MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnpm Structured version   Visualization version   GIF version

Theorem fnpm 8809
Description: Partial function exponentiation has a universal domain. (Contributed by Mario Carneiro, 14-Nov-2013.)
Assertion
Ref Expression
fnpm pm Fn (V × V)

Proof of Theorem fnpm
Dummy variables 𝑥 𝑓 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-pm 8804 . 2 pm = (𝑥 ∈ V, 𝑦 ∈ V ↦ {𝑓 ∈ 𝒫 (𝑦 × 𝑥) ∣ Fun 𝑓})
2 vex 3454 . . . . 5 𝑦 ∈ V
3 vex 3454 . . . . 5 𝑥 ∈ V
42, 3xpex 7731 . . . 4 (𝑦 × 𝑥) ∈ V
54pwex 5337 . . 3 𝒫 (𝑦 × 𝑥) ∈ V
65rabex 5296 . 2 {𝑓 ∈ 𝒫 (𝑦 × 𝑥) ∣ Fun 𝑓} ∈ V
71, 6fnmpoi 8051 1 pm Fn (V × V)
Colors of variables: wff setvar class
Syntax hints:  {crab 3408  Vcvv 3450  𝒫 cpw 4565   × cxp 5638  Fun wfun 6507   Fn wfn 6508  pm cpm 8802
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-fv 6521  df-oprab 7393  df-mpo 7394  df-1st 7970  df-2nd 7971  df-pm 8804
This theorem is referenced by:  elpmi  8821  pmresg  8845  pmsspw  8852
  Copyright terms: Public domain W3C validator