Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > mapco2g | Structured version Visualization version GIF version |
Description: Renaming indices in a tuple, with sethood as antecedents. (Contributed by Stefan O'Rear, 9-Oct-2014.) (Revised by Mario Carneiro, 5-May-2015.) |
Ref | Expression |
---|---|
mapco2g | ⊢ ((𝐸 ∈ V ∧ 𝐴 ∈ (𝐵 ↑m 𝐶) ∧ 𝐷:𝐸⟶𝐶) → (𝐴 ∘ 𝐷) ∈ (𝐵 ↑m 𝐸)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elmapi 8439 | . . . 4 ⊢ (𝐴 ∈ (𝐵 ↑m 𝐶) → 𝐴:𝐶⟶𝐵) | |
2 | fco 6517 | . . . 4 ⊢ ((𝐴:𝐶⟶𝐵 ∧ 𝐷:𝐸⟶𝐶) → (𝐴 ∘ 𝐷):𝐸⟶𝐵) | |
3 | 1, 2 | sylan 584 | . . 3 ⊢ ((𝐴 ∈ (𝐵 ↑m 𝐶) ∧ 𝐷:𝐸⟶𝐶) → (𝐴 ∘ 𝐷):𝐸⟶𝐵) |
4 | 3 | 3adant1 1128 | . 2 ⊢ ((𝐸 ∈ V ∧ 𝐴 ∈ (𝐵 ↑m 𝐶) ∧ 𝐷:𝐸⟶𝐶) → (𝐴 ∘ 𝐷):𝐸⟶𝐵) |
5 | n0i 4233 | . . . . 5 ⊢ (𝐴 ∈ (𝐵 ↑m 𝐶) → ¬ (𝐵 ↑m 𝐶) = ∅) | |
6 | reldmmap 8426 | . . . . . 6 ⊢ Rel dom ↑m | |
7 | 6 | ovprc1 7190 | . . . . 5 ⊢ (¬ 𝐵 ∈ V → (𝐵 ↑m 𝐶) = ∅) |
8 | 5, 7 | nsyl2 143 | . . . 4 ⊢ (𝐴 ∈ (𝐵 ↑m 𝐶) → 𝐵 ∈ V) |
9 | 8 | 3ad2ant2 1132 | . . 3 ⊢ ((𝐸 ∈ V ∧ 𝐴 ∈ (𝐵 ↑m 𝐶) ∧ 𝐷:𝐸⟶𝐶) → 𝐵 ∈ V) |
10 | simp1 1134 | . . 3 ⊢ ((𝐸 ∈ V ∧ 𝐴 ∈ (𝐵 ↑m 𝐶) ∧ 𝐷:𝐸⟶𝐶) → 𝐸 ∈ V) | |
11 | 9, 10 | elmapd 8431 | . 2 ⊢ ((𝐸 ∈ V ∧ 𝐴 ∈ (𝐵 ↑m 𝐶) ∧ 𝐷:𝐸⟶𝐶) → ((𝐴 ∘ 𝐷) ∈ (𝐵 ↑m 𝐸) ↔ (𝐴 ∘ 𝐷):𝐸⟶𝐵)) |
12 | 4, 11 | mpbird 260 | 1 ⊢ ((𝐸 ∈ V ∧ 𝐴 ∈ (𝐵 ↑m 𝐶) ∧ 𝐷:𝐸⟶𝐶) → (𝐴 ∘ 𝐷) ∈ (𝐵 ↑m 𝐸)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 = wceq 1539 ∈ wcel 2112 Vcvv 3410 ∅c0 4226 ∘ ccom 5529 ⟶wf 6332 (class class class)co 7151 ↑m cmap 8417 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5170 ax-nul 5177 ax-pow 5235 ax-pr 5299 ax-un 7460 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-ral 3076 df-rex 3077 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-nul 4227 df-if 4422 df-pw 4497 df-sn 4524 df-pr 4526 df-op 4530 df-uni 4800 df-iun 4886 df-br 5034 df-opab 5096 df-mpt 5114 df-id 5431 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-iota 6295 df-fun 6338 df-fn 6339 df-f 6340 df-fv 6344 df-ov 7154 df-oprab 7155 df-mpo 7156 df-1st 7694 df-2nd 7695 df-map 8419 |
This theorem is referenced by: mapco2 40030 eldioph2 40077 |
Copyright terms: Public domain | W3C validator |