| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mapco2g | Structured version Visualization version GIF version | ||
| Description: Renaming indices in a tuple, with sethood as antecedents. (Contributed by Stefan O'Rear, 9-Oct-2014.) (Revised by Mario Carneiro, 5-May-2015.) |
| Ref | Expression |
|---|---|
| mapco2g | ⊢ ((𝐸 ∈ V ∧ 𝐴 ∈ (𝐵 ↑m 𝐶) ∧ 𝐷:𝐸⟶𝐶) → (𝐴 ∘ 𝐷) ∈ (𝐵 ↑m 𝐸)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elmapi 8889 | . . . 4 ⊢ (𝐴 ∈ (𝐵 ↑m 𝐶) → 𝐴:𝐶⟶𝐵) | |
| 2 | fco 6760 | . . . 4 ⊢ ((𝐴:𝐶⟶𝐵 ∧ 𝐷:𝐸⟶𝐶) → (𝐴 ∘ 𝐷):𝐸⟶𝐵) | |
| 3 | 1, 2 | sylan 580 | . . 3 ⊢ ((𝐴 ∈ (𝐵 ↑m 𝐶) ∧ 𝐷:𝐸⟶𝐶) → (𝐴 ∘ 𝐷):𝐸⟶𝐵) |
| 4 | 3 | 3adant1 1131 | . 2 ⊢ ((𝐸 ∈ V ∧ 𝐴 ∈ (𝐵 ↑m 𝐶) ∧ 𝐷:𝐸⟶𝐶) → (𝐴 ∘ 𝐷):𝐸⟶𝐵) |
| 5 | n0i 4340 | . . . . 5 ⊢ (𝐴 ∈ (𝐵 ↑m 𝐶) → ¬ (𝐵 ↑m 𝐶) = ∅) | |
| 6 | reldmmap 8875 | . . . . . 6 ⊢ Rel dom ↑m | |
| 7 | 6 | ovprc1 7470 | . . . . 5 ⊢ (¬ 𝐵 ∈ V → (𝐵 ↑m 𝐶) = ∅) |
| 8 | 5, 7 | nsyl2 141 | . . . 4 ⊢ (𝐴 ∈ (𝐵 ↑m 𝐶) → 𝐵 ∈ V) |
| 9 | 8 | 3ad2ant2 1135 | . . 3 ⊢ ((𝐸 ∈ V ∧ 𝐴 ∈ (𝐵 ↑m 𝐶) ∧ 𝐷:𝐸⟶𝐶) → 𝐵 ∈ V) |
| 10 | simp1 1137 | . . 3 ⊢ ((𝐸 ∈ V ∧ 𝐴 ∈ (𝐵 ↑m 𝐶) ∧ 𝐷:𝐸⟶𝐶) → 𝐸 ∈ V) | |
| 11 | 9, 10 | elmapd 8880 | . 2 ⊢ ((𝐸 ∈ V ∧ 𝐴 ∈ (𝐵 ↑m 𝐶) ∧ 𝐷:𝐸⟶𝐶) → ((𝐴 ∘ 𝐷) ∈ (𝐵 ↑m 𝐸) ↔ (𝐴 ∘ 𝐷):𝐸⟶𝐵)) |
| 12 | 4, 11 | mpbird 257 | 1 ⊢ ((𝐸 ∈ V ∧ 𝐴 ∈ (𝐵 ↑m 𝐶) ∧ 𝐷:𝐸⟶𝐶) → (𝐴 ∘ 𝐷) ∈ (𝐵 ↑m 𝐸)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 Vcvv 3480 ∅c0 4333 ∘ ccom 5689 ⟶wf 6557 (class class class)co 7431 ↑m cmap 8866 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-fv 6569 df-ov 7434 df-oprab 7435 df-mpo 7436 df-1st 8014 df-2nd 8015 df-map 8868 |
| This theorem is referenced by: mapco2 42726 eldioph2 42773 |
| Copyright terms: Public domain | W3C validator |