MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mapdom2 Structured version   Visualization version   GIF version

Theorem mapdom2 8690
Description: Order-preserving property of set exponentiation. Theorem 6L(d) of [Enderton] p. 149. (Contributed by NM, 23-Sep-2004.) (Revised by Mario Carneiro, 30-Apr-2015.)
Assertion
Ref Expression
mapdom2 ((𝐴𝐵 ∧ ¬ (𝐴 = ∅ ∧ 𝐶 = ∅)) → (𝐶m 𝐴) ≼ (𝐶m 𝐵))

Proof of Theorem mapdom2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpr 487 . . . . . . . 8 ((((𝐴𝐵𝐶 ∈ V) ∧ ¬ (𝐴 = ∅ ∧ 𝐶 = ∅)) ∧ 𝐶 = ∅) → 𝐶 = ∅)
21oveq1d 7173 . . . . . . 7 ((((𝐴𝐵𝐶 ∈ V) ∧ ¬ (𝐴 = ∅ ∧ 𝐶 = ∅)) ∧ 𝐶 = ∅) → (𝐶m 𝐴) = (∅ ↑m 𝐴))
3 simplr 767 . . . . . . . . . 10 ((((𝐴𝐵𝐶 ∈ V) ∧ ¬ (𝐴 = ∅ ∧ 𝐶 = ∅)) ∧ 𝐶 = ∅) → ¬ (𝐴 = ∅ ∧ 𝐶 = ∅))
4 idd 24 . . . . . . . . . . 11 ((((𝐴𝐵𝐶 ∈ V) ∧ ¬ (𝐴 = ∅ ∧ 𝐶 = ∅)) ∧ 𝐶 = ∅) → (𝐴 = ∅ → 𝐴 = ∅))
54, 1jctird 529 . . . . . . . . . 10 ((((𝐴𝐵𝐶 ∈ V) ∧ ¬ (𝐴 = ∅ ∧ 𝐶 = ∅)) ∧ 𝐶 = ∅) → (𝐴 = ∅ → (𝐴 = ∅ ∧ 𝐶 = ∅)))
63, 5mtod 200 . . . . . . . . 9 ((((𝐴𝐵𝐶 ∈ V) ∧ ¬ (𝐴 = ∅ ∧ 𝐶 = ∅)) ∧ 𝐶 = ∅) → ¬ 𝐴 = ∅)
76neqned 3025 . . . . . . . 8 ((((𝐴𝐵𝐶 ∈ V) ∧ ¬ (𝐴 = ∅ ∧ 𝐶 = ∅)) ∧ 𝐶 = ∅) → 𝐴 ≠ ∅)
8 map0b 8449 . . . . . . . 8 (𝐴 ≠ ∅ → (∅ ↑m 𝐴) = ∅)
97, 8syl 17 . . . . . . 7 ((((𝐴𝐵𝐶 ∈ V) ∧ ¬ (𝐴 = ∅ ∧ 𝐶 = ∅)) ∧ 𝐶 = ∅) → (∅ ↑m 𝐴) = ∅)
102, 9eqtrd 2858 . . . . . 6 ((((𝐴𝐵𝐶 ∈ V) ∧ ¬ (𝐴 = ∅ ∧ 𝐶 = ∅)) ∧ 𝐶 = ∅) → (𝐶m 𝐴) = ∅)
11 ovex 7191 . . . . . . 7 (𝐶m 𝐵) ∈ V
12110dom 8649 . . . . . 6 ∅ ≼ (𝐶m 𝐵)
1310, 12eqbrtrdi 5107 . . . . 5 ((((𝐴𝐵𝐶 ∈ V) ∧ ¬ (𝐴 = ∅ ∧ 𝐶 = ∅)) ∧ 𝐶 = ∅) → (𝐶m 𝐴) ≼ (𝐶m 𝐵))
14 simpll 765 . . . . . . . 8 (((𝐴𝐵𝐶 ∈ V) ∧ 𝐶 ≠ ∅) → 𝐴𝐵)
15 reldom 8517 . . . . . . . . . . 11 Rel ≼
1615brrelex2i 5611 . . . . . . . . . 10 (𝐴𝐵𝐵 ∈ V)
1716ad2antrr 724 . . . . . . . . 9 (((𝐴𝐵𝐶 ∈ V) ∧ 𝐶 ≠ ∅) → 𝐵 ∈ V)
18 domeng 8525 . . . . . . . . 9 (𝐵 ∈ V → (𝐴𝐵 ↔ ∃𝑥(𝐴𝑥𝑥𝐵)))
1917, 18syl 17 . . . . . . . 8 (((𝐴𝐵𝐶 ∈ V) ∧ 𝐶 ≠ ∅) → (𝐴𝐵 ↔ ∃𝑥(𝐴𝑥𝑥𝐵)))
2014, 19mpbid 234 . . . . . . 7 (((𝐴𝐵𝐶 ∈ V) ∧ 𝐶 ≠ ∅) → ∃𝑥(𝐴𝑥𝑥𝐵))
21 enrefg 8543 . . . . . . . . . . . 12 (𝐶 ∈ V → 𝐶𝐶)
2221ad2antlr 725 . . . . . . . . . . 11 (((𝐴𝐵𝐶 ∈ V) ∧ (𝐶 ≠ ∅ ∧ (𝐴𝑥𝑥𝐵))) → 𝐶𝐶)
23 simprrl 779 . . . . . . . . . . 11 (((𝐴𝐵𝐶 ∈ V) ∧ (𝐶 ≠ ∅ ∧ (𝐴𝑥𝑥𝐵))) → 𝐴𝑥)
24 mapen 8683 . . . . . . . . . . 11 ((𝐶𝐶𝐴𝑥) → (𝐶m 𝐴) ≈ (𝐶m 𝑥))
2522, 23, 24syl2anc 586 . . . . . . . . . 10 (((𝐴𝐵𝐶 ∈ V) ∧ (𝐶 ≠ ∅ ∧ (𝐴𝑥𝑥𝐵))) → (𝐶m 𝐴) ≈ (𝐶m 𝑥))
26 ovexd 7193 . . . . . . . . . . . 12 (((𝐴𝐵𝐶 ∈ V) ∧ (𝐶 ≠ ∅ ∧ (𝐴𝑥𝑥𝐵))) → (𝐶m 𝑥) ∈ V)
27 ovexd 7193 . . . . . . . . . . . 12 (((𝐴𝐵𝐶 ∈ V) ∧ (𝐶 ≠ ∅ ∧ (𝐴𝑥𝑥𝐵))) → (𝐶m (𝐵𝑥)) ∈ V)
28 simprl 769 . . . . . . . . . . . . 13 (((𝐴𝐵𝐶 ∈ V) ∧ (𝐶 ≠ ∅ ∧ (𝐴𝑥𝑥𝐵))) → 𝐶 ≠ ∅)
29 simplr 767 . . . . . . . . . . . . . 14 (((𝐴𝐵𝐶 ∈ V) ∧ (𝐶 ≠ ∅ ∧ (𝐴𝑥𝑥𝐵))) → 𝐶 ∈ V)
3016ad2antrr 724 . . . . . . . . . . . . . . 15 (((𝐴𝐵𝐶 ∈ V) ∧ (𝐶 ≠ ∅ ∧ (𝐴𝑥𝑥𝐵))) → 𝐵 ∈ V)
31 difexg 5233 . . . . . . . . . . . . . . 15 (𝐵 ∈ V → (𝐵𝑥) ∈ V)
3230, 31syl 17 . . . . . . . . . . . . . 14 (((𝐴𝐵𝐶 ∈ V) ∧ (𝐶 ≠ ∅ ∧ (𝐴𝑥𝑥𝐵))) → (𝐵𝑥) ∈ V)
33 map0g 8450 . . . . . . . . . . . . . . . 16 ((𝐶 ∈ V ∧ (𝐵𝑥) ∈ V) → ((𝐶m (𝐵𝑥)) = ∅ ↔ (𝐶 = ∅ ∧ (𝐵𝑥) ≠ ∅)))
34 simpl 485 . . . . . . . . . . . . . . . 16 ((𝐶 = ∅ ∧ (𝐵𝑥) ≠ ∅) → 𝐶 = ∅)
3533, 34syl6bi 255 . . . . . . . . . . . . . . 15 ((𝐶 ∈ V ∧ (𝐵𝑥) ∈ V) → ((𝐶m (𝐵𝑥)) = ∅ → 𝐶 = ∅))
3635necon3d 3039 . . . . . . . . . . . . . 14 ((𝐶 ∈ V ∧ (𝐵𝑥) ∈ V) → (𝐶 ≠ ∅ → (𝐶m (𝐵𝑥)) ≠ ∅))
3729, 32, 36syl2anc 586 . . . . . . . . . . . . 13 (((𝐴𝐵𝐶 ∈ V) ∧ (𝐶 ≠ ∅ ∧ (𝐴𝑥𝑥𝐵))) → (𝐶 ≠ ∅ → (𝐶m (𝐵𝑥)) ≠ ∅))
3828, 37mpd 15 . . . . . . . . . . . 12 (((𝐴𝐵𝐶 ∈ V) ∧ (𝐶 ≠ ∅ ∧ (𝐴𝑥𝑥𝐵))) → (𝐶m (𝐵𝑥)) ≠ ∅)
39 xpdom3 8617 . . . . . . . . . . . 12 (((𝐶m 𝑥) ∈ V ∧ (𝐶m (𝐵𝑥)) ∈ V ∧ (𝐶m (𝐵𝑥)) ≠ ∅) → (𝐶m 𝑥) ≼ ((𝐶m 𝑥) × (𝐶m (𝐵𝑥))))
4026, 27, 38, 39syl3anc 1367 . . . . . . . . . . 11 (((𝐴𝐵𝐶 ∈ V) ∧ (𝐶 ≠ ∅ ∧ (𝐴𝑥𝑥𝐵))) → (𝐶m 𝑥) ≼ ((𝐶m 𝑥) × (𝐶m (𝐵𝑥))))
41 vex 3499 . . . . . . . . . . . . . . 15 𝑥 ∈ V
4241a1i 11 . . . . . . . . . . . . . 14 (((𝐴𝐵𝐶 ∈ V) ∧ (𝐶 ≠ ∅ ∧ (𝐴𝑥𝑥𝐵))) → 𝑥 ∈ V)
43 disjdif 4423 . . . . . . . . . . . . . . 15 (𝑥 ∩ (𝐵𝑥)) = ∅
4443a1i 11 . . . . . . . . . . . . . 14 (((𝐴𝐵𝐶 ∈ V) ∧ (𝐶 ≠ ∅ ∧ (𝐴𝑥𝑥𝐵))) → (𝑥 ∩ (𝐵𝑥)) = ∅)
45 mapunen 8688 . . . . . . . . . . . . . 14 (((𝑥 ∈ V ∧ (𝐵𝑥) ∈ V ∧ 𝐶 ∈ V) ∧ (𝑥 ∩ (𝐵𝑥)) = ∅) → (𝐶m (𝑥 ∪ (𝐵𝑥))) ≈ ((𝐶m 𝑥) × (𝐶m (𝐵𝑥))))
4642, 32, 29, 44, 45syl31anc 1369 . . . . . . . . . . . . 13 (((𝐴𝐵𝐶 ∈ V) ∧ (𝐶 ≠ ∅ ∧ (𝐴𝑥𝑥𝐵))) → (𝐶m (𝑥 ∪ (𝐵𝑥))) ≈ ((𝐶m 𝑥) × (𝐶m (𝐵𝑥))))
4746ensymd 8562 . . . . . . . . . . . 12 (((𝐴𝐵𝐶 ∈ V) ∧ (𝐶 ≠ ∅ ∧ (𝐴𝑥𝑥𝐵))) → ((𝐶m 𝑥) × (𝐶m (𝐵𝑥))) ≈ (𝐶m (𝑥 ∪ (𝐵𝑥))))
48 simprrr 780 . . . . . . . . . . . . . 14 (((𝐴𝐵𝐶 ∈ V) ∧ (𝐶 ≠ ∅ ∧ (𝐴𝑥𝑥𝐵))) → 𝑥𝐵)
49 undif 4432 . . . . . . . . . . . . . 14 (𝑥𝐵 ↔ (𝑥 ∪ (𝐵𝑥)) = 𝐵)
5048, 49sylib 220 . . . . . . . . . . . . 13 (((𝐴𝐵𝐶 ∈ V) ∧ (𝐶 ≠ ∅ ∧ (𝐴𝑥𝑥𝐵))) → (𝑥 ∪ (𝐵𝑥)) = 𝐵)
5150oveq2d 7174 . . . . . . . . . . . 12 (((𝐴𝐵𝐶 ∈ V) ∧ (𝐶 ≠ ∅ ∧ (𝐴𝑥𝑥𝐵))) → (𝐶m (𝑥 ∪ (𝐵𝑥))) = (𝐶m 𝐵))
5247, 51breqtrd 5094 . . . . . . . . . . 11 (((𝐴𝐵𝐶 ∈ V) ∧ (𝐶 ≠ ∅ ∧ (𝐴𝑥𝑥𝐵))) → ((𝐶m 𝑥) × (𝐶m (𝐵𝑥))) ≈ (𝐶m 𝐵))
53 domentr 8570 . . . . . . . . . . 11 (((𝐶m 𝑥) ≼ ((𝐶m 𝑥) × (𝐶m (𝐵𝑥))) ∧ ((𝐶m 𝑥) × (𝐶m (𝐵𝑥))) ≈ (𝐶m 𝐵)) → (𝐶m 𝑥) ≼ (𝐶m 𝐵))
5440, 52, 53syl2anc 586 . . . . . . . . . 10 (((𝐴𝐵𝐶 ∈ V) ∧ (𝐶 ≠ ∅ ∧ (𝐴𝑥𝑥𝐵))) → (𝐶m 𝑥) ≼ (𝐶m 𝐵))
55 endomtr 8569 . . . . . . . . . 10 (((𝐶m 𝐴) ≈ (𝐶m 𝑥) ∧ (𝐶m 𝑥) ≼ (𝐶m 𝐵)) → (𝐶m 𝐴) ≼ (𝐶m 𝐵))
5625, 54, 55syl2anc 586 . . . . . . . . 9 (((𝐴𝐵𝐶 ∈ V) ∧ (𝐶 ≠ ∅ ∧ (𝐴𝑥𝑥𝐵))) → (𝐶m 𝐴) ≼ (𝐶m 𝐵))
5756expr 459 . . . . . . . 8 (((𝐴𝐵𝐶 ∈ V) ∧ 𝐶 ≠ ∅) → ((𝐴𝑥𝑥𝐵) → (𝐶m 𝐴) ≼ (𝐶m 𝐵)))
5857exlimdv 1934 . . . . . . 7 (((𝐴𝐵𝐶 ∈ V) ∧ 𝐶 ≠ ∅) → (∃𝑥(𝐴𝑥𝑥𝐵) → (𝐶m 𝐴) ≼ (𝐶m 𝐵)))
5920, 58mpd 15 . . . . . 6 (((𝐴𝐵𝐶 ∈ V) ∧ 𝐶 ≠ ∅) → (𝐶m 𝐴) ≼ (𝐶m 𝐵))
6059adantlr 713 . . . . 5 ((((𝐴𝐵𝐶 ∈ V) ∧ ¬ (𝐴 = ∅ ∧ 𝐶 = ∅)) ∧ 𝐶 ≠ ∅) → (𝐶m 𝐴) ≼ (𝐶m 𝐵))
6113, 60pm2.61dane 3106 . . . 4 (((𝐴𝐵𝐶 ∈ V) ∧ ¬ (𝐴 = ∅ ∧ 𝐶 = ∅)) → (𝐶m 𝐴) ≼ (𝐶m 𝐵))
6261an32s 650 . . 3 (((𝐴𝐵 ∧ ¬ (𝐴 = ∅ ∧ 𝐶 = ∅)) ∧ 𝐶 ∈ V) → (𝐶m 𝐴) ≼ (𝐶m 𝐵))
6362ex 415 . 2 ((𝐴𝐵 ∧ ¬ (𝐴 = ∅ ∧ 𝐶 = ∅)) → (𝐶 ∈ V → (𝐶m 𝐴) ≼ (𝐶m 𝐵)))
64 reldmmap 8417 . . . 4 Rel dom ↑m
6564ovprc1 7197 . . 3 𝐶 ∈ V → (𝐶m 𝐴) = ∅)
6665, 12eqbrtrdi 5107 . 2 𝐶 ∈ V → (𝐶m 𝐴) ≼ (𝐶m 𝐵))
6763, 66pm2.61d1 182 1 ((𝐴𝐵 ∧ ¬ (𝐴 = ∅ ∧ 𝐶 = ∅)) → (𝐶m 𝐴) ≼ (𝐶m 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1537  wex 1780  wcel 2114  wne 3018  Vcvv 3496  cdif 3935  cun 3936  cin 3937  wss 3938  c0 4293   class class class wbr 5068   × cxp 5555  (class class class)co 7158  m cmap 8408  cen 8508  cdom 8509
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-ov 7161  df-oprab 7162  df-mpo 7163  df-1st 7691  df-2nd 7692  df-er 8291  df-map 8410  df-en 8512  df-dom 8513
This theorem is referenced by:  mapdom3  8691  cfpwsdom  10008  hauspwdom  22111
  Copyright terms: Public domain W3C validator