![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reldmmap | Structured version Visualization version GIF version |
Description: Set exponentiation is a well-behaved binary operator. (Contributed by Stefan O'Rear, 27-Feb-2015.) |
Ref | Expression |
---|---|
reldmmap | ⊢ Rel dom ↑m |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-map 8886 | . 2 ⊢ ↑m = (𝑥 ∈ V, 𝑦 ∈ V ↦ {𝑓 ∣ 𝑓:𝑦⟶𝑥}) | |
2 | 1 | reldmmpo 7584 | 1 ⊢ Rel dom ↑m |
Colors of variables: wff setvar class |
Syntax hints: {cab 2717 Vcvv 3488 dom cdm 5700 Rel wrel 5705 ⟶wf 6569 ↑m cmap 8884 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-rel 5707 df-dm 5710 df-oprab 7452 df-mpo 7453 df-map 8886 |
This theorem is referenced by: mapssfset 8909 mapdom2 9214 efmndbas 18906 smatrcl 33742 mapco2g 42670 naryfvalixp 48363 1aryenef 48379 2aryenef 48390 |
Copyright terms: Public domain | W3C validator |