| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ad2ant2lr | Structured version Visualization version GIF version | ||
| Description: Deduction adding two conjuncts to antecedent. (Contributed by NM, 23-Nov-2007.) |
| Ref | Expression |
|---|---|
| ad2ant2.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Ref | Expression |
|---|---|
| ad2ant2lr | ⊢ (((𝜃 ∧ 𝜑) ∧ (𝜓 ∧ 𝜏)) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ad2ant2.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
| 2 | 1 | adantrr 717 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜏)) → 𝜒) |
| 3 | 2 | adantll 714 | 1 ⊢ (((𝜃 ∧ 𝜑) ∧ (𝜓 ∧ 𝜏)) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: mpteqb 6987 poseq 8137 omxpenlem 9042 fineqvlem 9209 marypha1lem 9384 fin23lem26 10278 axdc3lem4 10406 mulcmpblnr 11024 ltsrpr 11030 sub4 11467 muladd 11610 ltleadd 11661 divdivdiv 11883 divadddiv 11897 ltmul12a 12038 lt2mul2div 12061 xlemul1a 13248 fzrev 13548 facndiv 14253 fsumconst 15756 fprodconst 15944 isprm5 16677 acsfn2 17624 ghmeql 19171 subgdmdprd 19966 lssvacl 20849 lssvsubcl 20850 ocvin 21583 lindfmm 21736 sraassab 21777 scmatghm 22420 scmatmhm 22421 slesolinv 22567 slesolinvbi 22568 slesolex 22569 pm2mpf1lem 22681 pm2mpcoe1 22687 reftr 23401 alexsubALTlem2 23935 alexsubALTlem3 23936 blbas 24318 nmoco 24625 cncfmet 24802 cmetcaulem 25188 mbflimsup 25567 ulmdvlem3 26311 ptolemy 26405 sltsolem1 27587 madebdaylemlrcut 27810 3wlkdlem6 30094 vdn0conngrumgrv2 30125 frgrncvvdeqlem8 30235 frgrwopreglem5ALT 30251 grpoideu 30438 ipblnfi 30784 htthlem 30846 hvaddsub4 31007 bralnfn 31877 hmops 31949 hmopm 31950 adjadd 32022 opsqrlem1 32069 atomli 32311 chirredlem2 32320 atcvat3i 32325 mdsymlem5 32336 cdj1i 32362 derangenlem 35158 elmrsubrn 35507 dfon2lem6 35776 pibt2 37405 matunitlindflem1 37610 mblfinlem1 37651 prdsbnd 37787 heibor1lem 37803 hl2at 39399 congneg 42958 jm2.26 42991 stoweidlem34 46032 fmtnofac2lem 47569 lindslinindsimp2 48452 ltsubaddb 48503 ltsubadd2b 48505 aacllem 49790 |
| Copyright terms: Public domain | W3C validator |