| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > aomclem3 | Structured version Visualization version GIF version | ||
| Description: Lemma for dfac11 43219. Successor case 3, our required well-ordering. (Contributed by Stefan O'Rear, 19-Jan-2015.) |
| Ref | Expression |
|---|---|
| aomclem3.b | ⊢ 𝐵 = {〈𝑎, 𝑏〉 ∣ ∃𝑐 ∈ (𝑅1‘∪ dom 𝑧)((𝑐 ∈ 𝑏 ∧ ¬ 𝑐 ∈ 𝑎) ∧ ∀𝑑 ∈ (𝑅1‘∪ dom 𝑧)(𝑑(𝑧‘∪ dom 𝑧)𝑐 → (𝑑 ∈ 𝑎 ↔ 𝑑 ∈ 𝑏)))} |
| aomclem3.c | ⊢ 𝐶 = (𝑎 ∈ V ↦ sup((𝑦‘𝑎), (𝑅1‘dom 𝑧), 𝐵)) |
| aomclem3.d | ⊢ 𝐷 = recs((𝑎 ∈ V ↦ (𝐶‘((𝑅1‘dom 𝑧) ∖ ran 𝑎)))) |
| aomclem3.e | ⊢ 𝐸 = {〈𝑎, 𝑏〉 ∣ ∩ (◡𝐷 “ {𝑎}) ∈ ∩ (◡𝐷 “ {𝑏})} |
| aomclem3.on | ⊢ (𝜑 → dom 𝑧 ∈ On) |
| aomclem3.su | ⊢ (𝜑 → dom 𝑧 = suc ∪ dom 𝑧) |
| aomclem3.we | ⊢ (𝜑 → ∀𝑎 ∈ dom 𝑧(𝑧‘𝑎) We (𝑅1‘𝑎)) |
| aomclem3.a | ⊢ (𝜑 → 𝐴 ∈ On) |
| aomclem3.za | ⊢ (𝜑 → dom 𝑧 ⊆ 𝐴) |
| aomclem3.y | ⊢ (𝜑 → ∀𝑎 ∈ 𝒫 (𝑅1‘𝐴)(𝑎 ≠ ∅ → (𝑦‘𝑎) ∈ ((𝒫 𝑎 ∩ Fin) ∖ {∅}))) |
| Ref | Expression |
|---|---|
| aomclem3 | ⊢ (𝜑 → 𝐸 We (𝑅1‘dom 𝑧)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | aomclem3.d | . . 3 ⊢ 𝐷 = recs((𝑎 ∈ V ↦ (𝐶‘((𝑅1‘dom 𝑧) ∖ ran 𝑎)))) | |
| 2 | rneq 5882 | . . . . . . 7 ⊢ (𝑎 = 𝑐 → ran 𝑎 = ran 𝑐) | |
| 3 | 2 | difeq2d 4075 | . . . . . 6 ⊢ (𝑎 = 𝑐 → ((𝑅1‘dom 𝑧) ∖ ran 𝑎) = ((𝑅1‘dom 𝑧) ∖ ran 𝑐)) |
| 4 | 3 | fveq2d 6835 | . . . . 5 ⊢ (𝑎 = 𝑐 → (𝐶‘((𝑅1‘dom 𝑧) ∖ ran 𝑎)) = (𝐶‘((𝑅1‘dom 𝑧) ∖ ran 𝑐))) |
| 5 | 4 | cbvmptv 5199 | . . . 4 ⊢ (𝑎 ∈ V ↦ (𝐶‘((𝑅1‘dom 𝑧) ∖ ran 𝑎))) = (𝑐 ∈ V ↦ (𝐶‘((𝑅1‘dom 𝑧) ∖ ran 𝑐))) |
| 6 | recseq 8302 | . . . 4 ⊢ ((𝑎 ∈ V ↦ (𝐶‘((𝑅1‘dom 𝑧) ∖ ran 𝑎))) = (𝑐 ∈ V ↦ (𝐶‘((𝑅1‘dom 𝑧) ∖ ran 𝑐))) → recs((𝑎 ∈ V ↦ (𝐶‘((𝑅1‘dom 𝑧) ∖ ran 𝑎)))) = recs((𝑐 ∈ V ↦ (𝐶‘((𝑅1‘dom 𝑧) ∖ ran 𝑐))))) | |
| 7 | 5, 6 | ax-mp 5 | . . 3 ⊢ recs((𝑎 ∈ V ↦ (𝐶‘((𝑅1‘dom 𝑧) ∖ ran 𝑎)))) = recs((𝑐 ∈ V ↦ (𝐶‘((𝑅1‘dom 𝑧) ∖ ran 𝑐)))) |
| 8 | 1, 7 | eqtri 2756 | . 2 ⊢ 𝐷 = recs((𝑐 ∈ V ↦ (𝐶‘((𝑅1‘dom 𝑧) ∖ ran 𝑐)))) |
| 9 | fvexd 6846 | . 2 ⊢ (𝜑 → (𝑅1‘dom 𝑧) ∈ V) | |
| 10 | aomclem3.b | . . . 4 ⊢ 𝐵 = {〈𝑎, 𝑏〉 ∣ ∃𝑐 ∈ (𝑅1‘∪ dom 𝑧)((𝑐 ∈ 𝑏 ∧ ¬ 𝑐 ∈ 𝑎) ∧ ∀𝑑 ∈ (𝑅1‘∪ dom 𝑧)(𝑑(𝑧‘∪ dom 𝑧)𝑐 → (𝑑 ∈ 𝑎 ↔ 𝑑 ∈ 𝑏)))} | |
| 11 | aomclem3.c | . . . 4 ⊢ 𝐶 = (𝑎 ∈ V ↦ sup((𝑦‘𝑎), (𝑅1‘dom 𝑧), 𝐵)) | |
| 12 | aomclem3.on | . . . 4 ⊢ (𝜑 → dom 𝑧 ∈ On) | |
| 13 | aomclem3.su | . . . 4 ⊢ (𝜑 → dom 𝑧 = suc ∪ dom 𝑧) | |
| 14 | aomclem3.we | . . . 4 ⊢ (𝜑 → ∀𝑎 ∈ dom 𝑧(𝑧‘𝑎) We (𝑅1‘𝑎)) | |
| 15 | aomclem3.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ On) | |
| 16 | aomclem3.za | . . . 4 ⊢ (𝜑 → dom 𝑧 ⊆ 𝐴) | |
| 17 | aomclem3.y | . . . 4 ⊢ (𝜑 → ∀𝑎 ∈ 𝒫 (𝑅1‘𝐴)(𝑎 ≠ ∅ → (𝑦‘𝑎) ∈ ((𝒫 𝑎 ∩ Fin) ∖ {∅}))) | |
| 18 | 10, 11, 12, 13, 14, 15, 16, 17 | aomclem2 43212 | . . 3 ⊢ (𝜑 → ∀𝑎 ∈ 𝒫 (𝑅1‘dom 𝑧)(𝑎 ≠ ∅ → (𝐶‘𝑎) ∈ 𝑎)) |
| 19 | neeq1 2991 | . . . . 5 ⊢ (𝑎 = 𝑑 → (𝑎 ≠ ∅ ↔ 𝑑 ≠ ∅)) | |
| 20 | fveq2 6831 | . . . . . 6 ⊢ (𝑎 = 𝑑 → (𝐶‘𝑎) = (𝐶‘𝑑)) | |
| 21 | id 22 | . . . . . 6 ⊢ (𝑎 = 𝑑 → 𝑎 = 𝑑) | |
| 22 | 20, 21 | eleq12d 2827 | . . . . 5 ⊢ (𝑎 = 𝑑 → ((𝐶‘𝑎) ∈ 𝑎 ↔ (𝐶‘𝑑) ∈ 𝑑)) |
| 23 | 19, 22 | imbi12d 344 | . . . 4 ⊢ (𝑎 = 𝑑 → ((𝑎 ≠ ∅ → (𝐶‘𝑎) ∈ 𝑎) ↔ (𝑑 ≠ ∅ → (𝐶‘𝑑) ∈ 𝑑))) |
| 24 | 23 | cbvralvw 3211 | . . 3 ⊢ (∀𝑎 ∈ 𝒫 (𝑅1‘dom 𝑧)(𝑎 ≠ ∅ → (𝐶‘𝑎) ∈ 𝑎) ↔ ∀𝑑 ∈ 𝒫 (𝑅1‘dom 𝑧)(𝑑 ≠ ∅ → (𝐶‘𝑑) ∈ 𝑑)) |
| 25 | 18, 24 | sylib 218 | . 2 ⊢ (𝜑 → ∀𝑑 ∈ 𝒫 (𝑅1‘dom 𝑧)(𝑑 ≠ ∅ → (𝐶‘𝑑) ∈ 𝑑)) |
| 26 | aomclem3.e | . 2 ⊢ 𝐸 = {〈𝑎, 𝑏〉 ∣ ∩ (◡𝐷 “ {𝑎}) ∈ ∩ (◡𝐷 “ {𝑏})} | |
| 27 | 8, 9, 25, 26 | dnwech 43205 | 1 ⊢ (𝜑 → 𝐸 We (𝑅1‘dom 𝑧)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 ∀wral 3048 ∃wrex 3057 Vcvv 3437 ∖ cdif 3895 ∩ cin 3897 ⊆ wss 3898 ∅c0 4282 𝒫 cpw 4551 {csn 4577 ∪ cuni 4860 ∩ cint 4899 class class class wbr 5095 {copab 5157 ↦ cmpt 5176 We wwe 5573 ◡ccnv 5620 dom cdm 5621 ran crn 5622 “ cima 5624 Oncon0 6314 suc csuc 6316 ‘cfv 6489 recscrecs 8299 Fincfn 8879 supcsup 9335 𝑅1cr1 9666 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-isom 6498 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-2o 8395 df-map 8761 df-en 8880 df-fin 8883 df-sup 9337 df-r1 9668 |
| This theorem is referenced by: aomclem5 43215 |
| Copyright terms: Public domain | W3C validator |