Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ad2ant2lr | Structured version Visualization version GIF version |
Description: Deduction adding two conjuncts to antecedent. (Contributed by NM, 23-Nov-2007.) |
Ref | Expression |
---|---|
ad2ant2.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Ref | Expression |
---|---|
ad2ant2lr | ⊢ (((𝜃 ∧ 𝜑) ∧ (𝜓 ∧ 𝜏)) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ad2ant2.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
2 | 1 | adantrr 714 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜏)) → 𝜒) |
3 | 2 | adantll 711 | 1 ⊢ (((𝜃 ∧ 𝜑) ∧ (𝜓 ∧ 𝜏)) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: mpteqb 6951 poseq 8046 omxpenlem 8939 fineqvlem 9128 marypha1lem 9291 fin23lem26 10183 axdc3lem4 10311 mulcmpblnr 10929 ltsrpr 10935 sub4 11368 muladd 11509 ltleadd 11560 divdivdiv 11778 divadddiv 11792 ltmul12a 11933 lt2mul2div 11955 xlemul1a 13124 fzrev 13421 facndiv 14104 fsumconst 15602 fprodconst 15788 isprm5 16510 acsfn2 17470 ghmeql 18954 subgdmdprd 19733 lssvsubcl 20312 lssvacl 20323 ocvin 20986 lindfmm 21141 scmatghm 21789 scmatmhm 21790 slesolinv 21936 slesolinvbi 21937 slesolex 21938 pm2mpf1lem 22050 pm2mpcoe1 22056 reftr 22772 alexsubALTlem2 23306 alexsubALTlem3 23307 blbas 23690 nmoco 24008 cncfmet 24179 cmetcaulem 24559 mbflimsup 24937 ulmdvlem3 25668 ptolemy 25760 sltsolem1 26930 3wlkdlem6 28818 vdn0conngrumgrv2 28849 frgrncvvdeqlem8 28959 frgrwopreglem5ALT 28975 grpoideu 29160 ipblnfi 29506 htthlem 29568 hvaddsub4 29729 bralnfn 30599 hmops 30671 hmopm 30672 adjadd 30744 opsqrlem1 30791 atomli 31033 chirredlem2 31042 atcvat3i 31047 mdsymlem5 31058 cdj1i 31084 derangenlem 33432 elmrsubrn 33781 dfon2lem6 34049 madebdaylemlrcut 34189 pibt2 35744 matunitlindflem1 35929 mblfinlem1 35970 prdsbnd 36107 heibor1lem 36123 hl2at 37724 congneg 41105 jm2.26 41138 stoweidlem34 43963 fmtnofac2lem 45438 lindslinindsimp2 46222 ltsubaddb 46273 ltsubadd2b 46275 aacllem 46923 |
Copyright terms: Public domain | W3C validator |