Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapco2g Structured version   Visualization version   GIF version

Theorem mapco2g 41323
Description: Renaming indices in a tuple, with sethood as antecedents. (Contributed by Stefan O'Rear, 9-Oct-2014.) (Revised by Mario Carneiro, 5-May-2015.)
Assertion
Ref Expression
mapco2g ((𝐸 ∈ V ∧ 𝐴 ∈ (𝐵m 𝐶) ∧ 𝐷:𝐸𝐶) → (𝐴𝐷) ∈ (𝐵m 𝐸))

Proof of Theorem mapco2g
StepHypRef Expression
1 elmapi 8831 . . . 4 (𝐴 ∈ (𝐵m 𝐶) → 𝐴:𝐶𝐵)
2 fco 6731 . . . 4 ((𝐴:𝐶𝐵𝐷:𝐸𝐶) → (𝐴𝐷):𝐸𝐵)
31, 2sylan 581 . . 3 ((𝐴 ∈ (𝐵m 𝐶) ∧ 𝐷:𝐸𝐶) → (𝐴𝐷):𝐸𝐵)
433adant1 1131 . 2 ((𝐸 ∈ V ∧ 𝐴 ∈ (𝐵m 𝐶) ∧ 𝐷:𝐸𝐶) → (𝐴𝐷):𝐸𝐵)
5 n0i 4331 . . . . 5 (𝐴 ∈ (𝐵m 𝐶) → ¬ (𝐵m 𝐶) = ∅)
6 reldmmap 8817 . . . . . 6 Rel dom ↑m
76ovprc1 7435 . . . . 5 𝐵 ∈ V → (𝐵m 𝐶) = ∅)
85, 7nsyl2 141 . . . 4 (𝐴 ∈ (𝐵m 𝐶) → 𝐵 ∈ V)
983ad2ant2 1135 . . 3 ((𝐸 ∈ V ∧ 𝐴 ∈ (𝐵m 𝐶) ∧ 𝐷:𝐸𝐶) → 𝐵 ∈ V)
10 simp1 1137 . . 3 ((𝐸 ∈ V ∧ 𝐴 ∈ (𝐵m 𝐶) ∧ 𝐷:𝐸𝐶) → 𝐸 ∈ V)
119, 10elmapd 8822 . 2 ((𝐸 ∈ V ∧ 𝐴 ∈ (𝐵m 𝐶) ∧ 𝐷:𝐸𝐶) → ((𝐴𝐷) ∈ (𝐵m 𝐸) ↔ (𝐴𝐷):𝐸𝐵))
124, 11mpbird 257 1 ((𝐸 ∈ V ∧ 𝐴 ∈ (𝐵m 𝐶) ∧ 𝐷:𝐸𝐶) → (𝐴𝐷) ∈ (𝐵m 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1088   = wceq 1542  wcel 2107  Vcvv 3475  c0 4320  ccom 5676  wf 6531  (class class class)co 7396  m cmap 8808
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5295  ax-nul 5302  ax-pow 5359  ax-pr 5423  ax-un 7712
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-nul 4321  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4905  df-iun 4995  df-br 5145  df-opab 5207  df-mpt 5228  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6487  df-fun 6537  df-fn 6538  df-f 6539  df-fv 6543  df-ov 7399  df-oprab 7400  df-mpo 7401  df-1st 7962  df-2nd 7963  df-map 8810
This theorem is referenced by:  mapco2  41324  eldioph2  41371
  Copyright terms: Public domain W3C validator