MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zorn2g Structured version   Visualization version   GIF version

Theorem zorn2g 10543
Description: Zorn's Lemma of [Monk1] p. 117. This version of zorn2 10546 avoids the Axiom of Choice by assuming that 𝐴 is well-orderable. (Contributed by NM, 6-Apr-1997.) (Revised by Mario Carneiro, 9-May-2015.)
Assertion
Ref Expression
zorn2g ((𝐴 ∈ dom card ∧ 𝑅 Po 𝐴 ∧ ∀𝑤((𝑤𝐴𝑅 Or 𝑤) → ∃𝑥𝐴𝑧𝑤 (𝑧𝑅𝑥𝑧 = 𝑥))) → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥𝑅𝑦)
Distinct variable groups:   𝑥,𝑦,𝑧,𝑤,𝑅   𝑥,𝐴,𝑦,𝑧,𝑤

Proof of Theorem zorn2g
Dummy variables 𝑣 𝑢 𝑔 𝑡 𝑠 𝑟 𝑞 𝑑 𝑘 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq1 5146 . . . . . . . . 9 (𝑔 = 𝑘 → (𝑔𝑞𝑛𝑘𝑞𝑛))
21notbid 318 . . . . . . . 8 (𝑔 = 𝑘 → (¬ 𝑔𝑞𝑛 ↔ ¬ 𝑘𝑞𝑛))
32cbvralvw 3237 . . . . . . 7 (∀𝑔 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣} ¬ 𝑔𝑞𝑛 ↔ ∀𝑘 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣} ¬ 𝑘𝑞𝑛)
4 breq2 5147 . . . . . . . . 9 (𝑛 = 𝑚 → (𝑘𝑞𝑛𝑘𝑞𝑚))
54notbid 318 . . . . . . . 8 (𝑛 = 𝑚 → (¬ 𝑘𝑞𝑛 ↔ ¬ 𝑘𝑞𝑚))
65ralbidv 3178 . . . . . . 7 (𝑛 = 𝑚 → (∀𝑘 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣} ¬ 𝑘𝑞𝑛 ↔ ∀𝑘 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣} ¬ 𝑘𝑞𝑚))
73, 6bitrid 283 . . . . . 6 (𝑛 = 𝑚 → (∀𝑔 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣} ¬ 𝑔𝑞𝑛 ↔ ∀𝑘 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣} ¬ 𝑘𝑞𝑚))
87cbvriotavw 7398 . . . . 5 (𝑛 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣}∀𝑔 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣} ¬ 𝑔𝑞𝑛) = (𝑚 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣}∀𝑘 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣} ¬ 𝑘𝑞𝑚)
9 rneq 5947 . . . . . . . 8 ( = 𝑑 → ran = ran 𝑑)
109raleqdv 3326 . . . . . . 7 ( = 𝑑 → (∀𝑞 ∈ ran 𝑞𝑅𝑣 ↔ ∀𝑞 ∈ ran 𝑑 𝑞𝑅𝑣))
1110rabbidv 3444 . . . . . 6 ( = 𝑑 → {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣} = {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑑 𝑞𝑅𝑣})
1211raleqdv 3326 . . . . . 6 ( = 𝑑 → (∀𝑘 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣} ¬ 𝑘𝑞𝑚 ↔ ∀𝑘 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑑 𝑞𝑅𝑣} ¬ 𝑘𝑞𝑚))
1311, 12riotaeqbidv 7391 . . . . 5 ( = 𝑑 → (𝑚 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣}∀𝑘 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣} ¬ 𝑘𝑞𝑚) = (𝑚 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑑 𝑞𝑅𝑣}∀𝑘 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑑 𝑞𝑅𝑣} ¬ 𝑘𝑞𝑚))
148, 13eqtrid 2789 . . . 4 ( = 𝑑 → (𝑛 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣}∀𝑔 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣} ¬ 𝑔𝑞𝑛) = (𝑚 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑑 𝑞𝑅𝑣}∀𝑘 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑑 𝑞𝑅𝑣} ¬ 𝑘𝑞𝑚))
1514cbvmptv 5255 . . 3 ( ∈ V ↦ (𝑛 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣}∀𝑔 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣} ¬ 𝑔𝑞𝑛)) = (𝑑 ∈ V ↦ (𝑚 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑑 𝑞𝑅𝑣}∀𝑘 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑑 𝑞𝑅𝑣} ¬ 𝑘𝑞𝑚))
16 recseq 8414 . . 3 (( ∈ V ↦ (𝑛 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣}∀𝑔 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣} ¬ 𝑔𝑞𝑛)) = (𝑑 ∈ V ↦ (𝑚 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑑 𝑞𝑅𝑣}∀𝑘 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑑 𝑞𝑅𝑣} ¬ 𝑘𝑞𝑚)) → recs(( ∈ V ↦ (𝑛 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣}∀𝑔 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣} ¬ 𝑔𝑞𝑛))) = recs((𝑑 ∈ V ↦ (𝑚 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑑 𝑞𝑅𝑣}∀𝑘 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑑 𝑞𝑅𝑣} ¬ 𝑘𝑞𝑚))))
1715, 16ax-mp 5 . 2 recs(( ∈ V ↦ (𝑛 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣}∀𝑔 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣} ¬ 𝑔𝑞𝑛))) = recs((𝑑 ∈ V ↦ (𝑚 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑑 𝑞𝑅𝑣}∀𝑘 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑑 𝑞𝑅𝑣} ¬ 𝑘𝑞𝑚)))
18 breq1 5146 . . . . 5 (𝑞 = 𝑠 → (𝑞𝑅𝑣𝑠𝑅𝑣))
1918cbvralvw 3237 . . . 4 (∀𝑞 ∈ ran 𝑑 𝑞𝑅𝑣 ↔ ∀𝑠 ∈ ran 𝑑 𝑠𝑅𝑣)
20 breq2 5147 . . . . 5 (𝑣 = 𝑟 → (𝑠𝑅𝑣𝑠𝑅𝑟))
2120ralbidv 3178 . . . 4 (𝑣 = 𝑟 → (∀𝑠 ∈ ran 𝑑 𝑠𝑅𝑣 ↔ ∀𝑠 ∈ ran 𝑑 𝑠𝑅𝑟))
2219, 21bitrid 283 . . 3 (𝑣 = 𝑟 → (∀𝑞 ∈ ran 𝑑 𝑞𝑅𝑣 ↔ ∀𝑠 ∈ ran 𝑑 𝑠𝑅𝑟))
2322cbvrabv 3447 . 2 {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑑 𝑞𝑅𝑣} = {𝑟𝐴 ∣ ∀𝑠 ∈ ran 𝑑 𝑠𝑅𝑟}
24 eqid 2737 . 2 {𝑟𝐴 ∣ ∀𝑠 ∈ (recs(( ∈ V ↦ (𝑛 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣}∀𝑔 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣} ¬ 𝑔𝑞𝑛))) “ 𝑢)𝑠𝑅𝑟} = {𝑟𝐴 ∣ ∀𝑠 ∈ (recs(( ∈ V ↦ (𝑛 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣}∀𝑔 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣} ¬ 𝑔𝑞𝑛))) “ 𝑢)𝑠𝑅𝑟}
25 eqid 2737 . 2 {𝑟𝐴 ∣ ∀𝑠 ∈ (recs(( ∈ V ↦ (𝑛 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣}∀𝑔 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣} ¬ 𝑔𝑞𝑛))) “ 𝑡)𝑠𝑅𝑟} = {𝑟𝐴 ∣ ∀𝑠 ∈ (recs(( ∈ V ↦ (𝑛 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣}∀𝑔 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣} ¬ 𝑔𝑞𝑛))) “ 𝑡)𝑠𝑅𝑟}
2617, 23, 24, 25zorn2lem7 10542 1 ((𝐴 ∈ dom card ∧ 𝑅 Po 𝐴 ∧ ∀𝑤((𝑤𝐴𝑅 Or 𝑤) → ∃𝑥𝐴𝑧𝑤 (𝑧𝑅𝑥𝑧 = 𝑥))) → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥𝑅𝑦)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 848  w3a 1087  wal 1538   = wceq 1540  wcel 2108  wral 3061  wrex 3070  {crab 3436  Vcvv 3480  wss 3951   class class class wbr 5143  cmpt 5225   Po wpo 5590   Or wor 5591  dom cdm 5685  ran crn 5686  cima 5688  crio 7387  recscrecs 8410  cardccrd 9975
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-en 8986  df-card 9979
This theorem is referenced by:  zorng  10544  zorn2  10546
  Copyright terms: Public domain W3C validator