![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ad2ant2lr | Structured version Visualization version GIF version |
Description: Deduction adding two conjuncts to antecedent. (Contributed by NM, 23-Nov-2007.) |
Ref | Expression |
---|---|
ad2ant2.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Ref | Expression |
---|---|
ad2ant2lr | ⊢ (((𝜃 ∧ 𝜑) ∧ (𝜓 ∧ 𝜏)) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ad2ant2.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
2 | 1 | adantrr 713 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜏)) → 𝜒) |
3 | 2 | adantll 710 | 1 ⊢ (((𝜃 ∧ 𝜑) ∧ (𝜓 ∧ 𝜏)) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 395 |
This theorem is referenced by: mpteqb 7016 poseq 8146 omxpenlem 9075 fineqvlem 9264 marypha1lem 9430 fin23lem26 10322 axdc3lem4 10450 mulcmpblnr 11068 ltsrpr 11074 sub4 11509 muladd 11650 ltleadd 11701 divdivdiv 11919 divadddiv 11933 ltmul12a 12074 lt2mul2div 12096 xlemul1a 13271 fzrev 13568 facndiv 14252 fsumconst 15740 fprodconst 15926 isprm5 16648 acsfn2 17611 ghmeql 19153 subgdmdprd 19945 lssvsubcl 20698 lssvacl 20709 ocvin 21446 lindfmm 21601 sraassab 21641 scmatghm 22255 scmatmhm 22256 slesolinv 22402 slesolinvbi 22403 slesolex 22404 pm2mpf1lem 22516 pm2mpcoe1 22522 reftr 23238 alexsubALTlem2 23772 alexsubALTlem3 23773 blbas 24156 nmoco 24474 cncfmet 24649 cmetcaulem 25036 mbflimsup 25415 ulmdvlem3 26150 ptolemy 26242 sltsolem1 27414 madebdaylemlrcut 27630 3wlkdlem6 29685 vdn0conngrumgrv2 29716 frgrncvvdeqlem8 29826 frgrwopreglem5ALT 29842 grpoideu 30029 ipblnfi 30375 htthlem 30437 hvaddsub4 30598 bralnfn 31468 hmops 31540 hmopm 31541 adjadd 31613 opsqrlem1 31660 atomli 31902 chirredlem2 31911 atcvat3i 31916 mdsymlem5 31927 cdj1i 31953 derangenlem 34460 elmrsubrn 34809 dfon2lem6 35064 pibt2 36601 matunitlindflem1 36787 mblfinlem1 36828 prdsbnd 36964 heibor1lem 36980 hl2at 38579 congneg 42010 jm2.26 42043 stoweidlem34 45048 fmtnofac2lem 46534 lindslinindsimp2 47231 ltsubaddb 47282 ltsubadd2b 47284 aacllem 47935 |
Copyright terms: Public domain | W3C validator |