MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reldmmap Structured version   Visualization version   GIF version

Theorem reldmmap 8759
Description: Set exponentiation is a well-behaved binary operator. (Contributed by Stefan O'Rear, 27-Feb-2015.)
Assertion
Ref Expression
reldmmap Rel dom ↑m

Proof of Theorem reldmmap
Dummy variables 𝑥 𝑓 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-map 8752 . 2 m = (𝑥 ∈ V, 𝑦 ∈ V ↦ {𝑓𝑓:𝑦𝑥})
21reldmmpo 7480 1 Rel dom ↑m
Colors of variables: wff setvar class
Syntax hints:  {cab 2709  Vcvv 3436  dom cdm 5616  Rel wrel 5621  wf 6477  m cmap 8750
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-br 5092  df-opab 5154  df-xp 5622  df-rel 5623  df-dm 5626  df-oprab 7350  df-mpo 7351  df-map 8752
This theorem is referenced by:  mapssfset  8775  mapdom2  9061  efmndbas  18779  smatrcl  33807  mapco2g  42753  naryfvalixp  48667  1aryenef  48683  2aryenef  48694
  Copyright terms: Public domain W3C validator