Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fnpm | Structured version Visualization version GIF version |
Description: Partial function exponentiation has a universal domain. (Contributed by Mario Carneiro, 14-Nov-2013.) |
Ref | Expression |
---|---|
fnpm | ⊢ ↑pm Fn (V × V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pm 8610 | . 2 ⊢ ↑pm = (𝑥 ∈ V, 𝑦 ∈ V ↦ {𝑓 ∈ 𝒫 (𝑦 × 𝑥) ∣ Fun 𝑓}) | |
2 | vex 3435 | . . . . 5 ⊢ 𝑦 ∈ V | |
3 | vex 3435 | . . . . 5 ⊢ 𝑥 ∈ V | |
4 | 2, 3 | xpex 7598 | . . . 4 ⊢ (𝑦 × 𝑥) ∈ V |
5 | 4 | pwex 5307 | . . 3 ⊢ 𝒫 (𝑦 × 𝑥) ∈ V |
6 | 5 | rabex 5260 | . 2 ⊢ {𝑓 ∈ 𝒫 (𝑦 × 𝑥) ∣ Fun 𝑓} ∈ V |
7 | 1, 6 | fnmpoi 7904 | 1 ⊢ ↑pm Fn (V × V) |
Colors of variables: wff setvar class |
Syntax hints: {crab 3070 Vcvv 3431 𝒫 cpw 4539 × cxp 5588 Fun wfun 6426 Fn wfn 6427 ↑pm cpm 8608 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7583 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ral 3071 df-rex 3072 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-fv 6440 df-oprab 7276 df-mpo 7277 df-1st 7825 df-2nd 7826 df-pm 8610 |
This theorem is referenced by: elpmi 8626 pmresg 8650 pmsspw 8657 |
Copyright terms: Public domain | W3C validator |