MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zorn2g Structured version   Visualization version   GIF version

Theorem zorn2g 10432
Description: Zorn's Lemma of [Monk1] p. 117. This version of zorn2 10435 avoids the Axiom of Choice by assuming that 𝐴 is well-orderable. (Contributed by NM, 6-Apr-1997.) (Revised by Mario Carneiro, 9-May-2015.)
Assertion
Ref Expression
zorn2g ((𝐴 ∈ dom card ∧ 𝑅 Po 𝐴 ∧ ∀𝑤((𝑤𝐴𝑅 Or 𝑤) → ∃𝑥𝐴𝑧𝑤 (𝑧𝑅𝑥𝑧 = 𝑥))) → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥𝑅𝑦)
Distinct variable groups:   𝑥,𝑦,𝑧,𝑤,𝑅   𝑥,𝐴,𝑦,𝑧,𝑤

Proof of Theorem zorn2g
Dummy variables 𝑣 𝑢 𝑔 𝑡 𝑠 𝑟 𝑞 𝑑 𝑘 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq1 5105 . . . . . . . . 9 (𝑔 = 𝑘 → (𝑔𝑞𝑛𝑘𝑞𝑛))
21notbid 318 . . . . . . . 8 (𝑔 = 𝑘 → (¬ 𝑔𝑞𝑛 ↔ ¬ 𝑘𝑞𝑛))
32cbvralvw 3213 . . . . . . 7 (∀𝑔 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣} ¬ 𝑔𝑞𝑛 ↔ ∀𝑘 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣} ¬ 𝑘𝑞𝑛)
4 breq2 5106 . . . . . . . . 9 (𝑛 = 𝑚 → (𝑘𝑞𝑛𝑘𝑞𝑚))
54notbid 318 . . . . . . . 8 (𝑛 = 𝑚 → (¬ 𝑘𝑞𝑛 ↔ ¬ 𝑘𝑞𝑚))
65ralbidv 3156 . . . . . . 7 (𝑛 = 𝑚 → (∀𝑘 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣} ¬ 𝑘𝑞𝑛 ↔ ∀𝑘 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣} ¬ 𝑘𝑞𝑚))
73, 6bitrid 283 . . . . . 6 (𝑛 = 𝑚 → (∀𝑔 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣} ¬ 𝑔𝑞𝑛 ↔ ∀𝑘 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣} ¬ 𝑘𝑞𝑚))
87cbvriotavw 7336 . . . . 5 (𝑛 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣}∀𝑔 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣} ¬ 𝑔𝑞𝑛) = (𝑚 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣}∀𝑘 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣} ¬ 𝑘𝑞𝑚)
9 rneq 5889 . . . . . . . 8 ( = 𝑑 → ran = ran 𝑑)
109raleqdv 3296 . . . . . . 7 ( = 𝑑 → (∀𝑞 ∈ ran 𝑞𝑅𝑣 ↔ ∀𝑞 ∈ ran 𝑑 𝑞𝑅𝑣))
1110rabbidv 3410 . . . . . 6 ( = 𝑑 → {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣} = {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑑 𝑞𝑅𝑣})
1211raleqdv 3296 . . . . . 6 ( = 𝑑 → (∀𝑘 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣} ¬ 𝑘𝑞𝑚 ↔ ∀𝑘 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑑 𝑞𝑅𝑣} ¬ 𝑘𝑞𝑚))
1311, 12riotaeqbidv 7329 . . . . 5 ( = 𝑑 → (𝑚 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣}∀𝑘 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣} ¬ 𝑘𝑞𝑚) = (𝑚 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑑 𝑞𝑅𝑣}∀𝑘 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑑 𝑞𝑅𝑣} ¬ 𝑘𝑞𝑚))
148, 13eqtrid 2776 . . . 4 ( = 𝑑 → (𝑛 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣}∀𝑔 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣} ¬ 𝑔𝑞𝑛) = (𝑚 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑑 𝑞𝑅𝑣}∀𝑘 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑑 𝑞𝑅𝑣} ¬ 𝑘𝑞𝑚))
1514cbvmptv 5206 . . 3 ( ∈ V ↦ (𝑛 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣}∀𝑔 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣} ¬ 𝑔𝑞𝑛)) = (𝑑 ∈ V ↦ (𝑚 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑑 𝑞𝑅𝑣}∀𝑘 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑑 𝑞𝑅𝑣} ¬ 𝑘𝑞𝑚))
16 recseq 8319 . . 3 (( ∈ V ↦ (𝑛 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣}∀𝑔 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣} ¬ 𝑔𝑞𝑛)) = (𝑑 ∈ V ↦ (𝑚 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑑 𝑞𝑅𝑣}∀𝑘 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑑 𝑞𝑅𝑣} ¬ 𝑘𝑞𝑚)) → recs(( ∈ V ↦ (𝑛 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣}∀𝑔 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣} ¬ 𝑔𝑞𝑛))) = recs((𝑑 ∈ V ↦ (𝑚 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑑 𝑞𝑅𝑣}∀𝑘 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑑 𝑞𝑅𝑣} ¬ 𝑘𝑞𝑚))))
1715, 16ax-mp 5 . 2 recs(( ∈ V ↦ (𝑛 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣}∀𝑔 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣} ¬ 𝑔𝑞𝑛))) = recs((𝑑 ∈ V ↦ (𝑚 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑑 𝑞𝑅𝑣}∀𝑘 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑑 𝑞𝑅𝑣} ¬ 𝑘𝑞𝑚)))
18 breq1 5105 . . . . 5 (𝑞 = 𝑠 → (𝑞𝑅𝑣𝑠𝑅𝑣))
1918cbvralvw 3213 . . . 4 (∀𝑞 ∈ ran 𝑑 𝑞𝑅𝑣 ↔ ∀𝑠 ∈ ran 𝑑 𝑠𝑅𝑣)
20 breq2 5106 . . . . 5 (𝑣 = 𝑟 → (𝑠𝑅𝑣𝑠𝑅𝑟))
2120ralbidv 3156 . . . 4 (𝑣 = 𝑟 → (∀𝑠 ∈ ran 𝑑 𝑠𝑅𝑣 ↔ ∀𝑠 ∈ ran 𝑑 𝑠𝑅𝑟))
2219, 21bitrid 283 . . 3 (𝑣 = 𝑟 → (∀𝑞 ∈ ran 𝑑 𝑞𝑅𝑣 ↔ ∀𝑠 ∈ ran 𝑑 𝑠𝑅𝑟))
2322cbvrabv 3413 . 2 {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑑 𝑞𝑅𝑣} = {𝑟𝐴 ∣ ∀𝑠 ∈ ran 𝑑 𝑠𝑅𝑟}
24 eqid 2729 . 2 {𝑟𝐴 ∣ ∀𝑠 ∈ (recs(( ∈ V ↦ (𝑛 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣}∀𝑔 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣} ¬ 𝑔𝑞𝑛))) “ 𝑢)𝑠𝑅𝑟} = {𝑟𝐴 ∣ ∀𝑠 ∈ (recs(( ∈ V ↦ (𝑛 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣}∀𝑔 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣} ¬ 𝑔𝑞𝑛))) “ 𝑢)𝑠𝑅𝑟}
25 eqid 2729 . 2 {𝑟𝐴 ∣ ∀𝑠 ∈ (recs(( ∈ V ↦ (𝑛 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣}∀𝑔 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣} ¬ 𝑔𝑞𝑛))) “ 𝑡)𝑠𝑅𝑟} = {𝑟𝐴 ∣ ∀𝑠 ∈ (recs(( ∈ V ↦ (𝑛 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣}∀𝑔 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣} ¬ 𝑔𝑞𝑛))) “ 𝑡)𝑠𝑅𝑟}
2617, 23, 24, 25zorn2lem7 10431 1 ((𝐴 ∈ dom card ∧ 𝑅 Po 𝐴 ∧ ∀𝑤((𝑤𝐴𝑅 Or 𝑤) → ∃𝑥𝐴𝑧𝑤 (𝑧𝑅𝑥𝑧 = 𝑥))) → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥𝑅𝑦)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847  w3a 1086  wal 1538   = wceq 1540  wcel 2109  wral 3044  wrex 3053  {crab 3402  Vcvv 3444  wss 3911   class class class wbr 5102  cmpt 5183   Po wpo 5537   Or wor 5538  dom cdm 5631  ran crn 5632  cima 5634  crio 7325  recscrecs 8316  cardccrd 9864
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-en 8896  df-card 9868
This theorem is referenced by:  zorng  10433  zorn2  10435
  Copyright terms: Public domain W3C validator