| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reldmmap | Structured version Visualization version GIF version | ||
| Description: Set exponentiation is a well-behaved binary operator. (Contributed by Stefan O'Rear, 27-Feb-2015.) |
| Ref | Expression |
|---|---|
| reldmmap | ⊢ Rel dom ↑m |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-map 8760 | . 2 ⊢ ↑m = (𝑥 ∈ V, 𝑦 ∈ V ↦ {𝑓 ∣ 𝑓:𝑦⟶𝑥}) | |
| 2 | 1 | reldmmpo 7488 | 1 ⊢ Rel dom ↑m |
| Colors of variables: wff setvar class |
| Syntax hints: {cab 2711 Vcvv 3437 dom cdm 5621 Rel wrel 5626 ⟶wf 6484 ↑m cmap 8758 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5096 df-opab 5158 df-xp 5627 df-rel 5628 df-dm 5631 df-oprab 7358 df-mpo 7359 df-map 8760 |
| This theorem is referenced by: mapssfset 8783 mapdom2 9070 efmndbas 18783 smatrcl 33832 mapco2g 42834 naryfvalixp 48757 1aryenef 48773 2aryenef 48784 |
| Copyright terms: Public domain | W3C validator |