![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ad2ant2lr | Structured version Visualization version GIF version |
Description: Deduction adding two conjuncts to antecedent. (Contributed by NM, 23-Nov-2007.) |
Ref | Expression |
---|---|
ad2ant2.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Ref | Expression |
---|---|
ad2ant2lr | ⊢ (((𝜃 ∧ 𝜑) ∧ (𝜓 ∧ 𝜏)) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ad2ant2.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
2 | 1 | adantrr 717 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜏)) → 𝜒) |
3 | 2 | adantll 714 | 1 ⊢ (((𝜃 ∧ 𝜑) ∧ (𝜓 ∧ 𝜏)) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: mpteqb 7035 poseq 8182 omxpenlem 9112 fineqvlem 9296 marypha1lem 9471 fin23lem26 10363 axdc3lem4 10491 mulcmpblnr 11109 ltsrpr 11115 sub4 11552 muladd 11693 ltleadd 11744 divdivdiv 11966 divadddiv 11980 ltmul12a 12121 lt2mul2div 12144 xlemul1a 13327 fzrev 13624 facndiv 14324 fsumconst 15823 fprodconst 16011 isprm5 16741 acsfn2 17708 ghmeql 19270 subgdmdprd 20069 lssvacl 20959 lssvsubcl 20960 ocvin 21710 lindfmm 21865 sraassab 21906 scmatghm 22555 scmatmhm 22556 slesolinv 22702 slesolinvbi 22703 slesolex 22704 pm2mpf1lem 22816 pm2mpcoe1 22822 reftr 23538 alexsubALTlem2 24072 alexsubALTlem3 24073 blbas 24456 nmoco 24774 cncfmet 24949 cmetcaulem 25336 mbflimsup 25715 ulmdvlem3 26460 ptolemy 26553 sltsolem1 27735 madebdaylemlrcut 27952 3wlkdlem6 30194 vdn0conngrumgrv2 30225 frgrncvvdeqlem8 30335 frgrwopreglem5ALT 30351 grpoideu 30538 ipblnfi 30884 htthlem 30946 hvaddsub4 31107 bralnfn 31977 hmops 32049 hmopm 32050 adjadd 32122 opsqrlem1 32169 atomli 32411 chirredlem2 32420 atcvat3i 32425 mdsymlem5 32436 cdj1i 32462 derangenlem 35156 elmrsubrn 35505 dfon2lem6 35770 pibt2 37400 matunitlindflem1 37603 mblfinlem1 37644 prdsbnd 37780 heibor1lem 37796 hl2at 39388 congneg 42958 jm2.26 42991 stoweidlem34 45990 fmtnofac2lem 47493 lindslinindsimp2 48309 ltsubaddb 48360 ltsubadd2b 48362 aacllem 49032 |
Copyright terms: Public domain | W3C validator |