MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zorn2g Structured version   Visualization version   GIF version

Theorem zorn2g 10190
Description: Zorn's Lemma of [Monk1] p. 117. This version of zorn2 10193 avoids the Axiom of Choice by assuming that 𝐴 is well-orderable. (Contributed by NM, 6-Apr-1997.) (Revised by Mario Carneiro, 9-May-2015.)
Assertion
Ref Expression
zorn2g ((𝐴 ∈ dom card ∧ 𝑅 Po 𝐴 ∧ ∀𝑤((𝑤𝐴𝑅 Or 𝑤) → ∃𝑥𝐴𝑧𝑤 (𝑧𝑅𝑥𝑧 = 𝑥))) → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥𝑅𝑦)
Distinct variable groups:   𝑥,𝑦,𝑧,𝑤,𝑅   𝑥,𝐴,𝑦,𝑧,𝑤

Proof of Theorem zorn2g
Dummy variables 𝑣 𝑢 𝑔 𝑡 𝑠 𝑟 𝑞 𝑑 𝑘 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq1 5073 . . . . . . . . 9 (𝑔 = 𝑘 → (𝑔𝑞𝑛𝑘𝑞𝑛))
21notbid 317 . . . . . . . 8 (𝑔 = 𝑘 → (¬ 𝑔𝑞𝑛 ↔ ¬ 𝑘𝑞𝑛))
32cbvralvw 3372 . . . . . . 7 (∀𝑔 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣} ¬ 𝑔𝑞𝑛 ↔ ∀𝑘 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣} ¬ 𝑘𝑞𝑛)
4 breq2 5074 . . . . . . . . 9 (𝑛 = 𝑚 → (𝑘𝑞𝑛𝑘𝑞𝑚))
54notbid 317 . . . . . . . 8 (𝑛 = 𝑚 → (¬ 𝑘𝑞𝑛 ↔ ¬ 𝑘𝑞𝑚))
65ralbidv 3120 . . . . . . 7 (𝑛 = 𝑚 → (∀𝑘 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣} ¬ 𝑘𝑞𝑛 ↔ ∀𝑘 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣} ¬ 𝑘𝑞𝑚))
73, 6syl5bb 282 . . . . . 6 (𝑛 = 𝑚 → (∀𝑔 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣} ¬ 𝑔𝑞𝑛 ↔ ∀𝑘 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣} ¬ 𝑘𝑞𝑚))
87cbvriotavw 7222 . . . . 5 (𝑛 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣}∀𝑔 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣} ¬ 𝑔𝑞𝑛) = (𝑚 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣}∀𝑘 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣} ¬ 𝑘𝑞𝑚)
9 rneq 5834 . . . . . . . 8 ( = 𝑑 → ran = ran 𝑑)
109raleqdv 3339 . . . . . . 7 ( = 𝑑 → (∀𝑞 ∈ ran 𝑞𝑅𝑣 ↔ ∀𝑞 ∈ ran 𝑑 𝑞𝑅𝑣))
1110rabbidv 3404 . . . . . 6 ( = 𝑑 → {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣} = {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑑 𝑞𝑅𝑣})
1211raleqdv 3339 . . . . . 6 ( = 𝑑 → (∀𝑘 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣} ¬ 𝑘𝑞𝑚 ↔ ∀𝑘 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑑 𝑞𝑅𝑣} ¬ 𝑘𝑞𝑚))
1311, 12riotaeqbidv 7215 . . . . 5 ( = 𝑑 → (𝑚 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣}∀𝑘 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣} ¬ 𝑘𝑞𝑚) = (𝑚 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑑 𝑞𝑅𝑣}∀𝑘 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑑 𝑞𝑅𝑣} ¬ 𝑘𝑞𝑚))
148, 13eqtrid 2790 . . . 4 ( = 𝑑 → (𝑛 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣}∀𝑔 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣} ¬ 𝑔𝑞𝑛) = (𝑚 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑑 𝑞𝑅𝑣}∀𝑘 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑑 𝑞𝑅𝑣} ¬ 𝑘𝑞𝑚))
1514cbvmptv 5183 . . 3 ( ∈ V ↦ (𝑛 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣}∀𝑔 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣} ¬ 𝑔𝑞𝑛)) = (𝑑 ∈ V ↦ (𝑚 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑑 𝑞𝑅𝑣}∀𝑘 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑑 𝑞𝑅𝑣} ¬ 𝑘𝑞𝑚))
16 recseq 8176 . . 3 (( ∈ V ↦ (𝑛 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣}∀𝑔 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣} ¬ 𝑔𝑞𝑛)) = (𝑑 ∈ V ↦ (𝑚 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑑 𝑞𝑅𝑣}∀𝑘 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑑 𝑞𝑅𝑣} ¬ 𝑘𝑞𝑚)) → recs(( ∈ V ↦ (𝑛 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣}∀𝑔 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣} ¬ 𝑔𝑞𝑛))) = recs((𝑑 ∈ V ↦ (𝑚 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑑 𝑞𝑅𝑣}∀𝑘 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑑 𝑞𝑅𝑣} ¬ 𝑘𝑞𝑚))))
1715, 16ax-mp 5 . 2 recs(( ∈ V ↦ (𝑛 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣}∀𝑔 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣} ¬ 𝑔𝑞𝑛))) = recs((𝑑 ∈ V ↦ (𝑚 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑑 𝑞𝑅𝑣}∀𝑘 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑑 𝑞𝑅𝑣} ¬ 𝑘𝑞𝑚)))
18 breq1 5073 . . . . 5 (𝑞 = 𝑠 → (𝑞𝑅𝑣𝑠𝑅𝑣))
1918cbvralvw 3372 . . . 4 (∀𝑞 ∈ ran 𝑑 𝑞𝑅𝑣 ↔ ∀𝑠 ∈ ran 𝑑 𝑠𝑅𝑣)
20 breq2 5074 . . . . 5 (𝑣 = 𝑟 → (𝑠𝑅𝑣𝑠𝑅𝑟))
2120ralbidv 3120 . . . 4 (𝑣 = 𝑟 → (∀𝑠 ∈ ran 𝑑 𝑠𝑅𝑣 ↔ ∀𝑠 ∈ ran 𝑑 𝑠𝑅𝑟))
2219, 21syl5bb 282 . . 3 (𝑣 = 𝑟 → (∀𝑞 ∈ ran 𝑑 𝑞𝑅𝑣 ↔ ∀𝑠 ∈ ran 𝑑 𝑠𝑅𝑟))
2322cbvrabv 3416 . 2 {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑑 𝑞𝑅𝑣} = {𝑟𝐴 ∣ ∀𝑠 ∈ ran 𝑑 𝑠𝑅𝑟}
24 eqid 2738 . 2 {𝑟𝐴 ∣ ∀𝑠 ∈ (recs(( ∈ V ↦ (𝑛 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣}∀𝑔 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣} ¬ 𝑔𝑞𝑛))) “ 𝑢)𝑠𝑅𝑟} = {𝑟𝐴 ∣ ∀𝑠 ∈ (recs(( ∈ V ↦ (𝑛 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣}∀𝑔 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣} ¬ 𝑔𝑞𝑛))) “ 𝑢)𝑠𝑅𝑟}
25 eqid 2738 . 2 {𝑟𝐴 ∣ ∀𝑠 ∈ (recs(( ∈ V ↦ (𝑛 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣}∀𝑔 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣} ¬ 𝑔𝑞𝑛))) “ 𝑡)𝑠𝑅𝑟} = {𝑟𝐴 ∣ ∀𝑠 ∈ (recs(( ∈ V ↦ (𝑛 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣}∀𝑔 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣} ¬ 𝑔𝑞𝑛))) “ 𝑡)𝑠𝑅𝑟}
2617, 23, 24, 25zorn2lem7 10189 1 ((𝐴 ∈ dom card ∧ 𝑅 Po 𝐴 ∧ ∀𝑤((𝑤𝐴𝑅 Or 𝑤) → ∃𝑥𝐴𝑧𝑤 (𝑧𝑅𝑥𝑧 = 𝑥))) → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥𝑅𝑦)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 843  w3a 1085  wal 1537   = wceq 1539  wcel 2108  wral 3063  wrex 3064  {crab 3067  Vcvv 3422  wss 3883   class class class wbr 5070  cmpt 5153   Po wpo 5492   Or wor 5493  dom cdm 5580  ran crn 5581  cima 5583  crio 7211  recscrecs 8172  cardccrd 9624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-en 8692  df-card 9628
This theorem is referenced by:  zorng  10191  zorn2  10193
  Copyright terms: Public domain W3C validator