Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aomclem3 Structured version   Visualization version   GIF version

Theorem aomclem3 39649
Description: Lemma for dfac11 39655. Successor case 3, our required well-ordering. (Contributed by Stefan O'Rear, 19-Jan-2015.)
Hypotheses
Ref Expression
aomclem3.b 𝐵 = {⟨𝑎, 𝑏⟩ ∣ ∃𝑐 ∈ (𝑅1 dom 𝑧)((𝑐𝑏 ∧ ¬ 𝑐𝑎) ∧ ∀𝑑 ∈ (𝑅1 dom 𝑧)(𝑑(𝑧 dom 𝑧)𝑐 → (𝑑𝑎𝑑𝑏)))}
aomclem3.c 𝐶 = (𝑎 ∈ V ↦ sup((𝑦𝑎), (𝑅1‘dom 𝑧), 𝐵))
aomclem3.d 𝐷 = recs((𝑎 ∈ V ↦ (𝐶‘((𝑅1‘dom 𝑧) ∖ ran 𝑎))))
aomclem3.e 𝐸 = {⟨𝑎, 𝑏⟩ ∣ (𝐷 “ {𝑎}) ∈ (𝐷 “ {𝑏})}
aomclem3.on (𝜑 → dom 𝑧 ∈ On)
aomclem3.su (𝜑 → dom 𝑧 = suc dom 𝑧)
aomclem3.we (𝜑 → ∀𝑎 ∈ dom 𝑧(𝑧𝑎) We (𝑅1𝑎))
aomclem3.a (𝜑𝐴 ∈ On)
aomclem3.za (𝜑 → dom 𝑧𝐴)
aomclem3.y (𝜑 → ∀𝑎 ∈ 𝒫 (𝑅1𝐴)(𝑎 ≠ ∅ → (𝑦𝑎) ∈ ((𝒫 𝑎 ∩ Fin) ∖ {∅})))
Assertion
Ref Expression
aomclem3 (𝜑𝐸 We (𝑅1‘dom 𝑧))
Distinct variable groups:   𝑦,𝑧,𝑎,𝑏,𝑐,𝑑   𝜑,𝑎,𝑏   𝐶,𝑎,𝑏,𝑐,𝑑   𝐷,𝑎,𝑏,𝑐,𝑑
Allowed substitution hints:   𝜑(𝑦,𝑧,𝑐,𝑑)   𝐴(𝑦,𝑧,𝑎,𝑏,𝑐,𝑑)   𝐵(𝑦,𝑧,𝑎,𝑏,𝑐,𝑑)   𝐶(𝑦,𝑧)   𝐷(𝑦,𝑧)   𝐸(𝑦,𝑧,𝑎,𝑏,𝑐,𝑑)

Proof of Theorem aomclem3
StepHypRef Expression
1 aomclem3.d . . 3 𝐷 = recs((𝑎 ∈ V ↦ (𝐶‘((𝑅1‘dom 𝑧) ∖ ran 𝑎))))
2 rneq 5800 . . . . . . 7 (𝑎 = 𝑐 → ran 𝑎 = ran 𝑐)
32difeq2d 4098 . . . . . 6 (𝑎 = 𝑐 → ((𝑅1‘dom 𝑧) ∖ ran 𝑎) = ((𝑅1‘dom 𝑧) ∖ ran 𝑐))
43fveq2d 6668 . . . . 5 (𝑎 = 𝑐 → (𝐶‘((𝑅1‘dom 𝑧) ∖ ran 𝑎)) = (𝐶‘((𝑅1‘dom 𝑧) ∖ ran 𝑐)))
54cbvmptv 5161 . . . 4 (𝑎 ∈ V ↦ (𝐶‘((𝑅1‘dom 𝑧) ∖ ran 𝑎))) = (𝑐 ∈ V ↦ (𝐶‘((𝑅1‘dom 𝑧) ∖ ran 𝑐)))
6 recseq 8004 . . . 4 ((𝑎 ∈ V ↦ (𝐶‘((𝑅1‘dom 𝑧) ∖ ran 𝑎))) = (𝑐 ∈ V ↦ (𝐶‘((𝑅1‘dom 𝑧) ∖ ran 𝑐))) → recs((𝑎 ∈ V ↦ (𝐶‘((𝑅1‘dom 𝑧) ∖ ran 𝑎)))) = recs((𝑐 ∈ V ↦ (𝐶‘((𝑅1‘dom 𝑧) ∖ ran 𝑐)))))
75, 6ax-mp 5 . . 3 recs((𝑎 ∈ V ↦ (𝐶‘((𝑅1‘dom 𝑧) ∖ ran 𝑎)))) = recs((𝑐 ∈ V ↦ (𝐶‘((𝑅1‘dom 𝑧) ∖ ran 𝑐))))
81, 7eqtri 2844 . 2 𝐷 = recs((𝑐 ∈ V ↦ (𝐶‘((𝑅1‘dom 𝑧) ∖ ran 𝑐))))
9 fvexd 6679 . 2 (𝜑 → (𝑅1‘dom 𝑧) ∈ V)
10 aomclem3.b . . . 4 𝐵 = {⟨𝑎, 𝑏⟩ ∣ ∃𝑐 ∈ (𝑅1 dom 𝑧)((𝑐𝑏 ∧ ¬ 𝑐𝑎) ∧ ∀𝑑 ∈ (𝑅1 dom 𝑧)(𝑑(𝑧 dom 𝑧)𝑐 → (𝑑𝑎𝑑𝑏)))}
11 aomclem3.c . . . 4 𝐶 = (𝑎 ∈ V ↦ sup((𝑦𝑎), (𝑅1‘dom 𝑧), 𝐵))
12 aomclem3.on . . . 4 (𝜑 → dom 𝑧 ∈ On)
13 aomclem3.su . . . 4 (𝜑 → dom 𝑧 = suc dom 𝑧)
14 aomclem3.we . . . 4 (𝜑 → ∀𝑎 ∈ dom 𝑧(𝑧𝑎) We (𝑅1𝑎))
15 aomclem3.a . . . 4 (𝜑𝐴 ∈ On)
16 aomclem3.za . . . 4 (𝜑 → dom 𝑧𝐴)
17 aomclem3.y . . . 4 (𝜑 → ∀𝑎 ∈ 𝒫 (𝑅1𝐴)(𝑎 ≠ ∅ → (𝑦𝑎) ∈ ((𝒫 𝑎 ∩ Fin) ∖ {∅})))
1810, 11, 12, 13, 14, 15, 16, 17aomclem2 39648 . . 3 (𝜑 → ∀𝑎 ∈ 𝒫 (𝑅1‘dom 𝑧)(𝑎 ≠ ∅ → (𝐶𝑎) ∈ 𝑎))
19 neeq1 3078 . . . . 5 (𝑎 = 𝑑 → (𝑎 ≠ ∅ ↔ 𝑑 ≠ ∅))
20 fveq2 6664 . . . . . 6 (𝑎 = 𝑑 → (𝐶𝑎) = (𝐶𝑑))
21 id 22 . . . . . 6 (𝑎 = 𝑑𝑎 = 𝑑)
2220, 21eleq12d 2907 . . . . 5 (𝑎 = 𝑑 → ((𝐶𝑎) ∈ 𝑎 ↔ (𝐶𝑑) ∈ 𝑑))
2319, 22imbi12d 347 . . . 4 (𝑎 = 𝑑 → ((𝑎 ≠ ∅ → (𝐶𝑎) ∈ 𝑎) ↔ (𝑑 ≠ ∅ → (𝐶𝑑) ∈ 𝑑)))
2423cbvralvw 3449 . . 3 (∀𝑎 ∈ 𝒫 (𝑅1‘dom 𝑧)(𝑎 ≠ ∅ → (𝐶𝑎) ∈ 𝑎) ↔ ∀𝑑 ∈ 𝒫 (𝑅1‘dom 𝑧)(𝑑 ≠ ∅ → (𝐶𝑑) ∈ 𝑑))
2518, 24sylib 220 . 2 (𝜑 → ∀𝑑 ∈ 𝒫 (𝑅1‘dom 𝑧)(𝑑 ≠ ∅ → (𝐶𝑑) ∈ 𝑑))
26 aomclem3.e . 2 𝐸 = {⟨𝑎, 𝑏⟩ ∣ (𝐷 “ {𝑎}) ∈ (𝐷 “ {𝑏})}
278, 9, 25, 26dnwech 39641 1 (𝜑𝐸 We (𝑅1‘dom 𝑧))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  wne 3016  wral 3138  wrex 3139  Vcvv 3494  cdif 3932  cin 3934  wss 3935  c0 4290  𝒫 cpw 4538  {csn 4560   cuni 4831   cint 4868   class class class wbr 5058  {copab 5120  cmpt 5138   We wwe 5507  ccnv 5548  dom cdm 5549  ran crn 5550  cima 5552  Oncon0 6185  suc csuc 6187  cfv 6349  recscrecs 8001  Fincfn 8503  supcsup 8898  𝑅1cr1 9185
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-isom 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-er 8283  df-map 8402  df-en 8504  df-fin 8507  df-sup 8900  df-r1 9187
This theorem is referenced by:  aomclem5  39651
  Copyright terms: Public domain W3C validator