| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reldmmap | Structured version Visualization version GIF version | ||
| Description: Set exponentiation is a well-behaved binary operator. (Contributed by Stefan O'Rear, 27-Feb-2015.) |
| Ref | Expression |
|---|---|
| reldmmap | ⊢ Rel dom ↑m |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-map 8842 | . 2 ⊢ ↑m = (𝑥 ∈ V, 𝑦 ∈ V ↦ {𝑓 ∣ 𝑓:𝑦⟶𝑥}) | |
| 2 | 1 | reldmmpo 7541 | 1 ⊢ Rel dom ↑m |
| Colors of variables: wff setvar class |
| Syntax hints: {cab 2713 Vcvv 3459 dom cdm 5654 Rel wrel 5659 ⟶wf 6527 ↑m cmap 8840 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-xp 5660 df-rel 5661 df-dm 5664 df-oprab 7409 df-mpo 7410 df-map 8842 |
| This theorem is referenced by: mapssfset 8865 mapdom2 9162 efmndbas 18849 smatrcl 33827 mapco2g 42737 naryfvalixp 48609 1aryenef 48625 2aryenef 48636 |
| Copyright terms: Public domain | W3C validator |