MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mapvalg Structured version   Visualization version   GIF version

Theorem mapvalg 8858
Description: The value of set exponentiation. (𝐴m 𝐵) is the set of all functions that map from 𝐵 to 𝐴. Definition 10.24 of [Kunen] p. 24. (Contributed by NM, 8-Dec-2003.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
mapvalg ((𝐴𝐶𝐵𝐷) → (𝐴m 𝐵) = {𝑓𝑓:𝐵𝐴})
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓
Allowed substitution hints:   𝐶(𝑓)   𝐷(𝑓)

Proof of Theorem mapvalg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mapex 7945 . . 3 ((𝐵𝐷𝐴𝐶) → {𝑓𝑓:𝐵𝐴} ∈ V)
21ancoms 458 . 2 ((𝐴𝐶𝐵𝐷) → {𝑓𝑓:𝐵𝐴} ∈ V)
3 elex 3484 . . 3 (𝐴𝐶𝐴 ∈ V)
4 elex 3484 . . 3 (𝐵𝐷𝐵 ∈ V)
5 feq3 6698 . . . . . 6 (𝑥 = 𝐴 → (𝑓:𝑦𝑥𝑓:𝑦𝐴))
65abbidv 2800 . . . . 5 (𝑥 = 𝐴 → {𝑓𝑓:𝑦𝑥} = {𝑓𝑓:𝑦𝐴})
7 feq2 6697 . . . . . 6 (𝑦 = 𝐵 → (𝑓:𝑦𝐴𝑓:𝐵𝐴))
87abbidv 2800 . . . . 5 (𝑦 = 𝐵 → {𝑓𝑓:𝑦𝐴} = {𝑓𝑓:𝐵𝐴})
9 df-map 8850 . . . . 5 m = (𝑥 ∈ V, 𝑦 ∈ V ↦ {𝑓𝑓:𝑦𝑥})
106, 8, 9ovmpog 7574 . . . 4 ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ {𝑓𝑓:𝐵𝐴} ∈ V) → (𝐴m 𝐵) = {𝑓𝑓:𝐵𝐴})
11103expia 1121 . . 3 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ({𝑓𝑓:𝐵𝐴} ∈ V → (𝐴m 𝐵) = {𝑓𝑓:𝐵𝐴}))
123, 4, 11syl2an 596 . 2 ((𝐴𝐶𝐵𝐷) → ({𝑓𝑓:𝐵𝐴} ∈ V → (𝐴m 𝐵) = {𝑓𝑓:𝐵𝐴}))
132, 12mpd 15 1 ((𝐴𝐶𝐵𝐷) → (𝐴m 𝐵) = {𝑓𝑓:𝐵𝐴})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  {cab 2712  Vcvv 3463  wf 6537  (class class class)co 7413  m cmap 8848
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-sbc 3771  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-opab 5186  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-fv 6549  df-ov 7416  df-oprab 7417  df-mpo 7418  df-map 8850
This theorem is referenced by:  mapval  8860  elmapg  8861  ixpconstg  8928  hashf1lem2  14478  efmndbasabf  18855  symgbasfi  19365  birthdaylem1  26931  birthdaylem2  26932  cnfex  45005
  Copyright terms: Public domain W3C validator