MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zorn2g Structured version   Visualization version   GIF version

Theorem zorn2g 10259
Description: Zorn's Lemma of [Monk1] p. 117. This version of zorn2 10262 avoids the Axiom of Choice by assuming that 𝐴 is well-orderable. (Contributed by NM, 6-Apr-1997.) (Revised by Mario Carneiro, 9-May-2015.)
Assertion
Ref Expression
zorn2g ((𝐴 ∈ dom card ∧ 𝑅 Po 𝐴 ∧ ∀𝑤((𝑤𝐴𝑅 Or 𝑤) → ∃𝑥𝐴𝑧𝑤 (𝑧𝑅𝑥𝑧 = 𝑥))) → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥𝑅𝑦)
Distinct variable groups:   𝑥,𝑦,𝑧,𝑤,𝑅   𝑥,𝐴,𝑦,𝑧,𝑤

Proof of Theorem zorn2g
Dummy variables 𝑣 𝑢 𝑔 𝑡 𝑠 𝑟 𝑞 𝑑 𝑘 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq1 5077 . . . . . . . . 9 (𝑔 = 𝑘 → (𝑔𝑞𝑛𝑘𝑞𝑛))
21notbid 318 . . . . . . . 8 (𝑔 = 𝑘 → (¬ 𝑔𝑞𝑛 ↔ ¬ 𝑘𝑞𝑛))
32cbvralvw 3383 . . . . . . 7 (∀𝑔 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣} ¬ 𝑔𝑞𝑛 ↔ ∀𝑘 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣} ¬ 𝑘𝑞𝑛)
4 breq2 5078 . . . . . . . . 9 (𝑛 = 𝑚 → (𝑘𝑞𝑛𝑘𝑞𝑚))
54notbid 318 . . . . . . . 8 (𝑛 = 𝑚 → (¬ 𝑘𝑞𝑛 ↔ ¬ 𝑘𝑞𝑚))
65ralbidv 3112 . . . . . . 7 (𝑛 = 𝑚 → (∀𝑘 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣} ¬ 𝑘𝑞𝑛 ↔ ∀𝑘 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣} ¬ 𝑘𝑞𝑚))
73, 6bitrid 282 . . . . . 6 (𝑛 = 𝑚 → (∀𝑔 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣} ¬ 𝑔𝑞𝑛 ↔ ∀𝑘 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣} ¬ 𝑘𝑞𝑚))
87cbvriotavw 7242 . . . . 5 (𝑛 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣}∀𝑔 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣} ¬ 𝑔𝑞𝑛) = (𝑚 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣}∀𝑘 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣} ¬ 𝑘𝑞𝑚)
9 rneq 5845 . . . . . . . 8 ( = 𝑑 → ran = ran 𝑑)
109raleqdv 3348 . . . . . . 7 ( = 𝑑 → (∀𝑞 ∈ ran 𝑞𝑅𝑣 ↔ ∀𝑞 ∈ ran 𝑑 𝑞𝑅𝑣))
1110rabbidv 3414 . . . . . 6 ( = 𝑑 → {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣} = {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑑 𝑞𝑅𝑣})
1211raleqdv 3348 . . . . . 6 ( = 𝑑 → (∀𝑘 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣} ¬ 𝑘𝑞𝑚 ↔ ∀𝑘 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑑 𝑞𝑅𝑣} ¬ 𝑘𝑞𝑚))
1311, 12riotaeqbidv 7235 . . . . 5 ( = 𝑑 → (𝑚 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣}∀𝑘 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣} ¬ 𝑘𝑞𝑚) = (𝑚 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑑 𝑞𝑅𝑣}∀𝑘 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑑 𝑞𝑅𝑣} ¬ 𝑘𝑞𝑚))
148, 13eqtrid 2790 . . . 4 ( = 𝑑 → (𝑛 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣}∀𝑔 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣} ¬ 𝑔𝑞𝑛) = (𝑚 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑑 𝑞𝑅𝑣}∀𝑘 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑑 𝑞𝑅𝑣} ¬ 𝑘𝑞𝑚))
1514cbvmptv 5187 . . 3 ( ∈ V ↦ (𝑛 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣}∀𝑔 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣} ¬ 𝑔𝑞𝑛)) = (𝑑 ∈ V ↦ (𝑚 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑑 𝑞𝑅𝑣}∀𝑘 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑑 𝑞𝑅𝑣} ¬ 𝑘𝑞𝑚))
16 recseq 8205 . . 3 (( ∈ V ↦ (𝑛 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣}∀𝑔 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣} ¬ 𝑔𝑞𝑛)) = (𝑑 ∈ V ↦ (𝑚 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑑 𝑞𝑅𝑣}∀𝑘 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑑 𝑞𝑅𝑣} ¬ 𝑘𝑞𝑚)) → recs(( ∈ V ↦ (𝑛 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣}∀𝑔 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣} ¬ 𝑔𝑞𝑛))) = recs((𝑑 ∈ V ↦ (𝑚 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑑 𝑞𝑅𝑣}∀𝑘 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑑 𝑞𝑅𝑣} ¬ 𝑘𝑞𝑚))))
1715, 16ax-mp 5 . 2 recs(( ∈ V ↦ (𝑛 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣}∀𝑔 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣} ¬ 𝑔𝑞𝑛))) = recs((𝑑 ∈ V ↦ (𝑚 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑑 𝑞𝑅𝑣}∀𝑘 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑑 𝑞𝑅𝑣} ¬ 𝑘𝑞𝑚)))
18 breq1 5077 . . . . 5 (𝑞 = 𝑠 → (𝑞𝑅𝑣𝑠𝑅𝑣))
1918cbvralvw 3383 . . . 4 (∀𝑞 ∈ ran 𝑑 𝑞𝑅𝑣 ↔ ∀𝑠 ∈ ran 𝑑 𝑠𝑅𝑣)
20 breq2 5078 . . . . 5 (𝑣 = 𝑟 → (𝑠𝑅𝑣𝑠𝑅𝑟))
2120ralbidv 3112 . . . 4 (𝑣 = 𝑟 → (∀𝑠 ∈ ran 𝑑 𝑠𝑅𝑣 ↔ ∀𝑠 ∈ ran 𝑑 𝑠𝑅𝑟))
2219, 21bitrid 282 . . 3 (𝑣 = 𝑟 → (∀𝑞 ∈ ran 𝑑 𝑞𝑅𝑣 ↔ ∀𝑠 ∈ ran 𝑑 𝑠𝑅𝑟))
2322cbvrabv 3426 . 2 {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑑 𝑞𝑅𝑣} = {𝑟𝐴 ∣ ∀𝑠 ∈ ran 𝑑 𝑠𝑅𝑟}
24 eqid 2738 . 2 {𝑟𝐴 ∣ ∀𝑠 ∈ (recs(( ∈ V ↦ (𝑛 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣}∀𝑔 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣} ¬ 𝑔𝑞𝑛))) “ 𝑢)𝑠𝑅𝑟} = {𝑟𝐴 ∣ ∀𝑠 ∈ (recs(( ∈ V ↦ (𝑛 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣}∀𝑔 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣} ¬ 𝑔𝑞𝑛))) “ 𝑢)𝑠𝑅𝑟}
25 eqid 2738 . 2 {𝑟𝐴 ∣ ∀𝑠 ∈ (recs(( ∈ V ↦ (𝑛 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣}∀𝑔 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣} ¬ 𝑔𝑞𝑛))) “ 𝑡)𝑠𝑅𝑟} = {𝑟𝐴 ∣ ∀𝑠 ∈ (recs(( ∈ V ↦ (𝑛 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣}∀𝑔 ∈ {𝑣𝐴 ∣ ∀𝑞 ∈ ran 𝑞𝑅𝑣} ¬ 𝑔𝑞𝑛))) “ 𝑡)𝑠𝑅𝑟}
2617, 23, 24, 25zorn2lem7 10258 1 ((𝐴 ∈ dom card ∧ 𝑅 Po 𝐴 ∧ ∀𝑤((𝑤𝐴𝑅 Or 𝑤) → ∃𝑥𝐴𝑧𝑤 (𝑧𝑅𝑥𝑧 = 𝑥))) → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥𝑅𝑦)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wo 844  w3a 1086  wal 1537   = wceq 1539  wcel 2106  wral 3064  wrex 3065  {crab 3068  Vcvv 3432  wss 3887   class class class wbr 5074  cmpt 5157   Po wpo 5501   Or wor 5502  dom cdm 5589  ran crn 5590  cima 5592  crio 7231  recscrecs 8201  cardccrd 9693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-en 8734  df-card 9697
This theorem is referenced by:  zorng  10260  zorn2  10262
  Copyright terms: Public domain W3C validator