| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reldmmap | Structured version Visualization version GIF version | ||
| Description: Set exponentiation is a well-behaved binary operator. (Contributed by Stefan O'Rear, 27-Feb-2015.) |
| Ref | Expression |
|---|---|
| reldmmap | ⊢ Rel dom ↑m |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-map 8752 | . 2 ⊢ ↑m = (𝑥 ∈ V, 𝑦 ∈ V ↦ {𝑓 ∣ 𝑓:𝑦⟶𝑥}) | |
| 2 | 1 | reldmmpo 7480 | 1 ⊢ Rel dom ↑m |
| Colors of variables: wff setvar class |
| Syntax hints: {cab 2709 Vcvv 3436 dom cdm 5616 Rel wrel 5621 ⟶wf 6477 ↑m cmap 8750 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-br 5092 df-opab 5154 df-xp 5622 df-rel 5623 df-dm 5626 df-oprab 7350 df-mpo 7351 df-map 8752 |
| This theorem is referenced by: mapssfset 8775 mapdom2 9061 efmndbas 18779 smatrcl 33807 mapco2g 42753 naryfvalixp 48667 1aryenef 48683 2aryenef 48694 |
| Copyright terms: Public domain | W3C validator |