![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ad2ant2lr | Structured version Visualization version GIF version |
Description: Deduction adding two conjuncts to antecedent. (Contributed by NM, 23-Nov-2007.) |
Ref | Expression |
---|---|
ad2ant2.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Ref | Expression |
---|---|
ad2ant2lr | ⊢ (((𝜃 ∧ 𝜑) ∧ (𝜓 ∧ 𝜏)) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ad2ant2.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
2 | 1 | adantrr 716 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜏)) → 𝜒) |
3 | 2 | adantll 713 | 1 ⊢ (((𝜃 ∧ 𝜑) ∧ (𝜓 ∧ 𝜏)) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 |
This theorem is referenced by: mpteqb 7018 poseq 8144 omxpenlem 9073 fineqvlem 9262 marypha1lem 9428 fin23lem26 10320 axdc3lem4 10448 mulcmpblnr 11066 ltsrpr 11072 sub4 11505 muladd 11646 ltleadd 11697 divdivdiv 11915 divadddiv 11929 ltmul12a 12070 lt2mul2div 12092 xlemul1a 13267 fzrev 13564 facndiv 14248 fsumconst 15736 fprodconst 15922 isprm5 16644 acsfn2 17607 ghmeql 19115 subgdmdprd 19904 lssvsubcl 20554 lssvacl 20565 ocvin 21227 lindfmm 21382 sraassab 21422 scmatghm 22035 scmatmhm 22036 slesolinv 22182 slesolinvbi 22183 slesolex 22184 pm2mpf1lem 22296 pm2mpcoe1 22302 reftr 23018 alexsubALTlem2 23552 alexsubALTlem3 23553 blbas 23936 nmoco 24254 cncfmet 24425 cmetcaulem 24805 mbflimsup 25183 ulmdvlem3 25914 ptolemy 26006 sltsolem1 27178 madebdaylemlrcut 27393 3wlkdlem6 29418 vdn0conngrumgrv2 29449 frgrncvvdeqlem8 29559 frgrwopreglem5ALT 29575 grpoideu 29762 ipblnfi 30108 htthlem 30170 hvaddsub4 30331 bralnfn 31201 hmops 31273 hmopm 31274 adjadd 31346 opsqrlem1 31393 atomli 31635 chirredlem2 31644 atcvat3i 31649 mdsymlem5 31660 cdj1i 31686 derangenlem 34162 elmrsubrn 34511 dfon2lem6 34760 pibt2 36298 matunitlindflem1 36484 mblfinlem1 36525 prdsbnd 36661 heibor1lem 36677 hl2at 38276 congneg 41708 jm2.26 41741 stoweidlem34 44750 fmtnofac2lem 46236 lindslinindsimp2 47144 ltsubaddb 47195 ltsubadd2b 47197 aacllem 47848 |
Copyright terms: Public domain | W3C validator |