Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mapvalg | Structured version Visualization version GIF version |
Description: The value of set exponentiation. (𝐴 ↑m 𝐵) is the set of all functions that map from 𝐵 to 𝐴. Definition 10.24 of [Kunen] p. 24. (Contributed by NM, 8-Dec-2003.) (Revised by Mario Carneiro, 8-Sep-2013.) |
Ref | Expression |
---|---|
mapvalg | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴 ↑m 𝐵) = {𝑓 ∣ 𝑓:𝐵⟶𝐴}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mapex 8621 | . . 3 ⊢ ((𝐵 ∈ 𝐷 ∧ 𝐴 ∈ 𝐶) → {𝑓 ∣ 𝑓:𝐵⟶𝐴} ∈ V) | |
2 | 1 | ancoms 459 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → {𝑓 ∣ 𝑓:𝐵⟶𝐴} ∈ V) |
3 | elex 3450 | . . 3 ⊢ (𝐴 ∈ 𝐶 → 𝐴 ∈ V) | |
4 | elex 3450 | . . 3 ⊢ (𝐵 ∈ 𝐷 → 𝐵 ∈ V) | |
5 | feq3 6583 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝑓:𝑦⟶𝑥 ↔ 𝑓:𝑦⟶𝐴)) | |
6 | 5 | abbidv 2807 | . . . . 5 ⊢ (𝑥 = 𝐴 → {𝑓 ∣ 𝑓:𝑦⟶𝑥} = {𝑓 ∣ 𝑓:𝑦⟶𝐴}) |
7 | feq2 6582 | . . . . . 6 ⊢ (𝑦 = 𝐵 → (𝑓:𝑦⟶𝐴 ↔ 𝑓:𝐵⟶𝐴)) | |
8 | 7 | abbidv 2807 | . . . . 5 ⊢ (𝑦 = 𝐵 → {𝑓 ∣ 𝑓:𝑦⟶𝐴} = {𝑓 ∣ 𝑓:𝐵⟶𝐴}) |
9 | df-map 8617 | . . . . 5 ⊢ ↑m = (𝑥 ∈ V, 𝑦 ∈ V ↦ {𝑓 ∣ 𝑓:𝑦⟶𝑥}) | |
10 | 6, 8, 9 | ovmpog 7432 | . . . 4 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ {𝑓 ∣ 𝑓:𝐵⟶𝐴} ∈ V) → (𝐴 ↑m 𝐵) = {𝑓 ∣ 𝑓:𝐵⟶𝐴}) |
11 | 10 | 3expia 1120 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ({𝑓 ∣ 𝑓:𝐵⟶𝐴} ∈ V → (𝐴 ↑m 𝐵) = {𝑓 ∣ 𝑓:𝐵⟶𝐴})) |
12 | 3, 4, 11 | syl2an 596 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → ({𝑓 ∣ 𝑓:𝐵⟶𝐴} ∈ V → (𝐴 ↑m 𝐵) = {𝑓 ∣ 𝑓:𝐵⟶𝐴})) |
13 | 2, 12 | mpd 15 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴 ↑m 𝐵) = {𝑓 ∣ 𝑓:𝐵⟶𝐴}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 {cab 2715 Vcvv 3432 ⟶wf 6429 (class class class)co 7275 ↑m cmap 8615 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-map 8617 |
This theorem is referenced by: mapval 8627 elmapg 8628 ixpconstg 8694 hashf1lem2 14170 efmndbasabf 18511 symgbasfi 18986 birthdaylem1 26101 birthdaylem2 26102 cnfex 42571 |
Copyright terms: Public domain | W3C validator |