑧))) ≈ 𝒫 (har‘(𝑅1𝑧)) → 𝒫 (har‘(𝑅1𝑧)) ≈ (card‘𝒫 (har‘(𝑅1𝑧))))
9 bren 8510 . . . . . . . . 9 (𝒫 (har‘(𝑅1𝑧)) ≈ (card‘𝒫 (har‘(𝑅1𝑧))) ↔ ∃𝑓 𝑓:𝒫 (har‘(𝑅1𝑧))–1-1-onto→(card‘𝒫 (har‘(𝑅1𝑧))))
10 simpr 487 . . . . . . . . . . . 12 ((𝑓:𝒫 (har‘(𝑅1𝑧))–1-1-onto→(card‘𝒫 (har‘(𝑅1𝑧))) ∧ 𝑧 ∈ On) → 𝑧 ∈ On)
11 f1of1 6607 . . . . . . . . . . . . . 14 (𝑓:𝒫 (har‘(𝑅1𝑧))–1-1-onto→(card‘𝒫 (har‘(𝑅1𝑧))) → 𝑓:𝒫 (har‘(𝑅1𝑧))–1-1→(card‘𝒫 (har‘(𝑅1𝑧))))
1211adantr 483 . . . . . . . . . . . . 13 ((𝑓:𝒫 (har‘(𝑅1𝑧))–1-1-onto→(card‘𝒫 (har‘(𝑅1𝑧))) ∧ 𝑧 ∈ On) → 𝑓:𝒫 (har‘(𝑅1𝑧))–1-1→(card‘𝒫 (har‘(𝑅1𝑧))))
13 cardon 9365 . . . . . . . . . . . . . 14 (card‘𝒫 (har‘(𝑅1𝑧))) ∈ On
1413onssi 7544 . . . . . . . . . . . . 13 (card‘𝒫 (har‘(𝑅1𝑧))) ⊆ On
15 f1ss 6573 . . . . . . . . . . . . 13 ((𝑓:𝒫 (har‘(𝑅1𝑧))–1-1→(card‘𝒫 (har‘(𝑅1𝑧))) ∧ (card‘𝒫 (har‘(𝑅1𝑧))) ⊆ On) → 𝑓:𝒫 (har‘(𝑅1𝑧))–1-1→On)
1612, 14, 15sylancl 588 . . . . . . . . . . . 12 ((𝑓:𝒫 (har‘(𝑅1𝑧))–1-1-onto→(card‘𝒫 (har‘(𝑅1𝑧))) ∧ 𝑧 ∈ On) → 𝑓:𝒫 (har‘(𝑅1𝑧))–1-1→On)
17 fveq2 6663 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑏 → (rank‘𝑦) = (rank‘𝑏))
1817oveq2d 7164 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑏 → (suc ran ran 𝑥 ·o (rank‘𝑦)) = (suc ran ran 𝑥 ·o (rank‘𝑏)))
19 suceq 6249 . . . . . . . . . . . . . . . . . . . . 21 ((rank‘𝑦) = (rank‘𝑏) → suc (rank‘𝑦) = suc (rank‘𝑏))
2017, 19syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑏 → suc (rank‘𝑦) = suc (rank‘𝑏))
2120fveq2d 6667 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑏 → (𝑥‘suc (rank‘𝑦)) = (𝑥‘suc (rank‘𝑏)))
22 id 22 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑏𝑦 = 𝑏)
2321, 22fveq12d 6670 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑏 → ((𝑥‘suc (rank‘𝑦))‘𝑦) = ((𝑥‘suc (rank‘𝑏))‘𝑏))
2418, 23oveq12d 7166 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑏 → ((suc ran ran 𝑥 ·o (rank‘𝑦)) +o ((𝑥‘suc (rank‘𝑦))‘𝑦)) = ((suc ran ran 𝑥 ·o (rank‘𝑏)) +o ((𝑥‘suc (rank‘𝑏))‘𝑏)))
25 imaeq2 5918 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑏 → ((OrdIso( E , ran (𝑥 dom 𝑥)) ∘ (𝑥 dom 𝑥)) “ 𝑦) = ((OrdIso( E , ran (𝑥 dom 𝑥)) ∘ (𝑥 dom 𝑥)) “ 𝑏))
2625fveq2d 6667 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑏 → (𝑓‘((OrdIso( E , ran (𝑥 dom 𝑥)) ∘ (𝑥 dom 𝑥)) “ 𝑦)) = (𝑓‘((OrdIso( E , ran (𝑥 dom 𝑥)) ∘ (𝑥 dom 𝑥)) “ 𝑏)))
2724, 26ifeq12d 4485 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑏 → if(dom 𝑥 = dom 𝑥, ((suc ran ran 𝑥 ·o (rank‘𝑦)) +o ((𝑥‘suc (rank‘𝑦))‘𝑦)), (𝑓‘((OrdIso( E , ran (𝑥 dom 𝑥)) ∘ (𝑥 dom 𝑥)) “ 𝑦))) = if(dom 𝑥 = dom 𝑥, ((suc ran ran 𝑥 ·o (rank‘𝑏)) +o ((𝑥‘suc (rank‘𝑏))‘𝑏)), (𝑓‘((OrdIso( E , ran (𝑥 dom 𝑥)) ∘ (𝑥 dom 𝑥)) “ 𝑏))))
2827cbvmptv 5160 . . . . . . . . . . . . . . 15 (𝑦 ∈ (𝑅1‘dom 𝑥) ↦ if(dom 𝑥 = dom 𝑥, ((suc ran ran 𝑥 ·o (rank‘𝑦)) +o ((𝑥‘suc (rank‘𝑦))‘𝑦)), (𝑓‘((OrdIso( E , ran (𝑥 dom 𝑥)) ∘ (𝑥 dom 𝑥)) “ 𝑦)))) = (𝑏 ∈ (𝑅1‘dom 𝑥) ↦ if(dom 𝑥 = dom 𝑥, ((suc ran ran 𝑥 ·o (rank‘𝑏)) +o ((𝑥‘suc (rank‘𝑏))‘𝑏)), (𝑓‘((OrdIso( E , ran (𝑥 dom 𝑥)) ∘ (𝑥 dom 𝑥)) “ 𝑏))))
29 dmeq 5765 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑎 → dom 𝑥 = dom 𝑎)
3029fveq2d 6667 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑎 → (𝑅1‘dom 𝑥) = (𝑅1‘dom 𝑎))
3129unieqd 4840 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑎 dom 𝑥 = dom 𝑎)
3229, 31eqeq12d 2835 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑎 → (dom 𝑥 = dom 𝑥 ↔ dom 𝑎 = dom 𝑎))
33 rneq 5799 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 𝑎 → ran 𝑥 = ran 𝑎)
3433unieqd 4840 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑎 ran 𝑥 = ran 𝑎)
3534rneqd 5801 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑎 → ran ran 𝑥 = ran ran 𝑎)
3635unieqd 4840 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑎 ran ran 𝑥 = ran ran 𝑎)
37 suceq 6249 . . . . . . . . . . . . . . . . . . . 20 ( ran ran 𝑥 = ran ran 𝑎 → suc ran ran 𝑥 = suc ran ran 𝑎)
3836, 37syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑎 → suc ran ran 𝑥 = suc ran ran 𝑎)
3938oveq1d 7163 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑎 → (suc ran ran 𝑥 ·o (rank‘𝑏)) = (suc ran ran 𝑎 ·o (rank‘𝑏)))
40 fveq1 6662 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑎 → (𝑥‘suc (rank‘𝑏)) = (𝑎‘suc (rank‘𝑏)))
4140fveq1d 6665 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑎 → ((𝑥‘suc (rank‘𝑏))‘𝑏) = ((𝑎‘suc (rank‘𝑏))‘𝑏))
4239, 41oveq12d 7166 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑎 → ((suc ran ran 𝑥 ·o (rank‘𝑏)) +o ((𝑥‘suc (rank‘𝑏))‘𝑏)) = ((suc ran ran 𝑎 ·o (rank‘𝑏)) +o ((𝑎‘suc (rank‘𝑏))‘𝑏)))
43 id 22 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = 𝑎𝑥 = 𝑎)
4443, 31fveq12d 6670 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 𝑎 → (𝑥 dom 𝑥) = (𝑎 dom 𝑎))
4544rneqd 5801 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑎 → ran (𝑥 dom 𝑥) = ran (𝑎 dom 𝑎))
46 oieq2 8969 . . . . . . . . . . . . . . . . . . . . . 22 (ran (𝑥 dom 𝑥) = ran (𝑎 dom 𝑎) → OrdIso( E , ran (𝑥 dom 𝑥)) = OrdIso( E , ran (𝑎 dom 𝑎)))
4745, 46syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑎 → OrdIso( E , ran (𝑥 dom 𝑥)) = OrdIso( E , ran (𝑎 dom 𝑎)))
4847cnveqd 5739 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑎OrdIso( E , ran (𝑥 dom 𝑥)) = OrdIso( E , ran (𝑎 dom 𝑎)))
4948, 44coeq12d 5728 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑎 → (OrdIso( E , ran (𝑥 dom 𝑥)) ∘ (𝑥 dom 𝑥)) = (OrdIso( E , ran (𝑎 dom 𝑎)) ∘ (𝑎 dom 𝑎)))
5049imaeq1d 5921 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑎 → ((OrdIso( E , ran (𝑥 dom 𝑥)) ∘ (𝑥 dom 𝑥)) “ 𝑏) = ((OrdIso( E , ran (𝑎 dom 𝑎)) ∘ (𝑎 dom 𝑎)) “ 𝑏))
5150fveq2d 6667 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑎 → (𝑓‘((OrdIso( E , ran (𝑥 dom 𝑥)) ∘ (𝑥 dom 𝑥)) “ 𝑏)) = (𝑓‘((OrdIso( E , ran (𝑎 dom 𝑎)) ∘ (𝑎 dom 𝑎)) “ 𝑏)))
5232, 42, 51ifbieq12d 4492 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑎 → if(dom 𝑥 = dom 𝑥, ((suc ran ran 𝑥 ·o (rank‘𝑏)) +o ((𝑥‘suc (rank‘𝑏))‘𝑏)), (𝑓‘((OrdIso( E , ran (𝑥 dom 𝑥)) ∘ (𝑥 dom 𝑥)) “ 𝑏))) = if(dom 𝑎 = dom 𝑎, ((suc ran ran 𝑎 ·o (rank‘𝑏)) +o ((𝑎‘suc (rank‘𝑏))‘𝑏)), (𝑓‘((OrdIso( E , ran (𝑎 dom 𝑎)) ∘ (𝑎 dom 𝑎)) “ 𝑏))))
5330, 52mpteq12dv 5142 . . . . . . . . . . . . . . 15 (𝑥 = 𝑎 → (𝑏 ∈ (𝑅1‘dom 𝑥) ↦ if(dom 𝑥 = dom 𝑥, ((suc ran ran 𝑥 ·o (rank‘𝑏)) +o ((𝑥‘suc (rank‘𝑏))‘𝑏)), (𝑓‘((OrdIso( E , ran (𝑥 dom 𝑥)) ∘ (𝑥 dom 𝑥)) “ 𝑏)))) = (𝑏 ∈ (𝑅1‘dom 𝑎) ↦ if(dom 𝑎 = dom 𝑎, ((suc ran ran 𝑎 ·o (rank‘𝑏)) +o ((𝑎‘suc (rank‘𝑏))‘𝑏)), (𝑓‘((OrdIso( E , ran (𝑎 dom 𝑎)) ∘ (𝑎 dom 𝑎)) “ 𝑏)))))
5428, 53syl5eq 2866 . . . . . . . . . . . . . 14 (𝑥 = 𝑎 → (𝑦 ∈ (𝑅1‘dom 𝑥) ↦ if(dom 𝑥 = dom 𝑥, ((suc ran ran 𝑥 ·o (rank‘𝑦)) +o ((𝑥‘suc (rank‘𝑦))‘𝑦)), (𝑓‘((OrdIso( E , ran (𝑥 dom 𝑥)) ∘ (𝑥 dom 𝑥)) “ 𝑦)))) = (𝑏 ∈ (𝑅1‘dom 𝑎) ↦ if(dom 𝑎 = dom 𝑎, ((suc ran ran 𝑎 ·o (rank‘𝑏)) +o ((𝑎‘suc (rank‘𝑏))‘𝑏)), (𝑓‘((OrdIso( E , ran (𝑎 dom 𝑎)) ∘ (𝑎 dom 𝑎)) “ 𝑏)))))
5554cbvmptv 5160 . . . . . . . . . . . . 13 (𝑥 ∈ V ↦ (𝑦 ∈ (𝑅1‘dom 𝑥) ↦ if(dom 𝑥 = dom 𝑥, ((suc ran ran 𝑥 ·o (rank‘𝑦)) +o ((𝑥‘suc (rank‘𝑦))‘𝑦)), (𝑓‘((OrdIso( E , ran (𝑥 dom 𝑥)) ∘ (𝑥 dom 𝑥)) “ 𝑦))))) = (𝑎 ∈ V ↦ (𝑏 ∈ (𝑅1‘dom 𝑎) ↦ if(dom 𝑎 = dom 𝑎, ((suc ran ran 𝑎 ·o (rank‘𝑏)) +o ((𝑎‘suc (rank‘𝑏))‘𝑏)), (𝑓‘((OrdIso( E , ran (𝑎 dom 𝑎)) ∘ (𝑎 dom 𝑎)) “ 𝑏)))))
56 recseq 8002 . . . . . . . . . . . . 13 ((𝑥 ∈ V ↦ (𝑦 ∈ (𝑅1‘dom 𝑥) ↦ if(dom 𝑥 = dom 𝑥, ((suc ran ran 𝑥 ·o (rank‘𝑦)) +o ((𝑥‘suc (rank‘𝑦))‘𝑦)), (𝑓‘((OrdIso( E , ran (𝑥 dom 𝑥)) ∘ (𝑥 dom 𝑥)) “ 𝑦))))) = (𝑎 ∈ V ↦ (𝑏 ∈ (𝑅1‘dom 𝑎) ↦ if(dom 𝑎 = dom 𝑎, ((suc ran ran 𝑎 ·o (rank‘𝑏)) +o ((𝑎‘suc (rank‘𝑏))‘𝑏)), (𝑓‘((OrdIso( E , ran (𝑎 dom 𝑎)) ∘ (𝑎 dom 𝑎)) “ 𝑏))))) → recs((𝑥 ∈ V ↦ (𝑦 ∈ (𝑅1‘dom 𝑥) ↦ if(dom 𝑥 = dom 𝑥, ((suc ran ran 𝑥 ·o (rank‘𝑦)) +o ((𝑥‘suc (rank‘𝑦))‘𝑦)), (𝑓‘((OrdIso( E , ran (𝑥 dom 𝑥)) ∘ (𝑥 dom 𝑥)) “ 𝑦)))))) = recs((𝑎 ∈ V ↦ (𝑏 ∈ (𝑅1‘dom 𝑎) ↦ if(dom 𝑎 = dom 𝑎, ((suc ran ran 𝑎 ·o (rank‘𝑏)) +o ((𝑎‘suc (rank‘𝑏))‘𝑏)), (𝑓‘((OrdIso( E , ran (𝑎 dom 𝑎)) ∘ (𝑎 dom 𝑎)) “ 𝑏)))))))
5755, 56ax-mp 5 . . . . . . . . . . . 12 recs((𝑥 ∈ V ↦ (𝑦 ∈ (𝑅1‘dom 𝑥) ↦ if(dom 𝑥 = dom 𝑥, ((suc ran ran 𝑥 ·o (rank‘𝑦)) +o ((𝑥‘suc (rank‘𝑦))‘𝑦)), (𝑓‘((OrdIso( E , ran (𝑥 dom 𝑥)) ∘ (𝑥 dom 𝑥)) “ 𝑦)))))) = recs((𝑎 ∈ V ↦ (𝑏 ∈ (𝑅1‘dom 𝑎) ↦ if(dom 𝑎 = dom 𝑎, ((suc ran ran 𝑎 ·o (rank‘𝑏)) +o ((𝑎‘suc (rank‘𝑏))‘𝑏)), (𝑓‘((OrdIso( E , ran (𝑎 dom 𝑎)) ∘ (𝑎 dom 𝑎)) “ 𝑏))))))
5810, 16, 57dfac12lem3 9563 . . . . . . . . . . 11 ((𝑓:𝒫 (har‘(𝑅1𝑧))–1-1-onto→(card‘𝒫 (har‘(𝑅1𝑧))) ∧ 𝑧 ∈ On) → (𝑅1𝑧) ∈ dom card)
5958ex 415 . . . . . . . . . 10 (𝑓:𝒫 (har‘(𝑅1𝑧))–1-1-onto→(card‘𝒫 (har‘(𝑅1𝑧))) → (𝑧 ∈ On → (𝑅1𝑧) ∈ dom card))
6059exlimiv 1924 . . . . . . . . 9 (∃𝑓 𝑓:𝒫 (har‘(𝑅1𝑧))–1-1-onto→(card‘𝒫 (har‘(𝑅1𝑧))) → (𝑧 ∈ On → (𝑅1𝑧) ∈ dom card))
619, 60sylbi 219 . . . . . . . 8 (𝒫 (har‘(𝑅1𝑧)) ≈ (card‘𝒫 (har‘(𝑅1𝑧))) → (𝑧 ∈ On → (𝑅1𝑧) ∈ dom card))
626, 7, 8, 614syl 19 . . . . . . 7 (∀𝑥 ∈ On 𝒫 𝑥 ∈ dom card → (𝑧 ∈ On → (𝑅1𝑧) ∈ dom card))
6362imp 409 . . . . . 6 ((∀𝑥 ∈ On 𝒫 𝑥 ∈ dom card ∧ 𝑧 ∈ On) → (𝑅1𝑧) ∈ dom card)
64 r1suc 9191 . . . . . . . . 9 (𝑧 ∈ On → (𝑅1‘suc 𝑧) = 𝒫 (𝑅1𝑧))
6564adantl 484 . . . . . . . 8 ((∀𝑥 ∈ On 𝒫 𝑥 ∈ dom card ∧ 𝑧 ∈ On) → (𝑅1‘suc 𝑧) = 𝒫 (𝑅1𝑧))
6665eleq2d 2896 . . . . . . 7 ((∀𝑥 ∈ On 𝒫 𝑥 ∈ dom card ∧ 𝑧 ∈ On) → (𝑦 ∈ (𝑅1‘suc 𝑧) ↔ 𝑦 ∈ 𝒫 (𝑅1𝑧)))
67 elpwi 4549 . . . . . . 7 (𝑦 ∈ 𝒫 (𝑅1𝑧) → 𝑦 ⊆ (𝑅1𝑧))
6866, 67syl6bi 255 . . . . . 6 ((∀𝑥 ∈ On 𝒫 𝑥 ∈ dom card ∧ 𝑧 ∈ On) → (𝑦 ∈ (𝑅1‘suc 𝑧) → 𝑦 ⊆ (𝑅1𝑧)))
69 ssnum 9457 . . . . . 6 (((𝑅1𝑧) ∈ dom card ∧ 𝑦 ⊆ (𝑅1𝑧)) → 𝑦 ∈ dom card)
7063, 68, 69syl6an 682 . . . . 5 ((∀𝑥 ∈ On 𝒫 𝑥 ∈ dom card ∧ 𝑧 ∈ On) → (𝑦 ∈ (𝑅1‘suc 𝑧) → 𝑦 ∈ dom card))
7170rexlimdva 3282 . . . 4 (∀𝑥 ∈ On 𝒫 𝑥 ∈ dom card → (∃𝑧 ∈ On 𝑦 ∈ (𝑅1‘suc 𝑧) → 𝑦 ∈ dom card))
721, 71syl5bi 244 . . 3 (∀𝑥 ∈ On 𝒫 𝑥 ∈ dom card → (𝑦 (𝑅1 “ On) → 𝑦 ∈ dom card))
7372ssrdv 3971 . 2 (∀𝑥 ∈ On 𝒫 𝑥 ∈ dom card → (𝑅1 “ On) ⊆ dom card)
74 onwf 9251 . . . . . 6 On ⊆ (𝑅1 “ On)
7574sseli 3961 . . . . 5 (𝑥 ∈ On → 𝑥 (𝑅1 “ On))
76 pwwf 9228 . . . . 5 (𝑥 (𝑅1 “ On) ↔ 𝒫 𝑥 (𝑅1 “ On))
7775, 76sylib 220 . . . 4 (𝑥 ∈ On → 𝒫 𝑥 (𝑅1 “ On))
78 ssel 3959 . . . 4 ( (𝑅1 “ On) ⊆ dom card → (𝒫 𝑥 (𝑅1 “ On) → 𝒫 𝑥 ∈ dom card))
7977, 78syl5 34 . . 3 ( (𝑅1 “ On) ⊆ dom card → (𝑥 ∈ On → 𝒫 𝑥 ∈ dom card))
8079ralrimiv 3179 . 2 ( (𝑅1 “ On) ⊆ dom card → ∀𝑥 ∈ On 𝒫 𝑥 ∈ dom card)
8173, 80impbii 211 1 (∀𝑥 ∈ On 𝒫 𝑥 ∈ dom card ↔ (𝑅1 “ On) ⊆ dom card)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1530  wex 1773  wcel 2107  wral 3136  wrex 3137  Vcvv 3493  wss 3934  ifcif 4465  𝒫 cpw 4537   cuni 4830   class class class wbr 5057  cmpt 5137   E cep 5457  ccnv 5547  dom cdm 5548  ran crn 5549  cima 5551  ccom 5552  Oncon0 6184  suc csuc 6186  1-1wf1 6345  1-1-ontowf1o 6347  cfv 6348  (class class class)co 7148  recscrecs 7999   +o coa 8091   ·o comu 8092  cen 8498  OrdIsocoi 8965  harchar 9012  𝑅1cr1 9183  rankcrnk 9184  cardccrd 9356
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7573  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-oadd 8098  df-omul 8099  df-er 8281  df-en 8502  df-dom 8503  df-oi 8966  df-har 9014  df-r1 9185  df-rank 9186  df-card 9360
This theorem is referenced by:  dfac12a  9566
  Copyright terms: Public domain W3C validator