Step | Hyp | Ref
| Expression |
1 | | breq1 5035 |
. . . . . . . . 9
⊢ (𝑔 = 𝑘 → (𝑔𝑞𝑛 ↔ 𝑘𝑞𝑛)) |
2 | 1 | notbid 321 |
. . . . . . . 8
⊢ (𝑔 = 𝑘 → (¬ 𝑔𝑞𝑛 ↔ ¬ 𝑘𝑞𝑛)) |
3 | 2 | cbvralvw 3361 |
. . . . . . 7
⊢
(∀𝑔 ∈
{𝑣 ∈ 𝐴 ∣ ∀𝑞 ∈ ran ℎ 𝑞𝑅𝑣} ¬ 𝑔𝑞𝑛 ↔ ∀𝑘 ∈ {𝑣 ∈ 𝐴 ∣ ∀𝑞 ∈ ran ℎ 𝑞𝑅𝑣} ¬ 𝑘𝑞𝑛) |
4 | | breq2 5036 |
. . . . . . . . 9
⊢ (𝑛 = 𝑚 → (𝑘𝑞𝑛 ↔ 𝑘𝑞𝑚)) |
5 | 4 | notbid 321 |
. . . . . . . 8
⊢ (𝑛 = 𝑚 → (¬ 𝑘𝑞𝑛 ↔ ¬ 𝑘𝑞𝑚)) |
6 | 5 | ralbidv 3126 |
. . . . . . 7
⊢ (𝑛 = 𝑚 → (∀𝑘 ∈ {𝑣 ∈ 𝐴 ∣ ∀𝑞 ∈ ran ℎ 𝑞𝑅𝑣} ¬ 𝑘𝑞𝑛 ↔ ∀𝑘 ∈ {𝑣 ∈ 𝐴 ∣ ∀𝑞 ∈ ran ℎ 𝑞𝑅𝑣} ¬ 𝑘𝑞𝑚)) |
7 | 3, 6 | syl5bb 286 |
. . . . . 6
⊢ (𝑛 = 𝑚 → (∀𝑔 ∈ {𝑣 ∈ 𝐴 ∣ ∀𝑞 ∈ ran ℎ 𝑞𝑅𝑣} ¬ 𝑔𝑞𝑛 ↔ ∀𝑘 ∈ {𝑣 ∈ 𝐴 ∣ ∀𝑞 ∈ ran ℎ 𝑞𝑅𝑣} ¬ 𝑘𝑞𝑚)) |
8 | 7 | cbvriotavw 7118 |
. . . . 5
⊢
(℩𝑛
∈ {𝑣 ∈ 𝐴 ∣ ∀𝑞 ∈ ran ℎ 𝑞𝑅𝑣}∀𝑔 ∈ {𝑣 ∈ 𝐴 ∣ ∀𝑞 ∈ ran ℎ 𝑞𝑅𝑣} ¬ 𝑔𝑞𝑛) = (℩𝑚 ∈ {𝑣 ∈ 𝐴 ∣ ∀𝑞 ∈ ran ℎ 𝑞𝑅𝑣}∀𝑘 ∈ {𝑣 ∈ 𝐴 ∣ ∀𝑞 ∈ ran ℎ 𝑞𝑅𝑣} ¬ 𝑘𝑞𝑚) |
9 | | rneq 5777 |
. . . . . . . 8
⊢ (ℎ = 𝑑 → ran ℎ = ran 𝑑) |
10 | 9 | raleqdv 3329 |
. . . . . . 7
⊢ (ℎ = 𝑑 → (∀𝑞 ∈ ran ℎ 𝑞𝑅𝑣 ↔ ∀𝑞 ∈ ran 𝑑 𝑞𝑅𝑣)) |
11 | 10 | rabbidv 3392 |
. . . . . 6
⊢ (ℎ = 𝑑 → {𝑣 ∈ 𝐴 ∣ ∀𝑞 ∈ ran ℎ 𝑞𝑅𝑣} = {𝑣 ∈ 𝐴 ∣ ∀𝑞 ∈ ran 𝑑 𝑞𝑅𝑣}) |
12 | 11 | raleqdv 3329 |
. . . . . 6
⊢ (ℎ = 𝑑 → (∀𝑘 ∈ {𝑣 ∈ 𝐴 ∣ ∀𝑞 ∈ ran ℎ 𝑞𝑅𝑣} ¬ 𝑘𝑞𝑚 ↔ ∀𝑘 ∈ {𝑣 ∈ 𝐴 ∣ ∀𝑞 ∈ ran 𝑑 𝑞𝑅𝑣} ¬ 𝑘𝑞𝑚)) |
13 | 11, 12 | riotaeqbidv 7111 |
. . . . 5
⊢ (ℎ = 𝑑 → (℩𝑚 ∈ {𝑣 ∈ 𝐴 ∣ ∀𝑞 ∈ ran ℎ 𝑞𝑅𝑣}∀𝑘 ∈ {𝑣 ∈ 𝐴 ∣ ∀𝑞 ∈ ran ℎ 𝑞𝑅𝑣} ¬ 𝑘𝑞𝑚) = (℩𝑚 ∈ {𝑣 ∈ 𝐴 ∣ ∀𝑞 ∈ ran 𝑑 𝑞𝑅𝑣}∀𝑘 ∈ {𝑣 ∈ 𝐴 ∣ ∀𝑞 ∈ ran 𝑑 𝑞𝑅𝑣} ¬ 𝑘𝑞𝑚)) |
14 | 8, 13 | syl5eq 2805 |
. . . 4
⊢ (ℎ = 𝑑 → (℩𝑛 ∈ {𝑣 ∈ 𝐴 ∣ ∀𝑞 ∈ ran ℎ 𝑞𝑅𝑣}∀𝑔 ∈ {𝑣 ∈ 𝐴 ∣ ∀𝑞 ∈ ran ℎ 𝑞𝑅𝑣} ¬ 𝑔𝑞𝑛) = (℩𝑚 ∈ {𝑣 ∈ 𝐴 ∣ ∀𝑞 ∈ ran 𝑑 𝑞𝑅𝑣}∀𝑘 ∈ {𝑣 ∈ 𝐴 ∣ ∀𝑞 ∈ ran 𝑑 𝑞𝑅𝑣} ¬ 𝑘𝑞𝑚)) |
15 | 14 | cbvmptv 5135 |
. . 3
⊢ (ℎ ∈ V ↦
(℩𝑛 ∈
{𝑣 ∈ 𝐴 ∣ ∀𝑞 ∈ ran ℎ 𝑞𝑅𝑣}∀𝑔 ∈ {𝑣 ∈ 𝐴 ∣ ∀𝑞 ∈ ran ℎ 𝑞𝑅𝑣} ¬ 𝑔𝑞𝑛)) = (𝑑 ∈ V ↦ (℩𝑚 ∈ {𝑣 ∈ 𝐴 ∣ ∀𝑞 ∈ ran 𝑑 𝑞𝑅𝑣}∀𝑘 ∈ {𝑣 ∈ 𝐴 ∣ ∀𝑞 ∈ ran 𝑑 𝑞𝑅𝑣} ¬ 𝑘𝑞𝑚)) |
16 | | recseq 8020 |
. . 3
⊢ ((ℎ ∈ V ↦
(℩𝑛 ∈
{𝑣 ∈ 𝐴 ∣ ∀𝑞 ∈ ran ℎ 𝑞𝑅𝑣}∀𝑔 ∈ {𝑣 ∈ 𝐴 ∣ ∀𝑞 ∈ ran ℎ 𝑞𝑅𝑣} ¬ 𝑔𝑞𝑛)) = (𝑑 ∈ V ↦ (℩𝑚 ∈ {𝑣 ∈ 𝐴 ∣ ∀𝑞 ∈ ran 𝑑 𝑞𝑅𝑣}∀𝑘 ∈ {𝑣 ∈ 𝐴 ∣ ∀𝑞 ∈ ran 𝑑 𝑞𝑅𝑣} ¬ 𝑘𝑞𝑚)) → recs((ℎ ∈ V ↦ (℩𝑛 ∈ {𝑣 ∈ 𝐴 ∣ ∀𝑞 ∈ ran ℎ 𝑞𝑅𝑣}∀𝑔 ∈ {𝑣 ∈ 𝐴 ∣ ∀𝑞 ∈ ran ℎ 𝑞𝑅𝑣} ¬ 𝑔𝑞𝑛))) = recs((𝑑 ∈ V ↦ (℩𝑚 ∈ {𝑣 ∈ 𝐴 ∣ ∀𝑞 ∈ ran 𝑑 𝑞𝑅𝑣}∀𝑘 ∈ {𝑣 ∈ 𝐴 ∣ ∀𝑞 ∈ ran 𝑑 𝑞𝑅𝑣} ¬ 𝑘𝑞𝑚)))) |
17 | 15, 16 | ax-mp 5 |
. 2
⊢
recs((ℎ ∈ V
↦ (℩𝑛
∈ {𝑣 ∈ 𝐴 ∣ ∀𝑞 ∈ ran ℎ 𝑞𝑅𝑣}∀𝑔 ∈ {𝑣 ∈ 𝐴 ∣ ∀𝑞 ∈ ran ℎ 𝑞𝑅𝑣} ¬ 𝑔𝑞𝑛))) = recs((𝑑 ∈ V ↦ (℩𝑚 ∈ {𝑣 ∈ 𝐴 ∣ ∀𝑞 ∈ ran 𝑑 𝑞𝑅𝑣}∀𝑘 ∈ {𝑣 ∈ 𝐴 ∣ ∀𝑞 ∈ ran 𝑑 𝑞𝑅𝑣} ¬ 𝑘𝑞𝑚))) |
18 | | breq1 5035 |
. . . . 5
⊢ (𝑞 = 𝑠 → (𝑞𝑅𝑣 ↔ 𝑠𝑅𝑣)) |
19 | 18 | cbvralvw 3361 |
. . . 4
⊢
(∀𝑞 ∈
ran 𝑑 𝑞𝑅𝑣 ↔ ∀𝑠 ∈ ran 𝑑 𝑠𝑅𝑣) |
20 | | breq2 5036 |
. . . . 5
⊢ (𝑣 = 𝑟 → (𝑠𝑅𝑣 ↔ 𝑠𝑅𝑟)) |
21 | 20 | ralbidv 3126 |
. . . 4
⊢ (𝑣 = 𝑟 → (∀𝑠 ∈ ran 𝑑 𝑠𝑅𝑣 ↔ ∀𝑠 ∈ ran 𝑑 𝑠𝑅𝑟)) |
22 | 19, 21 | syl5bb 286 |
. . 3
⊢ (𝑣 = 𝑟 → (∀𝑞 ∈ ran 𝑑 𝑞𝑅𝑣 ↔ ∀𝑠 ∈ ran 𝑑 𝑠𝑅𝑟)) |
23 | 22 | cbvrabv 3404 |
. 2
⊢ {𝑣 ∈ 𝐴 ∣ ∀𝑞 ∈ ran 𝑑 𝑞𝑅𝑣} = {𝑟 ∈ 𝐴 ∣ ∀𝑠 ∈ ran 𝑑 𝑠𝑅𝑟} |
24 | | eqid 2758 |
. 2
⊢ {𝑟 ∈ 𝐴 ∣ ∀𝑠 ∈ (recs((ℎ ∈ V ↦ (℩𝑛 ∈ {𝑣 ∈ 𝐴 ∣ ∀𝑞 ∈ ran ℎ 𝑞𝑅𝑣}∀𝑔 ∈ {𝑣 ∈ 𝐴 ∣ ∀𝑞 ∈ ran ℎ 𝑞𝑅𝑣} ¬ 𝑔𝑞𝑛))) “ 𝑢)𝑠𝑅𝑟} = {𝑟 ∈ 𝐴 ∣ ∀𝑠 ∈ (recs((ℎ ∈ V ↦ (℩𝑛 ∈ {𝑣 ∈ 𝐴 ∣ ∀𝑞 ∈ ran ℎ 𝑞𝑅𝑣}∀𝑔 ∈ {𝑣 ∈ 𝐴 ∣ ∀𝑞 ∈ ran ℎ 𝑞𝑅𝑣} ¬ 𝑔𝑞𝑛))) “ 𝑢)𝑠𝑅𝑟} |
25 | | eqid 2758 |
. 2
⊢ {𝑟 ∈ 𝐴 ∣ ∀𝑠 ∈ (recs((ℎ ∈ V ↦ (℩𝑛 ∈ {𝑣 ∈ 𝐴 ∣ ∀𝑞 ∈ ran ℎ 𝑞𝑅𝑣}∀𝑔 ∈ {𝑣 ∈ 𝐴 ∣ ∀𝑞 ∈ ran ℎ 𝑞𝑅𝑣} ¬ 𝑔𝑞𝑛))) “ 𝑡)𝑠𝑅𝑟} = {𝑟 ∈ 𝐴 ∣ ∀𝑠 ∈ (recs((ℎ ∈ V ↦ (℩𝑛 ∈ {𝑣 ∈ 𝐴 ∣ ∀𝑞 ∈ ran ℎ 𝑞𝑅𝑣}∀𝑔 ∈ {𝑣 ∈ 𝐴 ∣ ∀𝑞 ∈ ran ℎ 𝑞𝑅𝑣} ¬ 𝑔𝑞𝑛))) “ 𝑡)𝑠𝑅𝑟} |
26 | 17, 23, 24, 25 | zorn2lem7 9962 |
1
⊢ ((𝐴 ∈ dom card ∧ 𝑅 Po 𝐴 ∧ ∀𝑤((𝑤 ⊆ 𝐴 ∧ 𝑅 Or 𝑤) → ∃𝑥 ∈ 𝐴 ∀𝑧 ∈ 𝑤 (𝑧𝑅𝑥 ∨ 𝑧 = 𝑥))) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥𝑅𝑦) |