MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfac12r Structured version   Visualization version   GIF version

Theorem dfac12r 10076
Description: The axiom of choice holds iff every ordinal has a well-orderable powerset. This version of dfac12 10079 does not assume the Axiom of Regularity. (Contributed by Mario Carneiro, 29-May-2015.)
Assertion
Ref Expression
dfac12r (∀𝑥 ∈ On 𝒫 𝑥 ∈ dom card ↔ (𝑅1 “ On) ⊆ dom card)

Proof of Theorem dfac12r
Dummy variables 𝑎 𝑏 𝑓 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rankwflemb 9722 . . . 4 (𝑦 (𝑅1 “ On) ↔ ∃𝑧 ∈ On 𝑦 ∈ (𝑅1‘suc 𝑧))
2 harcl 9488 . . . . . . . . 9 (har‘(𝑅1𝑧)) ∈ On
3 pweq 4573 . . . . . . . . . . 11 (𝑥 = (har‘(𝑅1𝑧)) → 𝒫 𝑥 = 𝒫 (har‘(𝑅1𝑧)))
43eleq1d 2813 . . . . . . . . . 10 (𝑥 = (har‘(𝑅1𝑧)) → (𝒫 𝑥 ∈ dom card ↔ 𝒫 (har‘(𝑅1𝑧)) ∈ dom card))
54rspcv 3581 . . . . . . . . 9 ((har‘(𝑅1𝑧)) ∈ On → (∀𝑥 ∈ On 𝒫 𝑥 ∈ dom card → 𝒫 (har‘(𝑅1𝑧)) ∈ dom card))
62, 5ax-mp 5 . . . . . . . 8 (∀𝑥 ∈ On 𝒫 𝑥 ∈ dom card → 𝒫 (har‘(𝑅1𝑧)) ∈ dom card)
7 cardid2 9882 . . . . . . . 8 (𝒫 (har‘(𝑅1𝑧)) ∈ dom card → (card‘𝒫 (har‘(𝑅1𝑧))) ≈ 𝒫 (har‘(𝑅1𝑧)))
8 ensym 8951 . . . . . . . 8 ((card‘𝒫 (har‘(𝑅1𝑧))) ≈ 𝒫 (har‘(𝑅1𝑧)) → 𝒫 (har‘(𝑅1𝑧)) ≈ (card‘𝒫 (har‘(𝑅1𝑧))))
9 bren 8905 . . . . . . . . 9 (𝒫 (har‘(𝑅1𝑧)) ≈ (card‘𝒫 (har‘(𝑅1𝑧))) ↔ ∃𝑓 𝑓:𝒫 (har‘(𝑅1𝑧))–1-1-onto→(card‘𝒫 (har‘(𝑅1𝑧))))
10 simpr 484 . . . . . . . . . . . 12 ((𝑓:𝒫 (har‘(𝑅1𝑧))–1-1-onto→(card‘𝒫 (har‘(𝑅1𝑧))) ∧ 𝑧 ∈ On) → 𝑧 ∈ On)
11 f1of1 6781 . . . . . . . . . . . . . 14 (𝑓:𝒫 (har‘(𝑅1𝑧))–1-1-onto→(card‘𝒫 (har‘(𝑅1𝑧))) → 𝑓:𝒫 (har‘(𝑅1𝑧))–1-1→(card‘𝒫 (har‘(𝑅1𝑧))))
1211adantr 480 . . . . . . . . . . . . 13 ((𝑓:𝒫 (har‘(𝑅1𝑧))–1-1-onto→(card‘𝒫 (har‘(𝑅1𝑧))) ∧ 𝑧 ∈ On) → 𝑓:𝒫 (har‘(𝑅1𝑧))–1-1→(card‘𝒫 (har‘(𝑅1𝑧))))
13 cardon 9873 . . . . . . . . . . . . . 14 (card‘𝒫 (har‘(𝑅1𝑧))) ∈ On
1413onssi 7793 . . . . . . . . . . . . 13 (card‘𝒫 (har‘(𝑅1𝑧))) ⊆ On
15 f1ss 6743 . . . . . . . . . . . . 13 ((𝑓:𝒫 (har‘(𝑅1𝑧))–1-1→(card‘𝒫 (har‘(𝑅1𝑧))) ∧ (card‘𝒫 (har‘(𝑅1𝑧))) ⊆ On) → 𝑓:𝒫 (har‘(𝑅1𝑧))–1-1→On)
1612, 14, 15sylancl 586 . . . . . . . . . . . 12 ((𝑓:𝒫 (har‘(𝑅1𝑧))–1-1-onto→(card‘𝒫 (har‘(𝑅1𝑧))) ∧ 𝑧 ∈ On) → 𝑓:𝒫 (har‘(𝑅1𝑧))–1-1→On)
17 fveq2 6840 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑏 → (rank‘𝑦) = (rank‘𝑏))
1817oveq2d 7385 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑏 → (suc ran ran 𝑥 ·o (rank‘𝑦)) = (suc ran ran 𝑥 ·o (rank‘𝑏)))
19 suceq 6388 . . . . . . . . . . . . . . . . . . . . 21 ((rank‘𝑦) = (rank‘𝑏) → suc (rank‘𝑦) = suc (rank‘𝑏))
2017, 19syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑏 → suc (rank‘𝑦) = suc (rank‘𝑏))
2120fveq2d 6844 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑏 → (𝑥‘suc (rank‘𝑦)) = (𝑥‘suc (rank‘𝑏)))
22 id 22 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑏𝑦 = 𝑏)
2321, 22fveq12d 6847 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑏 → ((𝑥‘suc (rank‘𝑦))‘𝑦) = ((𝑥‘suc (rank‘𝑏))‘𝑏))
2418, 23oveq12d 7387 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑏 → ((suc ran ran 𝑥 ·o (rank‘𝑦)) +o ((𝑥‘suc (rank‘𝑦))‘𝑦)) = ((suc ran ran 𝑥 ·o (rank‘𝑏)) +o ((𝑥‘suc (rank‘𝑏))‘𝑏)))
25 imaeq2 6016 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑏 → ((OrdIso( E , ran (𝑥 dom 𝑥)) ∘ (𝑥 dom 𝑥)) “ 𝑦) = ((OrdIso( E , ran (𝑥 dom 𝑥)) ∘ (𝑥 dom 𝑥)) “ 𝑏))
2625fveq2d 6844 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑏 → (𝑓‘((OrdIso( E , ran (𝑥 dom 𝑥)) ∘ (𝑥 dom 𝑥)) “ 𝑦)) = (𝑓‘((OrdIso( E , ran (𝑥 dom 𝑥)) ∘ (𝑥 dom 𝑥)) “ 𝑏)))
2724, 26ifeq12d 4506 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑏 → if(dom 𝑥 = dom 𝑥, ((suc ran ran 𝑥 ·o (rank‘𝑦)) +o ((𝑥‘suc (rank‘𝑦))‘𝑦)), (𝑓‘((OrdIso( E , ran (𝑥 dom 𝑥)) ∘ (𝑥 dom 𝑥)) “ 𝑦))) = if(dom 𝑥 = dom 𝑥, ((suc ran ran 𝑥 ·o (rank‘𝑏)) +o ((𝑥‘suc (rank‘𝑏))‘𝑏)), (𝑓‘((OrdIso( E , ran (𝑥 dom 𝑥)) ∘ (𝑥 dom 𝑥)) “ 𝑏))))
2827cbvmptv 5206 . . . . . . . . . . . . . . 15 (𝑦 ∈ (𝑅1‘dom 𝑥) ↦ if(dom 𝑥 = dom 𝑥, ((suc ran ran 𝑥 ·o (rank‘𝑦)) +o ((𝑥‘suc (rank‘𝑦))‘𝑦)), (𝑓‘((OrdIso( E , ran (𝑥 dom 𝑥)) ∘ (𝑥 dom 𝑥)) “ 𝑦)))) = (𝑏 ∈ (𝑅1‘dom 𝑥) ↦ if(dom 𝑥 = dom 𝑥, ((suc ran ran 𝑥 ·o (rank‘𝑏)) +o ((𝑥‘suc (rank‘𝑏))‘𝑏)), (𝑓‘((OrdIso( E , ran (𝑥 dom 𝑥)) ∘ (𝑥 dom 𝑥)) “ 𝑏))))
29 dmeq 5857 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑎 → dom 𝑥 = dom 𝑎)
3029fveq2d 6844 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑎 → (𝑅1‘dom 𝑥) = (𝑅1‘dom 𝑎))
3129unieqd 4880 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑎 dom 𝑥 = dom 𝑎)
3229, 31eqeq12d 2745 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑎 → (dom 𝑥 = dom 𝑥 ↔ dom 𝑎 = dom 𝑎))
33 rneq 5889 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 𝑎 → ran 𝑥 = ran 𝑎)
3433unieqd 4880 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑎 ran 𝑥 = ran 𝑎)
3534rneqd 5891 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑎 → ran ran 𝑥 = ran ran 𝑎)
3635unieqd 4880 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑎 ran ran 𝑥 = ran ran 𝑎)
37 suceq 6388 . . . . . . . . . . . . . . . . . . . 20 ( ran ran 𝑥 = ran ran 𝑎 → suc ran ran 𝑥 = suc ran ran 𝑎)
3836, 37syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑎 → suc ran ran 𝑥 = suc ran ran 𝑎)
3938oveq1d 7384 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑎 → (suc ran ran 𝑥 ·o (rank‘𝑏)) = (suc ran ran 𝑎 ·o (rank‘𝑏)))
40 fveq1 6839 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑎 → (𝑥‘suc (rank‘𝑏)) = (𝑎‘suc (rank‘𝑏)))
4140fveq1d 6842 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑎 → ((𝑥‘suc (rank‘𝑏))‘𝑏) = ((𝑎‘suc (rank‘𝑏))‘𝑏))
4239, 41oveq12d 7387 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑎 → ((suc ran ran 𝑥 ·o (rank‘𝑏)) +o ((𝑥‘suc (rank‘𝑏))‘𝑏)) = ((suc ran ran 𝑎 ·o (rank‘𝑏)) +o ((𝑎‘suc (rank‘𝑏))‘𝑏)))
43 id 22 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = 𝑎𝑥 = 𝑎)
4443, 31fveq12d 6847 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 𝑎 → (𝑥 dom 𝑥) = (𝑎 dom 𝑎))
4544rneqd 5891 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑎 → ran (𝑥 dom 𝑥) = ran (𝑎 dom 𝑎))
46 oieq2 9442 . . . . . . . . . . . . . . . . . . . . . 22 (ran (𝑥 dom 𝑥) = ran (𝑎 dom 𝑎) → OrdIso( E , ran (𝑥 dom 𝑥)) = OrdIso( E , ran (𝑎 dom 𝑎)))
4745, 46syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑎 → OrdIso( E , ran (𝑥 dom 𝑥)) = OrdIso( E , ran (𝑎 dom 𝑎)))
4847cnveqd 5829 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑎OrdIso( E , ran (𝑥 dom 𝑥)) = OrdIso( E , ran (𝑎 dom 𝑎)))
4948, 44coeq12d 5818 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑎 → (OrdIso( E , ran (𝑥 dom 𝑥)) ∘ (𝑥 dom 𝑥)) = (OrdIso( E , ran (𝑎 dom 𝑎)) ∘ (𝑎 dom 𝑎)))
5049imaeq1d 6019 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑎 → ((OrdIso( E , ran (𝑥 dom 𝑥)) ∘ (𝑥 dom 𝑥)) “ 𝑏) = ((OrdIso( E , ran (𝑎 dom 𝑎)) ∘ (𝑎 dom 𝑎)) “ 𝑏))
5150fveq2d 6844 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑎 → (𝑓‘((OrdIso( E , ran (𝑥 dom 𝑥)) ∘ (𝑥 dom 𝑥)) “ 𝑏)) = (𝑓‘((OrdIso( E , ran (𝑎 dom 𝑎)) ∘ (𝑎 dom 𝑎)) “ 𝑏)))
5232, 42, 51ifbieq12d 4513 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑎 → if(dom 𝑥 = dom 𝑥, ((suc ran ran 𝑥 ·o (rank‘𝑏)) +o ((𝑥‘suc (rank‘𝑏))‘𝑏)), (𝑓‘((OrdIso( E , ran (𝑥 dom 𝑥)) ∘ (𝑥 dom 𝑥)) “ 𝑏))) = if(dom 𝑎 = dom 𝑎, ((suc ran ran 𝑎 ·o (rank‘𝑏)) +o ((𝑎‘suc (rank‘𝑏))‘𝑏)), (𝑓‘((OrdIso( E , ran (𝑎 dom 𝑎)) ∘ (𝑎 dom 𝑎)) “ 𝑏))))
5330, 52mpteq12dv 5189 . . . . . . . . . . . . . . 15 (𝑥 = 𝑎 → (𝑏 ∈ (𝑅1‘dom 𝑥) ↦ if(dom 𝑥 = dom 𝑥, ((suc ran ran 𝑥 ·o (rank‘𝑏)) +o ((𝑥‘suc (rank‘𝑏))‘𝑏)), (𝑓‘((OrdIso( E , ran (𝑥 dom 𝑥)) ∘ (𝑥 dom 𝑥)) “ 𝑏)))) = (𝑏 ∈ (𝑅1‘dom 𝑎) ↦ if(dom 𝑎 = dom 𝑎, ((suc ran ran 𝑎 ·o (rank‘𝑏)) +o ((𝑎‘suc (rank‘𝑏))‘𝑏)), (𝑓‘((OrdIso( E , ran (𝑎 dom 𝑎)) ∘ (𝑎 dom 𝑎)) “ 𝑏)))))
5428, 53eqtrid 2776 . . . . . . . . . . . . . 14 (𝑥 = 𝑎 → (𝑦 ∈ (𝑅1‘dom 𝑥) ↦ if(dom 𝑥 = dom 𝑥, ((suc ran ran 𝑥 ·o (rank‘𝑦)) +o ((𝑥‘suc (rank‘𝑦))‘𝑦)), (𝑓‘((OrdIso( E , ran (𝑥 dom 𝑥)) ∘ (𝑥 dom 𝑥)) “ 𝑦)))) = (𝑏 ∈ (𝑅1‘dom 𝑎) ↦ if(dom 𝑎 = dom 𝑎, ((suc ran ran 𝑎 ·o (rank‘𝑏)) +o ((𝑎‘suc (rank‘𝑏))‘𝑏)), (𝑓‘((OrdIso( E , ran (𝑎 dom 𝑎)) ∘ (𝑎 dom 𝑎)) “ 𝑏)))))
5554cbvmptv 5206 . . . . . . . . . . . . 13 (𝑥 ∈ V ↦ (𝑦 ∈ (𝑅1‘dom 𝑥) ↦ if(dom 𝑥 = dom 𝑥, ((suc ran ran 𝑥 ·o (rank‘𝑦)) +o ((𝑥‘suc (rank‘𝑦))‘𝑦)), (𝑓‘((OrdIso( E , ran (𝑥 dom 𝑥)) ∘ (𝑥 dom 𝑥)) “ 𝑦))))) = (𝑎 ∈ V ↦ (𝑏 ∈ (𝑅1‘dom 𝑎) ↦ if(dom 𝑎 = dom 𝑎, ((suc ran ran 𝑎 ·o (rank‘𝑏)) +o ((𝑎‘suc (rank‘𝑏))‘𝑏)), (𝑓‘((OrdIso( E , ran (𝑎 dom 𝑎)) ∘ (𝑎 dom 𝑎)) “ 𝑏)))))
56 recseq 8319 . . . . . . . . . . . . 13 ((𝑥 ∈ V ↦ (𝑦 ∈ (𝑅1‘dom 𝑥) ↦ if(dom 𝑥 = dom 𝑥, ((suc ran ran 𝑥 ·o (rank‘𝑦)) +o ((𝑥‘suc (rank‘𝑦))‘𝑦)), (𝑓‘((OrdIso( E , ran (𝑥 dom 𝑥)) ∘ (𝑥 dom 𝑥)) “ 𝑦))))) = (𝑎 ∈ V ↦ (𝑏 ∈ (𝑅1‘dom 𝑎) ↦ if(dom 𝑎 = dom 𝑎, ((suc ran ran 𝑎 ·o (rank‘𝑏)) +o ((𝑎‘suc (rank‘𝑏))‘𝑏)), (𝑓‘((OrdIso( E , ran (𝑎 dom 𝑎)) ∘ (𝑎 dom 𝑎)) “ 𝑏))))) → recs((𝑥 ∈ V ↦ (𝑦 ∈ (𝑅1‘dom 𝑥) ↦ if(dom 𝑥 = dom 𝑥, ((suc ran ran 𝑥 ·o (rank‘𝑦)) +o ((𝑥‘suc (rank‘𝑦))‘𝑦)), (𝑓‘((OrdIso( E , ran (𝑥 dom 𝑥)) ∘ (𝑥 dom 𝑥)) “ 𝑦)))))) = recs((𝑎 ∈ V ↦ (𝑏 ∈ (𝑅1‘dom 𝑎) ↦ if(dom 𝑎 = dom 𝑎, ((suc ran ran 𝑎 ·o (rank‘𝑏)) +o ((𝑎‘suc (rank‘𝑏))‘𝑏)), (𝑓‘((OrdIso( E , ran (𝑎 dom 𝑎)) ∘ (𝑎 dom 𝑎)) “ 𝑏)))))))
5755, 56ax-mp 5 . . . . . . . . . . . 12 recs((𝑥 ∈ V ↦ (𝑦 ∈ (𝑅1‘dom 𝑥) ↦ if(dom 𝑥 = dom 𝑥, ((suc ran ran 𝑥 ·o (rank‘𝑦)) +o ((𝑥‘suc (rank‘𝑦))‘𝑦)), (𝑓‘((OrdIso( E , ran (𝑥 dom 𝑥)) ∘ (𝑥 dom 𝑥)) “ 𝑦)))))) = recs((𝑎 ∈ V ↦ (𝑏 ∈ (𝑅1‘dom 𝑎) ↦ if(dom 𝑎 = dom 𝑎, ((suc ran ran 𝑎 ·o (rank‘𝑏)) +o ((𝑎‘suc (rank‘𝑏))‘𝑏)), (𝑓‘((OrdIso( E , ran (𝑎 dom 𝑎)) ∘ (𝑎 dom 𝑎)) “ 𝑏))))))
5810, 16, 57dfac12lem3 10075 . . . . . . . . . . 11 ((𝑓:𝒫 (har‘(𝑅1𝑧))–1-1-onto→(card‘𝒫 (har‘(𝑅1𝑧))) ∧ 𝑧 ∈ On) → (𝑅1𝑧) ∈ dom card)
5958ex 412 . . . . . . . . . 10 (𝑓:𝒫 (har‘(𝑅1𝑧))–1-1-onto→(card‘𝒫 (har‘(𝑅1𝑧))) → (𝑧 ∈ On → (𝑅1𝑧) ∈ dom card))
6059exlimiv 1930 . . . . . . . . 9 (∃𝑓 𝑓:𝒫 (har‘(𝑅1𝑧))–1-1-onto→(card‘𝒫 (har‘(𝑅1𝑧))) → (𝑧 ∈ On → (𝑅1𝑧) ∈ dom card))
619, 60sylbi 217 . . . . . . . 8 (𝒫 (har‘(𝑅1𝑧)) ≈ (card‘𝒫 (har‘(𝑅1𝑧))) → (𝑧 ∈ On → (𝑅1𝑧) ∈ dom card))
626, 7, 8, 614syl 19 . . . . . . 7 (∀𝑥 ∈ On 𝒫 𝑥 ∈ dom card → (𝑧 ∈ On → (𝑅1𝑧) ∈ dom card))
6362imp 406 . . . . . 6 ((∀𝑥 ∈ On 𝒫 𝑥 ∈ dom card ∧ 𝑧 ∈ On) → (𝑅1𝑧) ∈ dom card)
64 r1suc 9699 . . . . . . . . 9 (𝑧 ∈ On → (𝑅1‘suc 𝑧) = 𝒫 (𝑅1𝑧))
6564adantl 481 . . . . . . . 8 ((∀𝑥 ∈ On 𝒫 𝑥 ∈ dom card ∧ 𝑧 ∈ On) → (𝑅1‘suc 𝑧) = 𝒫 (𝑅1𝑧))
6665eleq2d 2814 . . . . . . 7 ((∀𝑥 ∈ On 𝒫 𝑥 ∈ dom card ∧ 𝑧 ∈ On) → (𝑦 ∈ (𝑅1‘suc 𝑧) ↔ 𝑦 ∈ 𝒫 (𝑅1𝑧)))
67 elpwi 4566 . . . . . . 7 (𝑦 ∈ 𝒫 (𝑅1𝑧) → 𝑦 ⊆ (𝑅1𝑧))
6866, 67biimtrdi 253 . . . . . 6 ((∀𝑥 ∈ On 𝒫 𝑥 ∈ dom card ∧ 𝑧 ∈ On) → (𝑦 ∈ (𝑅1‘suc 𝑧) → 𝑦 ⊆ (𝑅1𝑧)))
69 ssnum 9968 . . . . . 6 (((𝑅1𝑧) ∈ dom card ∧ 𝑦 ⊆ (𝑅1𝑧)) → 𝑦 ∈ dom card)
7063, 68, 69syl6an 684 . . . . 5 ((∀𝑥 ∈ On 𝒫 𝑥 ∈ dom card ∧ 𝑧 ∈ On) → (𝑦 ∈ (𝑅1‘suc 𝑧) → 𝑦 ∈ dom card))
7170rexlimdva 3134 . . . 4 (∀𝑥 ∈ On 𝒫 𝑥 ∈ dom card → (∃𝑧 ∈ On 𝑦 ∈ (𝑅1‘suc 𝑧) → 𝑦 ∈ dom card))
721, 71biimtrid 242 . . 3 (∀𝑥 ∈ On 𝒫 𝑥 ∈ dom card → (𝑦 (𝑅1 “ On) → 𝑦 ∈ dom card))
7372ssrdv 3949 . 2 (∀𝑥 ∈ On 𝒫 𝑥 ∈ dom card → (𝑅1 “ On) ⊆ dom card)
74 onwf 9759 . . . . . 6 On ⊆ (𝑅1 “ On)
7574sseli 3939 . . . . 5 (𝑥 ∈ On → 𝑥 (𝑅1 “ On))
76 pwwf 9736 . . . . 5 (𝑥 (𝑅1 “ On) ↔ 𝒫 𝑥 (𝑅1 “ On))
7775, 76sylib 218 . . . 4 (𝑥 ∈ On → 𝒫 𝑥 (𝑅1 “ On))
78 ssel 3937 . . . 4 ( (𝑅1 “ On) ⊆ dom card → (𝒫 𝑥 (𝑅1 “ On) → 𝒫 𝑥 ∈ dom card))
7977, 78syl5 34 . . 3 ( (𝑅1 “ On) ⊆ dom card → (𝑥 ∈ On → 𝒫 𝑥 ∈ dom card))
8079ralrimiv 3124 . 2 ( (𝑅1 “ On) ⊆ dom card → ∀𝑥 ∈ On 𝒫 𝑥 ∈ dom card)
8173, 80impbii 209 1 (∀𝑥 ∈ On 𝒫 𝑥 ∈ dom card ↔ (𝑅1 “ On) ⊆ dom card)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  wral 3044  wrex 3053  Vcvv 3444  wss 3911  ifcif 4484  𝒫 cpw 4559   cuni 4867   class class class wbr 5102  cmpt 5183   E cep 5530  ccnv 5630  dom cdm 5631  ran crn 5632  cima 5634  ccom 5635  Oncon0 6320  suc csuc 6322  1-1wf1 6496  1-1-ontowf1o 6498  cfv 6499  (class class class)co 7369  recscrecs 8316   +o coa 8408   ·o comu 8409  cen 8892  OrdIsocoi 9438  harchar 9485  𝑅1cr1 9691  rankcrnk 9692  cardccrd 9864
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-oadd 8415  df-omul 8416  df-er 8648  df-en 8896  df-dom 8897  df-oi 9439  df-har 9486  df-r1 9693  df-rank 9694  df-card 9868
This theorem is referenced by:  dfac12a  10078
  Copyright terms: Public domain W3C validator