![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ad2ant2lr | Structured version Visualization version GIF version |
Description: Deduction adding two conjuncts to antecedent. (Contributed by NM, 23-Nov-2007.) |
Ref | Expression |
---|---|
ad2ant2.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Ref | Expression |
---|---|
ad2ant2lr | ⊢ (((𝜃 ∧ 𝜑) ∧ (𝜓 ∧ 𝜏)) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ad2ant2.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
2 | 1 | adantrr 716 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜏)) → 𝜒) |
3 | 2 | adantll 713 | 1 ⊢ (((𝜃 ∧ 𝜑) ∧ (𝜓 ∧ 𝜏)) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: mpteqb 7048 poseq 8199 omxpenlem 9139 fineqvlem 9325 marypha1lem 9502 fin23lem26 10394 axdc3lem4 10522 mulcmpblnr 11140 ltsrpr 11146 sub4 11581 muladd 11722 ltleadd 11773 divdivdiv 11995 divadddiv 12009 ltmul12a 12150 lt2mul2div 12173 xlemul1a 13350 fzrev 13647 facndiv 14337 fsumconst 15838 fprodconst 16026 isprm5 16754 acsfn2 17721 ghmeql 19279 subgdmdprd 20078 lssvacl 20964 lssvsubcl 20965 ocvin 21715 lindfmm 21870 sraassab 21911 scmatghm 22560 scmatmhm 22561 slesolinv 22707 slesolinvbi 22708 slesolex 22709 pm2mpf1lem 22821 pm2mpcoe1 22827 reftr 23543 alexsubALTlem2 24077 alexsubALTlem3 24078 blbas 24461 nmoco 24779 cncfmet 24954 cmetcaulem 25341 mbflimsup 25720 ulmdvlem3 26463 ptolemy 26556 sltsolem1 27738 madebdaylemlrcut 27955 3wlkdlem6 30197 vdn0conngrumgrv2 30228 frgrncvvdeqlem8 30338 frgrwopreglem5ALT 30354 grpoideu 30541 ipblnfi 30887 htthlem 30949 hvaddsub4 31110 bralnfn 31980 hmops 32052 hmopm 32053 adjadd 32125 opsqrlem1 32172 atomli 32414 chirredlem2 32423 atcvat3i 32428 mdsymlem5 32439 cdj1i 32465 derangenlem 35139 elmrsubrn 35488 dfon2lem6 35752 pibt2 37383 matunitlindflem1 37576 mblfinlem1 37617 prdsbnd 37753 heibor1lem 37769 hl2at 39362 congneg 42926 jm2.26 42959 stoweidlem34 45955 fmtnofac2lem 47442 lindslinindsimp2 48192 ltsubaddb 48243 ltsubadd2b 48245 aacllem 48895 |
Copyright terms: Public domain | W3C validator |