MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnpm Structured version   Visualization version   GIF version

Theorem fnpm 8615
Description: Partial function exponentiation has a universal domain. (Contributed by Mario Carneiro, 14-Nov-2013.)
Assertion
Ref Expression
fnpm pm Fn (V × V)

Proof of Theorem fnpm
Dummy variables 𝑥 𝑓 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-pm 8610 . 2 pm = (𝑥 ∈ V, 𝑦 ∈ V ↦ {𝑓 ∈ 𝒫 (𝑦 × 𝑥) ∣ Fun 𝑓})
2 vex 3435 . . . . 5 𝑦 ∈ V
3 vex 3435 . . . . 5 𝑥 ∈ V
42, 3xpex 7598 . . . 4 (𝑦 × 𝑥) ∈ V
54pwex 5307 . . 3 𝒫 (𝑦 × 𝑥) ∈ V
65rabex 5260 . 2 {𝑓 ∈ 𝒫 (𝑦 × 𝑥) ∣ Fun 𝑓} ∈ V
71, 6fnmpoi 7904 1 pm Fn (V × V)
Colors of variables: wff setvar class
Syntax hints:  {crab 3070  Vcvv 3431  𝒫 cpw 4539   × cxp 5588  Fun wfun 6426   Fn wfn 6427  pm cpm 8608
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7583
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ral 3071  df-rex 3072  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-id 5490  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-fv 6440  df-oprab 7276  df-mpo 7277  df-1st 7825  df-2nd 7826  df-pm 8610
This theorem is referenced by:  elpmi  8626  pmresg  8650  pmsspw  8657
  Copyright terms: Public domain W3C validator