Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ad2ant2lr | Structured version Visualization version GIF version |
Description: Deduction adding two conjuncts to antecedent. (Contributed by NM, 23-Nov-2007.) |
Ref | Expression |
---|---|
ad2ant2.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Ref | Expression |
---|---|
ad2ant2lr | ⊢ (((𝜃 ∧ 𝜑) ∧ (𝜓 ∧ 𝜏)) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ad2ant2.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
2 | 1 | adantrr 714 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜏)) → 𝜒) |
3 | 2 | adantll 711 | 1 ⊢ (((𝜃 ∧ 𝜑) ∧ (𝜓 ∧ 𝜏)) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: mpteqb 6894 omxpenlem 8860 fineqvlem 9037 marypha1lem 9192 fin23lem26 10081 axdc3lem4 10209 mulcmpblnr 10827 ltsrpr 10833 sub4 11266 muladd 11407 ltleadd 11458 divdivdiv 11676 divadddiv 11690 ltmul12a 11831 lt2mul2div 11853 xlemul1a 13022 fzrev 13319 facndiv 14002 fsumconst 15502 fprodconst 15688 isprm5 16412 acsfn2 17372 ghmeql 18857 subgdmdprd 19637 lssvsubcl 20205 lssvacl 20216 ocvin 20879 lindfmm 21034 scmatghm 21682 scmatmhm 21683 slesolinv 21829 slesolinvbi 21830 slesolex 21831 pm2mpf1lem 21943 pm2mpcoe1 21949 reftr 22665 alexsubALTlem2 23199 alexsubALTlem3 23200 blbas 23583 nmoco 23901 cncfmet 24072 cmetcaulem 24452 mbflimsup 24830 ulmdvlem3 25561 ptolemy 25653 3wlkdlem6 28529 vdn0conngrumgrv2 28560 frgrncvvdeqlem8 28670 frgrwopreglem5ALT 28686 grpoideu 28871 ipblnfi 29217 htthlem 29279 hvaddsub4 29440 bralnfn 30310 hmops 30382 hmopm 30383 adjadd 30455 opsqrlem1 30502 atomli 30744 chirredlem2 30753 atcvat3i 30758 mdsymlem5 30769 cdj1i 30795 derangenlem 33133 elmrsubrn 33482 dfon2lem6 33764 poseq 33802 sltsolem1 33878 madebdaylemlrcut 34079 pibt2 35588 matunitlindflem1 35773 mblfinlem1 35814 prdsbnd 35951 heibor1lem 35967 hl2at 37419 congneg 40791 jm2.26 40824 stoweidlem34 43575 fmtnofac2lem 45020 lindslinindsimp2 45804 ltsubaddb 45855 ltsubadd2b 45857 aacllem 46505 |
Copyright terms: Public domain | W3C validator |