Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ad2ant2lr | Structured version Visualization version GIF version |
Description: Deduction adding two conjuncts to antecedent. (Contributed by NM, 23-Nov-2007.) |
Ref | Expression |
---|---|
ad2ant2.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Ref | Expression |
---|---|
ad2ant2lr | ⊢ (((𝜃 ∧ 𝜑) ∧ (𝜓 ∧ 𝜏)) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ad2ant2.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
2 | 1 | adantrr 713 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜏)) → 𝜒) |
3 | 2 | adantll 710 | 1 ⊢ (((𝜃 ∧ 𝜑) ∧ (𝜓 ∧ 𝜏)) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: mpteqb 6876 omxpenlem 8813 fineqvlem 8966 marypha1lem 9122 fin23lem26 10012 axdc3lem4 10140 mulcmpblnr 10758 ltsrpr 10764 sub4 11196 muladd 11337 ltleadd 11388 divdivdiv 11606 divadddiv 11620 ltmul12a 11761 lt2mul2div 11783 xlemul1a 12951 fzrev 13248 facndiv 13930 fsumconst 15430 fprodconst 15616 isprm5 16340 acsfn2 17289 ghmeql 18772 subgdmdprd 19552 lssvsubcl 20120 lssvacl 20131 ocvin 20791 lindfmm 20944 scmatghm 21590 scmatmhm 21591 slesolinv 21737 slesolinvbi 21738 slesolex 21739 pm2mpf1lem 21851 pm2mpcoe1 21857 reftr 22573 alexsubALTlem2 23107 alexsubALTlem3 23108 blbas 23491 nmoco 23807 cncfmet 23978 cmetcaulem 24357 mbflimsup 24735 ulmdvlem3 25466 ptolemy 25558 3wlkdlem6 28430 vdn0conngrumgrv2 28461 frgrncvvdeqlem8 28571 frgrwopreglem5ALT 28587 grpoideu 28772 ipblnfi 29118 htthlem 29180 hvaddsub4 29341 bralnfn 30211 hmops 30283 hmopm 30284 adjadd 30356 opsqrlem1 30403 atomli 30645 chirredlem2 30654 atcvat3i 30659 mdsymlem5 30670 cdj1i 30696 derangenlem 33033 elmrsubrn 33382 dfon2lem6 33670 poseq 33729 sltsolem1 33805 madebdaylemlrcut 34006 pibt2 35515 matunitlindflem1 35700 mblfinlem1 35741 prdsbnd 35878 heibor1lem 35894 hl2at 37346 congneg 40707 jm2.26 40740 stoweidlem34 43465 fmtnofac2lem 44908 lindslinindsimp2 45692 ltsubaddb 45743 ltsubadd2b 45745 aacllem 46391 |
Copyright terms: Public domain | W3C validator |