| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > aomclem3 | Structured version Visualization version GIF version | ||
| Description: Lemma for dfac11 43095. Successor case 3, our required well-ordering. (Contributed by Stefan O'Rear, 19-Jan-2015.) |
| Ref | Expression |
|---|---|
| aomclem3.b | ⊢ 𝐵 = {〈𝑎, 𝑏〉 ∣ ∃𝑐 ∈ (𝑅1‘∪ dom 𝑧)((𝑐 ∈ 𝑏 ∧ ¬ 𝑐 ∈ 𝑎) ∧ ∀𝑑 ∈ (𝑅1‘∪ dom 𝑧)(𝑑(𝑧‘∪ dom 𝑧)𝑐 → (𝑑 ∈ 𝑎 ↔ 𝑑 ∈ 𝑏)))} |
| aomclem3.c | ⊢ 𝐶 = (𝑎 ∈ V ↦ sup((𝑦‘𝑎), (𝑅1‘dom 𝑧), 𝐵)) |
| aomclem3.d | ⊢ 𝐷 = recs((𝑎 ∈ V ↦ (𝐶‘((𝑅1‘dom 𝑧) ∖ ran 𝑎)))) |
| aomclem3.e | ⊢ 𝐸 = {〈𝑎, 𝑏〉 ∣ ∩ (◡𝐷 “ {𝑎}) ∈ ∩ (◡𝐷 “ {𝑏})} |
| aomclem3.on | ⊢ (𝜑 → dom 𝑧 ∈ On) |
| aomclem3.su | ⊢ (𝜑 → dom 𝑧 = suc ∪ dom 𝑧) |
| aomclem3.we | ⊢ (𝜑 → ∀𝑎 ∈ dom 𝑧(𝑧‘𝑎) We (𝑅1‘𝑎)) |
| aomclem3.a | ⊢ (𝜑 → 𝐴 ∈ On) |
| aomclem3.za | ⊢ (𝜑 → dom 𝑧 ⊆ 𝐴) |
| aomclem3.y | ⊢ (𝜑 → ∀𝑎 ∈ 𝒫 (𝑅1‘𝐴)(𝑎 ≠ ∅ → (𝑦‘𝑎) ∈ ((𝒫 𝑎 ∩ Fin) ∖ {∅}))) |
| Ref | Expression |
|---|---|
| aomclem3 | ⊢ (𝜑 → 𝐸 We (𝑅1‘dom 𝑧)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | aomclem3.d | . . 3 ⊢ 𝐷 = recs((𝑎 ∈ V ↦ (𝐶‘((𝑅1‘dom 𝑧) ∖ ran 𝑎)))) | |
| 2 | rneq 5871 | . . . . . . 7 ⊢ (𝑎 = 𝑐 → ran 𝑎 = ran 𝑐) | |
| 3 | 2 | difeq2d 4071 | . . . . . 6 ⊢ (𝑎 = 𝑐 → ((𝑅1‘dom 𝑧) ∖ ran 𝑎) = ((𝑅1‘dom 𝑧) ∖ ran 𝑐)) |
| 4 | 3 | fveq2d 6821 | . . . . 5 ⊢ (𝑎 = 𝑐 → (𝐶‘((𝑅1‘dom 𝑧) ∖ ran 𝑎)) = (𝐶‘((𝑅1‘dom 𝑧) ∖ ran 𝑐))) |
| 5 | 4 | cbvmptv 5190 | . . . 4 ⊢ (𝑎 ∈ V ↦ (𝐶‘((𝑅1‘dom 𝑧) ∖ ran 𝑎))) = (𝑐 ∈ V ↦ (𝐶‘((𝑅1‘dom 𝑧) ∖ ran 𝑐))) |
| 6 | recseq 8288 | . . . 4 ⊢ ((𝑎 ∈ V ↦ (𝐶‘((𝑅1‘dom 𝑧) ∖ ran 𝑎))) = (𝑐 ∈ V ↦ (𝐶‘((𝑅1‘dom 𝑧) ∖ ran 𝑐))) → recs((𝑎 ∈ V ↦ (𝐶‘((𝑅1‘dom 𝑧) ∖ ran 𝑎)))) = recs((𝑐 ∈ V ↦ (𝐶‘((𝑅1‘dom 𝑧) ∖ ran 𝑐))))) | |
| 7 | 5, 6 | ax-mp 5 | . . 3 ⊢ recs((𝑎 ∈ V ↦ (𝐶‘((𝑅1‘dom 𝑧) ∖ ran 𝑎)))) = recs((𝑐 ∈ V ↦ (𝐶‘((𝑅1‘dom 𝑧) ∖ ran 𝑐)))) |
| 8 | 1, 7 | eqtri 2754 | . 2 ⊢ 𝐷 = recs((𝑐 ∈ V ↦ (𝐶‘((𝑅1‘dom 𝑧) ∖ ran 𝑐)))) |
| 9 | fvexd 6832 | . 2 ⊢ (𝜑 → (𝑅1‘dom 𝑧) ∈ V) | |
| 10 | aomclem3.b | . . . 4 ⊢ 𝐵 = {〈𝑎, 𝑏〉 ∣ ∃𝑐 ∈ (𝑅1‘∪ dom 𝑧)((𝑐 ∈ 𝑏 ∧ ¬ 𝑐 ∈ 𝑎) ∧ ∀𝑑 ∈ (𝑅1‘∪ dom 𝑧)(𝑑(𝑧‘∪ dom 𝑧)𝑐 → (𝑑 ∈ 𝑎 ↔ 𝑑 ∈ 𝑏)))} | |
| 11 | aomclem3.c | . . . 4 ⊢ 𝐶 = (𝑎 ∈ V ↦ sup((𝑦‘𝑎), (𝑅1‘dom 𝑧), 𝐵)) | |
| 12 | aomclem3.on | . . . 4 ⊢ (𝜑 → dom 𝑧 ∈ On) | |
| 13 | aomclem3.su | . . . 4 ⊢ (𝜑 → dom 𝑧 = suc ∪ dom 𝑧) | |
| 14 | aomclem3.we | . . . 4 ⊢ (𝜑 → ∀𝑎 ∈ dom 𝑧(𝑧‘𝑎) We (𝑅1‘𝑎)) | |
| 15 | aomclem3.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ On) | |
| 16 | aomclem3.za | . . . 4 ⊢ (𝜑 → dom 𝑧 ⊆ 𝐴) | |
| 17 | aomclem3.y | . . . 4 ⊢ (𝜑 → ∀𝑎 ∈ 𝒫 (𝑅1‘𝐴)(𝑎 ≠ ∅ → (𝑦‘𝑎) ∈ ((𝒫 𝑎 ∩ Fin) ∖ {∅}))) | |
| 18 | 10, 11, 12, 13, 14, 15, 16, 17 | aomclem2 43088 | . . 3 ⊢ (𝜑 → ∀𝑎 ∈ 𝒫 (𝑅1‘dom 𝑧)(𝑎 ≠ ∅ → (𝐶‘𝑎) ∈ 𝑎)) |
| 19 | neeq1 2990 | . . . . 5 ⊢ (𝑎 = 𝑑 → (𝑎 ≠ ∅ ↔ 𝑑 ≠ ∅)) | |
| 20 | fveq2 6817 | . . . . . 6 ⊢ (𝑎 = 𝑑 → (𝐶‘𝑎) = (𝐶‘𝑑)) | |
| 21 | id 22 | . . . . . 6 ⊢ (𝑎 = 𝑑 → 𝑎 = 𝑑) | |
| 22 | 20, 21 | eleq12d 2825 | . . . . 5 ⊢ (𝑎 = 𝑑 → ((𝐶‘𝑎) ∈ 𝑎 ↔ (𝐶‘𝑑) ∈ 𝑑)) |
| 23 | 19, 22 | imbi12d 344 | . . . 4 ⊢ (𝑎 = 𝑑 → ((𝑎 ≠ ∅ → (𝐶‘𝑎) ∈ 𝑎) ↔ (𝑑 ≠ ∅ → (𝐶‘𝑑) ∈ 𝑑))) |
| 24 | 23 | cbvralvw 3210 | . . 3 ⊢ (∀𝑎 ∈ 𝒫 (𝑅1‘dom 𝑧)(𝑎 ≠ ∅ → (𝐶‘𝑎) ∈ 𝑎) ↔ ∀𝑑 ∈ 𝒫 (𝑅1‘dom 𝑧)(𝑑 ≠ ∅ → (𝐶‘𝑑) ∈ 𝑑)) |
| 25 | 18, 24 | sylib 218 | . 2 ⊢ (𝜑 → ∀𝑑 ∈ 𝒫 (𝑅1‘dom 𝑧)(𝑑 ≠ ∅ → (𝐶‘𝑑) ∈ 𝑑)) |
| 26 | aomclem3.e | . 2 ⊢ 𝐸 = {〈𝑎, 𝑏〉 ∣ ∩ (◡𝐷 “ {𝑎}) ∈ ∩ (◡𝐷 “ {𝑏})} | |
| 27 | 8, 9, 25, 26 | dnwech 43081 | 1 ⊢ (𝜑 → 𝐸 We (𝑅1‘dom 𝑧)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∀wral 3047 ∃wrex 3056 Vcvv 3436 ∖ cdif 3894 ∩ cin 3896 ⊆ wss 3897 ∅c0 4278 𝒫 cpw 4545 {csn 4571 ∪ cuni 4854 ∩ cint 4892 class class class wbr 5086 {copab 5148 ↦ cmpt 5167 We wwe 5563 ◡ccnv 5610 dom cdm 5611 ran crn 5612 “ cima 5614 Oncon0 6301 suc csuc 6303 ‘cfv 6476 recscrecs 8285 Fincfn 8864 supcsup 9319 𝑅1cr1 9650 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-isom 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-2o 8381 df-map 8747 df-en 8865 df-fin 8868 df-sup 9321 df-r1 9652 |
| This theorem is referenced by: aomclem5 43091 |
| Copyright terms: Public domain | W3C validator |