Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapco2g Structured version   Visualization version   GIF version

Theorem mapco2g 41966
Description: Renaming indices in a tuple, with sethood as antecedents. (Contributed by Stefan O'Rear, 9-Oct-2014.) (Revised by Mario Carneiro, 5-May-2015.)
Assertion
Ref Expression
mapco2g ((𝐸 ∈ V ∧ 𝐴 ∈ (𝐵m 𝐶) ∧ 𝐷:𝐸𝐶) → (𝐴𝐷) ∈ (𝐵m 𝐸))

Proof of Theorem mapco2g
StepHypRef Expression
1 elmapi 8840 . . . 4 (𝐴 ∈ (𝐵m 𝐶) → 𝐴:𝐶𝐵)
2 fco 6732 . . . 4 ((𝐴:𝐶𝐵𝐷:𝐸𝐶) → (𝐴𝐷):𝐸𝐵)
31, 2sylan 579 . . 3 ((𝐴 ∈ (𝐵m 𝐶) ∧ 𝐷:𝐸𝐶) → (𝐴𝐷):𝐸𝐵)
433adant1 1127 . 2 ((𝐸 ∈ V ∧ 𝐴 ∈ (𝐵m 𝐶) ∧ 𝐷:𝐸𝐶) → (𝐴𝐷):𝐸𝐵)
5 n0i 4326 . . . . 5 (𝐴 ∈ (𝐵m 𝐶) → ¬ (𝐵m 𝐶) = ∅)
6 reldmmap 8826 . . . . . 6 Rel dom ↑m
76ovprc1 7441 . . . . 5 𝐵 ∈ V → (𝐵m 𝐶) = ∅)
85, 7nsyl2 141 . . . 4 (𝐴 ∈ (𝐵m 𝐶) → 𝐵 ∈ V)
983ad2ant2 1131 . . 3 ((𝐸 ∈ V ∧ 𝐴 ∈ (𝐵m 𝐶) ∧ 𝐷:𝐸𝐶) → 𝐵 ∈ V)
10 simp1 1133 . . 3 ((𝐸 ∈ V ∧ 𝐴 ∈ (𝐵m 𝐶) ∧ 𝐷:𝐸𝐶) → 𝐸 ∈ V)
119, 10elmapd 8831 . 2 ((𝐸 ∈ V ∧ 𝐴 ∈ (𝐵m 𝐶) ∧ 𝐷:𝐸𝐶) → ((𝐴𝐷) ∈ (𝐵m 𝐸) ↔ (𝐴𝐷):𝐸𝐵))
124, 11mpbird 257 1 ((𝐸 ∈ V ∧ 𝐴 ∈ (𝐵m 𝐶) ∧ 𝐷:𝐸𝐶) → (𝐴𝐷) ∈ (𝐵m 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1084   = wceq 1533  wcel 2098  Vcvv 3466  c0 4315  ccom 5671  wf 6530  (class class class)co 7402  m cmap 8817
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-iun 4990  df-br 5140  df-opab 5202  df-mpt 5223  df-id 5565  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-fv 6542  df-ov 7405  df-oprab 7406  df-mpo 7407  df-1st 7969  df-2nd 7970  df-map 8819
This theorem is referenced by:  mapco2  41967  eldioph2  42014
  Copyright terms: Public domain W3C validator