| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ad2ant2lr | Structured version Visualization version GIF version | ||
| Description: Deduction adding two conjuncts to antecedent. (Contributed by NM, 23-Nov-2007.) |
| Ref | Expression |
|---|---|
| ad2ant2.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Ref | Expression |
|---|---|
| ad2ant2lr | ⊢ (((𝜃 ∧ 𝜑) ∧ (𝜓 ∧ 𝜏)) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ad2ant2.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
| 2 | 1 | adantrr 717 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜏)) → 𝜒) |
| 3 | 2 | adantll 714 | 1 ⊢ (((𝜃 ∧ 𝜑) ∧ (𝜓 ∧ 𝜏)) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: mpteqb 7010 poseq 8162 omxpenlem 9092 fineqvlem 9275 marypha1lem 9450 fin23lem26 10344 axdc3lem4 10472 mulcmpblnr 11090 ltsrpr 11096 sub4 11533 muladd 11674 ltleadd 11725 divdivdiv 11947 divadddiv 11961 ltmul12a 12102 lt2mul2div 12125 xlemul1a 13309 fzrev 13609 facndiv 14311 fsumconst 15811 fprodconst 15999 isprm5 16731 acsfn2 17680 ghmeql 19227 subgdmdprd 20022 lssvacl 20905 lssvsubcl 20906 ocvin 21639 lindfmm 21792 sraassab 21833 scmatghm 22476 scmatmhm 22477 slesolinv 22623 slesolinvbi 22624 slesolex 22625 pm2mpf1lem 22737 pm2mpcoe1 22743 reftr 23457 alexsubALTlem2 23991 alexsubALTlem3 23992 blbas 24374 nmoco 24681 cncfmet 24858 cmetcaulem 25245 mbflimsup 25624 ulmdvlem3 26368 ptolemy 26462 sltsolem1 27644 madebdaylemlrcut 27867 3wlkdlem6 30151 vdn0conngrumgrv2 30182 frgrncvvdeqlem8 30292 frgrwopreglem5ALT 30308 grpoideu 30495 ipblnfi 30841 htthlem 30903 hvaddsub4 31064 bralnfn 31934 hmops 32006 hmopm 32007 adjadd 32079 opsqrlem1 32126 atomli 32368 chirredlem2 32377 atcvat3i 32382 mdsymlem5 32393 cdj1i 32419 derangenlem 35198 elmrsubrn 35547 dfon2lem6 35811 pibt2 37440 matunitlindflem1 37645 mblfinlem1 37686 prdsbnd 37822 heibor1lem 37838 hl2at 39429 congneg 42968 jm2.26 43001 stoweidlem34 46043 fmtnofac2lem 47562 lindslinindsimp2 48419 ltsubaddb 48470 ltsubadd2b 48472 aacllem 49645 |
| Copyright terms: Public domain | W3C validator |