![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ad2ant2lr | Structured version Visualization version GIF version |
Description: Deduction adding two conjuncts to antecedent. (Contributed by NM, 23-Nov-2007.) |
Ref | Expression |
---|---|
ad2ant2.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Ref | Expression |
---|---|
ad2ant2lr | ⊢ (((𝜃 ∧ 𝜑) ∧ (𝜓 ∧ 𝜏)) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ad2ant2.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
2 | 1 | adantrr 715 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜏)) → 𝜒) |
3 | 2 | adantll 712 | 1 ⊢ (((𝜃 ∧ 𝜑) ∧ (𝜓 ∧ 𝜏)) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: mpteqb 7017 poseq 8143 omxpenlem 9072 fineqvlem 9261 marypha1lem 9427 fin23lem26 10319 axdc3lem4 10447 mulcmpblnr 11065 ltsrpr 11071 sub4 11504 muladd 11645 ltleadd 11696 divdivdiv 11914 divadddiv 11928 ltmul12a 12069 lt2mul2div 12091 xlemul1a 13266 fzrev 13563 facndiv 14247 fsumconst 15735 fprodconst 15921 isprm5 16643 acsfn2 17606 ghmeql 19114 subgdmdprd 19903 lssvsubcl 20553 lssvacl 20564 ocvin 21226 lindfmm 21381 sraassab 21421 scmatghm 22034 scmatmhm 22035 slesolinv 22181 slesolinvbi 22182 slesolex 22183 pm2mpf1lem 22295 pm2mpcoe1 22301 reftr 23017 alexsubALTlem2 23551 alexsubALTlem3 23552 blbas 23935 nmoco 24253 cncfmet 24424 cmetcaulem 24804 mbflimsup 25182 ulmdvlem3 25913 ptolemy 26005 sltsolem1 27175 madebdaylemlrcut 27390 3wlkdlem6 29415 vdn0conngrumgrv2 29446 frgrncvvdeqlem8 29556 frgrwopreglem5ALT 29572 grpoideu 29757 ipblnfi 30103 htthlem 30165 hvaddsub4 30326 bralnfn 31196 hmops 31268 hmopm 31269 adjadd 31341 opsqrlem1 31388 atomli 31630 chirredlem2 31639 atcvat3i 31644 mdsymlem5 31655 cdj1i 31681 derangenlem 34157 elmrsubrn 34506 dfon2lem6 34755 pibt2 36293 matunitlindflem1 36479 mblfinlem1 36520 prdsbnd 36656 heibor1lem 36672 hl2at 38271 congneg 41698 jm2.26 41731 stoweidlem34 44740 fmtnofac2lem 46226 lindslinindsimp2 47134 ltsubaddb 47185 ltsubadd2b 47187 aacllem 47838 |
Copyright terms: Public domain | W3C validator |