| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ad2ant2lr | Structured version Visualization version GIF version | ||
| Description: Deduction adding two conjuncts to antecedent. (Contributed by NM, 23-Nov-2007.) |
| Ref | Expression |
|---|---|
| ad2ant2.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Ref | Expression |
|---|---|
| ad2ant2lr | ⊢ (((𝜃 ∧ 𝜑) ∧ (𝜓 ∧ 𝜏)) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ad2ant2.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
| 2 | 1 | adantrr 717 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜏)) → 𝜒) |
| 3 | 2 | adantll 714 | 1 ⊢ (((𝜃 ∧ 𝜑) ∧ (𝜓 ∧ 𝜏)) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: mpteqb 6956 poseq 8096 omxpenlem 9000 fineqvlem 9159 marypha1lem 9326 fin23lem26 10225 axdc3lem4 10353 mulcmpblnr 10971 ltsrpr 10977 sub4 11415 muladd 11558 ltleadd 11609 divdivdiv 11831 divadddiv 11845 ltmul12a 11986 lt2mul2div 12009 xlemul1a 13191 fzrev 13491 facndiv 14199 fsumconst 15701 fprodconst 15889 isprm5 16622 acsfn2 17573 ghmeql 19155 subgdmdprd 19952 lssvacl 20880 lssvsubcl 20881 ocvin 21615 lindfmm 21768 sraassab 21809 scmatghm 22451 scmatmhm 22452 slesolinv 22598 slesolinvbi 22599 slesolex 22600 pm2mpf1lem 22712 pm2mpcoe1 22718 reftr 23432 alexsubALTlem2 23966 alexsubALTlem3 23967 blbas 24348 nmoco 24655 cncfmet 24832 cmetcaulem 25218 mbflimsup 25597 ulmdvlem3 26341 ptolemy 26435 sltsolem1 27617 madebdaylemlrcut 27847 3wlkdlem6 30149 vdn0conngrumgrv2 30180 frgrncvvdeqlem8 30290 frgrwopreglem5ALT 30306 grpoideu 30493 ipblnfi 30839 htthlem 30901 hvaddsub4 31062 bralnfn 31932 hmops 32004 hmopm 32005 adjadd 32077 opsqrlem1 32124 atomli 32366 chirredlem2 32375 atcvat3i 32380 mdsymlem5 32391 cdj1i 32417 derangenlem 35238 elmrsubrn 35587 dfon2lem6 35853 pibt2 37484 matunitlindflem1 37679 mblfinlem1 37720 prdsbnd 37856 heibor1lem 37872 hl2at 39527 congneg 43089 jm2.26 43122 stoweidlem34 46159 fmtnofac2lem 47695 lindslinindsimp2 48591 ltsubaddb 48642 ltsubadd2b 48644 aacllem 49929 |
| Copyright terms: Public domain | W3C validator |