MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zorn2g Structured version   Visualization version   GIF version

Theorem zorn2g 9578
Description: Zorn's Lemma of [Monk1] p. 117. This version of zorn2 9581 avoids the Axiom of Choice by assuming that 𝐴 is well-orderable. (Contributed by NM, 6-Apr-1997.) (Revised by Mario Carneiro, 9-May-2015.)
Assertion
Ref Expression
zorn2g ((𝐴 ∈ dom card ∧ 𝑅 Po 𝐴 ∧ ∀𝑤((𝑤𝐴𝑅 Or 𝑤) → ∃𝑥𝐴𝑧𝑤 (𝑧𝑅𝑥𝑧 = 𝑥))) → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥𝑅𝑦)
Distinct variable groups:   𝑥,𝑦,𝑧,𝑤,𝑅   𝑥,𝐴,𝑦,𝑧,𝑤

Proof of Theorem zorn2g
Dummy variables 𝑣 𝑢 𝑔 𝑡 𝑠 𝑟 𝑞 𝑑 𝑘 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq1 4812 . . . . . . . . 9 (𝑔 = 𝑘 → (𝑔𝑞𝑛𝑘𝑞𝑛))
21notbid 309 . . . . . . . 8 (𝑔 = 𝑘 → (¬ 𝑔𝑞𝑛 ↔ ¬ 𝑘𝑞𝑛))
32cbvralv 3319 . . . . . . 7 (∀𝑔 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣} ¬ 𝑔𝑞𝑛 ↔ ∀𝑘 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣} ¬ 𝑘𝑞𝑛)
4 breq2 4813 . . . . . . . . 9 (𝑛 = 𝑚 → (𝑘𝑞𝑛𝑘𝑞𝑚))
54notbid 309 . . . . . . . 8 (𝑛 = 𝑚 → (¬ 𝑘𝑞𝑛 ↔ ¬ 𝑘𝑞𝑚))
65ralbidv 3133 . . . . . . 7 (𝑛 = 𝑚 → (∀𝑘 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣} ¬ 𝑘𝑞𝑛 ↔ ∀𝑘 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣} ¬ 𝑘𝑞𝑚))
73, 6syl5bb 274 . . . . . 6 (𝑛 = 𝑚 → (∀𝑔 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣} ¬ 𝑔𝑞𝑛 ↔ ∀𝑘 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣} ¬ 𝑘𝑞𝑚))
87cbvriotav 6814 . . . . 5 (𝑛 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣}∀𝑔 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣} ¬ 𝑔𝑞𝑛) = (𝑚 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣}∀𝑘 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣} ¬ 𝑘𝑞𝑚)
9 rneq 5519 . . . . . . . 8 ( = 𝑑 → ran = ran 𝑑)
109raleqdv 3292 . . . . . . 7 ( = 𝑑 → (∀𝑞 ∈ ran 𝑞𝑅𝑣 ↔ ∀𝑞 ∈ ran 𝑑 𝑞𝑅𝑣))
1110rabbidv 3338 . . . . . 6 ( = 𝑑 → {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣} = {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑑 𝑞𝑅𝑣})
1211raleqdv 3292 . . . . . 6 ( = 𝑑 → (∀𝑘 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣} ¬ 𝑘𝑞𝑚 ↔ ∀𝑘 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑑 𝑞𝑅𝑣} ¬ 𝑘𝑞𝑚))
1311, 12riotaeqbidv 6806 . . . . 5 ( = 𝑑 → (𝑚 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣}∀𝑘 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣} ¬ 𝑘𝑞𝑚) = (𝑚 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑑 𝑞𝑅𝑣}∀𝑘 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑑 𝑞𝑅𝑣} ¬ 𝑘𝑞𝑚))
148, 13syl5eq 2811 . . . 4 ( = 𝑑 → (𝑛 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣}∀𝑔 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣} ¬ 𝑔𝑞𝑛) = (𝑚 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑑 𝑞𝑅𝑣}∀𝑘 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑑 𝑞𝑅𝑣} ¬ 𝑘𝑞𝑚))
1514cbvmptv 4909 . . 3 ( ∈ V ↦ (𝑛 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣}∀𝑔 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣} ¬ 𝑔𝑞𝑛)) = (𝑑 ∈ V ↦ (𝑚 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑑 𝑞𝑅𝑣}∀𝑘 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑑 𝑞𝑅𝑣} ¬ 𝑘𝑞𝑚))
16 recseq 7674 . . 3 (( ∈ V ↦ (𝑛 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣}∀𝑔 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣} ¬ 𝑔𝑞𝑛)) = (𝑑 ∈ V ↦ (𝑚 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑑 𝑞𝑅𝑣}∀𝑘 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑑 𝑞𝑅𝑣} ¬ 𝑘𝑞𝑚)) → recs(( ∈ V ↦ (𝑛 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣}∀𝑔 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣} ¬ 𝑔𝑞𝑛))) = recs((𝑑 ∈ V ↦ (𝑚 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑑 𝑞𝑅𝑣}∀𝑘 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑑 𝑞𝑅𝑣} ¬ 𝑘𝑞𝑚))))
1715, 16ax-mp 5 . 2 recs(( ∈ V ↦ (𝑛 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣}∀𝑔 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣} ¬ 𝑔𝑞𝑛))) = recs((𝑑 ∈ V ↦ (𝑚 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑑 𝑞𝑅𝑣}∀𝑘 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑑 𝑞𝑅𝑣} ¬ 𝑘𝑞𝑚)))
18 breq1 4812 . . . . 5 (𝑞 = 𝑠 → (𝑞𝑅𝑣𝑠𝑅𝑣))
1918cbvralv 3319 . . . 4 (∀𝑞 ∈ ran 𝑑 𝑞𝑅𝑣 ↔ ∀𝑠 ∈ ran 𝑑 𝑠𝑅𝑣)
20 breq2 4813 . . . . 5 (𝑣 = 𝑟 → (𝑠𝑅𝑣𝑠𝑅𝑟))
2120ralbidv 3133 . . . 4 (𝑣 = 𝑟 → (∀𝑠 ∈ ran 𝑑 𝑠𝑅𝑣 ↔ ∀𝑠 ∈ ran 𝑑 𝑠𝑅𝑟))
2219, 21syl5bb 274 . . 3 (𝑣 = 𝑟 → (∀𝑞 ∈ ran 𝑑 𝑞𝑅𝑣 ↔ ∀𝑠 ∈ ran 𝑑 𝑠𝑅𝑟))
2322cbvrabv 3348 . 2 {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑑 𝑞𝑅𝑣} = {𝑟𝐴 ∣ ∀𝑠 ∈ ran 𝑑 𝑠𝑅𝑟}
24 eqid 2765 . 2 {𝑟𝐴 ∣ ∀𝑠 ∈ (recs(( ∈ V ↦ (𝑛 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣}∀𝑔 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣} ¬ 𝑔𝑞𝑛))) “ 𝑢)𝑠𝑅𝑟} = {𝑟𝐴 ∣ ∀𝑠 ∈ (recs(( ∈ V ↦ (𝑛 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣}∀𝑔 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣} ¬ 𝑔𝑞𝑛))) “ 𝑢)𝑠𝑅𝑟}
25 eqid 2765 . 2 {𝑟𝐴 ∣ ∀𝑠 ∈ (recs(( ∈ V ↦ (𝑛 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣}∀𝑔 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣} ¬ 𝑔𝑞𝑛))) “ 𝑡)𝑠𝑅𝑟} = {𝑟𝐴 ∣ ∀𝑠 ∈ (recs(( ∈ V ↦ (𝑛 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣}∀𝑔 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣} ¬ 𝑔𝑞𝑛))) “ 𝑡)𝑠𝑅𝑟}
2617, 23, 24, 25zorn2lem7 9577 1 ((𝐴 ∈ dom card ∧ 𝑅 Po 𝐴 ∧ ∀𝑤((𝑤𝐴𝑅 Or 𝑤) → ∃𝑥𝐴𝑧𝑤 (𝑧𝑅𝑥𝑧 = 𝑥))) → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥𝑅𝑦)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  wo 873  w3a 1107  wal 1650   = wceq 1652  wcel 2155  wral 3055  wrex 3056  {crab 3059  Vcvv 3350  wss 3732   class class class wbr 4809  cmpt 4888   Po wpo 5196   Or wor 5197  dom cdm 5277  ran crn 5278  cima 5280  crio 6802  recscrecs 7671  cardccrd 9012
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-int 4634  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-se 5237  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-isom 6077  df-riota 6803  df-wrecs 7610  df-recs 7672  df-en 8161  df-card 9016
This theorem is referenced by:  zorng  9579  zorn2  9581
  Copyright terms: Public domain W3C validator