| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ad2ant2lr | Structured version Visualization version GIF version | ||
| Description: Deduction adding two conjuncts to antecedent. (Contributed by NM, 23-Nov-2007.) |
| Ref | Expression |
|---|---|
| ad2ant2.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Ref | Expression |
|---|---|
| ad2ant2lr | ⊢ (((𝜃 ∧ 𝜑) ∧ (𝜓 ∧ 𝜏)) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ad2ant2.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
| 2 | 1 | adantrr 717 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜏)) → 𝜒) |
| 3 | 2 | adantll 714 | 1 ⊢ (((𝜃 ∧ 𝜑) ∧ (𝜓 ∧ 𝜏)) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: mpteqb 6953 poseq 8098 omxpenlem 9002 fineqvlem 9167 marypha1lem 9342 fin23lem26 10238 axdc3lem4 10366 mulcmpblnr 10984 ltsrpr 10990 sub4 11427 muladd 11570 ltleadd 11621 divdivdiv 11843 divadddiv 11857 ltmul12a 11998 lt2mul2div 12021 xlemul1a 13208 fzrev 13508 facndiv 14213 fsumconst 15715 fprodconst 15903 isprm5 16636 acsfn2 17587 ghmeql 19136 subgdmdprd 19933 lssvacl 20864 lssvsubcl 20865 ocvin 21599 lindfmm 21752 sraassab 21793 scmatghm 22436 scmatmhm 22437 slesolinv 22583 slesolinvbi 22584 slesolex 22585 pm2mpf1lem 22697 pm2mpcoe1 22703 reftr 23417 alexsubALTlem2 23951 alexsubALTlem3 23952 blbas 24334 nmoco 24641 cncfmet 24818 cmetcaulem 25204 mbflimsup 25583 ulmdvlem3 26327 ptolemy 26421 sltsolem1 27603 madebdaylemlrcut 27831 3wlkdlem6 30127 vdn0conngrumgrv2 30158 frgrncvvdeqlem8 30268 frgrwopreglem5ALT 30284 grpoideu 30471 ipblnfi 30817 htthlem 30879 hvaddsub4 31040 bralnfn 31910 hmops 31982 hmopm 31983 adjadd 32055 opsqrlem1 32102 atomli 32344 chirredlem2 32353 atcvat3i 32358 mdsymlem5 32369 cdj1i 32395 derangenlem 35146 elmrsubrn 35495 dfon2lem6 35764 pibt2 37393 matunitlindflem1 37598 mblfinlem1 37639 prdsbnd 37775 heibor1lem 37791 hl2at 39387 congneg 42945 jm2.26 42978 stoweidlem34 46019 fmtnofac2lem 47556 lindslinindsimp2 48452 ltsubaddb 48503 ltsubadd2b 48505 aacllem 49790 |
| Copyright terms: Public domain | W3C validator |