| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ad2ant2lr | Structured version Visualization version GIF version | ||
| Description: Deduction adding two conjuncts to antecedent. (Contributed by NM, 23-Nov-2007.) |
| Ref | Expression |
|---|---|
| ad2ant2.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Ref | Expression |
|---|---|
| ad2ant2lr | ⊢ (((𝜃 ∧ 𝜑) ∧ (𝜓 ∧ 𝜏)) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ad2ant2.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
| 2 | 1 | adantrr 717 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜏)) → 𝜒) |
| 3 | 2 | adantll 714 | 1 ⊢ (((𝜃 ∧ 𝜑) ∧ (𝜓 ∧ 𝜏)) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: mpteqb 6948 poseq 8088 omxpenlem 8991 fineqvlem 9150 marypha1lem 9317 fin23lem26 10216 axdc3lem4 10344 mulcmpblnr 10962 ltsrpr 10968 sub4 11406 muladd 11549 ltleadd 11600 divdivdiv 11822 divadddiv 11836 ltmul12a 11977 lt2mul2div 12000 xlemul1a 13187 fzrev 13487 facndiv 14195 fsumconst 15697 fprodconst 15885 isprm5 16618 acsfn2 17569 ghmeql 19152 subgdmdprd 19949 lssvacl 20877 lssvsubcl 20878 ocvin 21612 lindfmm 21765 sraassab 21806 scmatghm 22449 scmatmhm 22450 slesolinv 22596 slesolinvbi 22597 slesolex 22598 pm2mpf1lem 22710 pm2mpcoe1 22716 reftr 23430 alexsubALTlem2 23964 alexsubALTlem3 23965 blbas 24346 nmoco 24653 cncfmet 24830 cmetcaulem 25216 mbflimsup 25595 ulmdvlem3 26339 ptolemy 26433 sltsolem1 27615 madebdaylemlrcut 27845 3wlkdlem6 30143 vdn0conngrumgrv2 30174 frgrncvvdeqlem8 30284 frgrwopreglem5ALT 30300 grpoideu 30487 ipblnfi 30833 htthlem 30895 hvaddsub4 31056 bralnfn 31926 hmops 31998 hmopm 31999 adjadd 32071 opsqrlem1 32118 atomli 32360 chirredlem2 32369 atcvat3i 32374 mdsymlem5 32385 cdj1i 32411 derangenlem 35213 elmrsubrn 35562 dfon2lem6 35828 pibt2 37457 matunitlindflem1 37662 mblfinlem1 37703 prdsbnd 37839 heibor1lem 37855 hl2at 39450 congneg 43008 jm2.26 43041 stoweidlem34 46078 fmtnofac2lem 47605 lindslinindsimp2 48501 ltsubaddb 48552 ltsubadd2b 48554 aacllem 49839 |
| Copyright terms: Public domain | W3C validator |