| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > aomclem3 | Structured version Visualization version GIF version | ||
| Description: Lemma for dfac11 43053. Successor case 3, our required well-ordering. (Contributed by Stefan O'Rear, 19-Jan-2015.) |
| Ref | Expression |
|---|---|
| aomclem3.b | ⊢ 𝐵 = {〈𝑎, 𝑏〉 ∣ ∃𝑐 ∈ (𝑅1‘∪ dom 𝑧)((𝑐 ∈ 𝑏 ∧ ¬ 𝑐 ∈ 𝑎) ∧ ∀𝑑 ∈ (𝑅1‘∪ dom 𝑧)(𝑑(𝑧‘∪ dom 𝑧)𝑐 → (𝑑 ∈ 𝑎 ↔ 𝑑 ∈ 𝑏)))} |
| aomclem3.c | ⊢ 𝐶 = (𝑎 ∈ V ↦ sup((𝑦‘𝑎), (𝑅1‘dom 𝑧), 𝐵)) |
| aomclem3.d | ⊢ 𝐷 = recs((𝑎 ∈ V ↦ (𝐶‘((𝑅1‘dom 𝑧) ∖ ran 𝑎)))) |
| aomclem3.e | ⊢ 𝐸 = {〈𝑎, 𝑏〉 ∣ ∩ (◡𝐷 “ {𝑎}) ∈ ∩ (◡𝐷 “ {𝑏})} |
| aomclem3.on | ⊢ (𝜑 → dom 𝑧 ∈ On) |
| aomclem3.su | ⊢ (𝜑 → dom 𝑧 = suc ∪ dom 𝑧) |
| aomclem3.we | ⊢ (𝜑 → ∀𝑎 ∈ dom 𝑧(𝑧‘𝑎) We (𝑅1‘𝑎)) |
| aomclem3.a | ⊢ (𝜑 → 𝐴 ∈ On) |
| aomclem3.za | ⊢ (𝜑 → dom 𝑧 ⊆ 𝐴) |
| aomclem3.y | ⊢ (𝜑 → ∀𝑎 ∈ 𝒫 (𝑅1‘𝐴)(𝑎 ≠ ∅ → (𝑦‘𝑎) ∈ ((𝒫 𝑎 ∩ Fin) ∖ {∅}))) |
| Ref | Expression |
|---|---|
| aomclem3 | ⊢ (𝜑 → 𝐸 We (𝑅1‘dom 𝑧)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | aomclem3.d | . . 3 ⊢ 𝐷 = recs((𝑎 ∈ V ↦ (𝐶‘((𝑅1‘dom 𝑧) ∖ ran 𝑎)))) | |
| 2 | rneq 5921 | . . . . . . 7 ⊢ (𝑎 = 𝑐 → ran 𝑎 = ran 𝑐) | |
| 3 | 2 | difeq2d 4106 | . . . . . 6 ⊢ (𝑎 = 𝑐 → ((𝑅1‘dom 𝑧) ∖ ran 𝑎) = ((𝑅1‘dom 𝑧) ∖ ran 𝑐)) |
| 4 | 3 | fveq2d 6885 | . . . . 5 ⊢ (𝑎 = 𝑐 → (𝐶‘((𝑅1‘dom 𝑧) ∖ ran 𝑎)) = (𝐶‘((𝑅1‘dom 𝑧) ∖ ran 𝑐))) |
| 5 | 4 | cbvmptv 5230 | . . . 4 ⊢ (𝑎 ∈ V ↦ (𝐶‘((𝑅1‘dom 𝑧) ∖ ran 𝑎))) = (𝑐 ∈ V ↦ (𝐶‘((𝑅1‘dom 𝑧) ∖ ran 𝑐))) |
| 6 | recseq 8393 | . . . 4 ⊢ ((𝑎 ∈ V ↦ (𝐶‘((𝑅1‘dom 𝑧) ∖ ran 𝑎))) = (𝑐 ∈ V ↦ (𝐶‘((𝑅1‘dom 𝑧) ∖ ran 𝑐))) → recs((𝑎 ∈ V ↦ (𝐶‘((𝑅1‘dom 𝑧) ∖ ran 𝑎)))) = recs((𝑐 ∈ V ↦ (𝐶‘((𝑅1‘dom 𝑧) ∖ ran 𝑐))))) | |
| 7 | 5, 6 | ax-mp 5 | . . 3 ⊢ recs((𝑎 ∈ V ↦ (𝐶‘((𝑅1‘dom 𝑧) ∖ ran 𝑎)))) = recs((𝑐 ∈ V ↦ (𝐶‘((𝑅1‘dom 𝑧) ∖ ran 𝑐)))) |
| 8 | 1, 7 | eqtri 2759 | . 2 ⊢ 𝐷 = recs((𝑐 ∈ V ↦ (𝐶‘((𝑅1‘dom 𝑧) ∖ ran 𝑐)))) |
| 9 | fvexd 6896 | . 2 ⊢ (𝜑 → (𝑅1‘dom 𝑧) ∈ V) | |
| 10 | aomclem3.b | . . . 4 ⊢ 𝐵 = {〈𝑎, 𝑏〉 ∣ ∃𝑐 ∈ (𝑅1‘∪ dom 𝑧)((𝑐 ∈ 𝑏 ∧ ¬ 𝑐 ∈ 𝑎) ∧ ∀𝑑 ∈ (𝑅1‘∪ dom 𝑧)(𝑑(𝑧‘∪ dom 𝑧)𝑐 → (𝑑 ∈ 𝑎 ↔ 𝑑 ∈ 𝑏)))} | |
| 11 | aomclem3.c | . . . 4 ⊢ 𝐶 = (𝑎 ∈ V ↦ sup((𝑦‘𝑎), (𝑅1‘dom 𝑧), 𝐵)) | |
| 12 | aomclem3.on | . . . 4 ⊢ (𝜑 → dom 𝑧 ∈ On) | |
| 13 | aomclem3.su | . . . 4 ⊢ (𝜑 → dom 𝑧 = suc ∪ dom 𝑧) | |
| 14 | aomclem3.we | . . . 4 ⊢ (𝜑 → ∀𝑎 ∈ dom 𝑧(𝑧‘𝑎) We (𝑅1‘𝑎)) | |
| 15 | aomclem3.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ On) | |
| 16 | aomclem3.za | . . . 4 ⊢ (𝜑 → dom 𝑧 ⊆ 𝐴) | |
| 17 | aomclem3.y | . . . 4 ⊢ (𝜑 → ∀𝑎 ∈ 𝒫 (𝑅1‘𝐴)(𝑎 ≠ ∅ → (𝑦‘𝑎) ∈ ((𝒫 𝑎 ∩ Fin) ∖ {∅}))) | |
| 18 | 10, 11, 12, 13, 14, 15, 16, 17 | aomclem2 43046 | . . 3 ⊢ (𝜑 → ∀𝑎 ∈ 𝒫 (𝑅1‘dom 𝑧)(𝑎 ≠ ∅ → (𝐶‘𝑎) ∈ 𝑎)) |
| 19 | neeq1 2995 | . . . . 5 ⊢ (𝑎 = 𝑑 → (𝑎 ≠ ∅ ↔ 𝑑 ≠ ∅)) | |
| 20 | fveq2 6881 | . . . . . 6 ⊢ (𝑎 = 𝑑 → (𝐶‘𝑎) = (𝐶‘𝑑)) | |
| 21 | id 22 | . . . . . 6 ⊢ (𝑎 = 𝑑 → 𝑎 = 𝑑) | |
| 22 | 20, 21 | eleq12d 2829 | . . . . 5 ⊢ (𝑎 = 𝑑 → ((𝐶‘𝑎) ∈ 𝑎 ↔ (𝐶‘𝑑) ∈ 𝑑)) |
| 23 | 19, 22 | imbi12d 344 | . . . 4 ⊢ (𝑎 = 𝑑 → ((𝑎 ≠ ∅ → (𝐶‘𝑎) ∈ 𝑎) ↔ (𝑑 ≠ ∅ → (𝐶‘𝑑) ∈ 𝑑))) |
| 24 | 23 | cbvralvw 3224 | . . 3 ⊢ (∀𝑎 ∈ 𝒫 (𝑅1‘dom 𝑧)(𝑎 ≠ ∅ → (𝐶‘𝑎) ∈ 𝑎) ↔ ∀𝑑 ∈ 𝒫 (𝑅1‘dom 𝑧)(𝑑 ≠ ∅ → (𝐶‘𝑑) ∈ 𝑑)) |
| 25 | 18, 24 | sylib 218 | . 2 ⊢ (𝜑 → ∀𝑑 ∈ 𝒫 (𝑅1‘dom 𝑧)(𝑑 ≠ ∅ → (𝐶‘𝑑) ∈ 𝑑)) |
| 26 | aomclem3.e | . 2 ⊢ 𝐸 = {〈𝑎, 𝑏〉 ∣ ∩ (◡𝐷 “ {𝑎}) ∈ ∩ (◡𝐷 “ {𝑏})} | |
| 27 | 8, 9, 25, 26 | dnwech 43039 | 1 ⊢ (𝜑 → 𝐸 We (𝑅1‘dom 𝑧)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2933 ∀wral 3052 ∃wrex 3061 Vcvv 3464 ∖ cdif 3928 ∩ cin 3930 ⊆ wss 3931 ∅c0 4313 𝒫 cpw 4580 {csn 4606 ∪ cuni 4888 ∩ cint 4927 class class class wbr 5124 {copab 5186 ↦ cmpt 5206 We wwe 5610 ◡ccnv 5658 dom cdm 5659 ran crn 5660 “ cima 5662 Oncon0 6357 suc csuc 6359 ‘cfv 6536 recscrecs 8389 Fincfn 8964 supcsup 9457 𝑅1cr1 9781 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-isom 6545 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-2o 8486 df-map 8847 df-en 8965 df-fin 8968 df-sup 9459 df-r1 9783 |
| This theorem is referenced by: aomclem5 43049 |
| Copyright terms: Public domain | W3C validator |