MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mapvalg Structured version   Visualization version   GIF version

Theorem mapvalg 8770
Description: The value of set exponentiation. (𝐴m 𝐵) is the set of all functions that map from 𝐵 to 𝐴. Definition 10.24 of [Kunen] p. 24. (Contributed by NM, 8-Dec-2003.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
mapvalg ((𝐴𝐶𝐵𝐷) → (𝐴m 𝐵) = {𝑓𝑓:𝐵𝐴})
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓
Allowed substitution hints:   𝐶(𝑓)   𝐷(𝑓)

Proof of Theorem mapvalg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mapex 7881 . . 3 ((𝐵𝐷𝐴𝐶) → {𝑓𝑓:𝐵𝐴} ∈ V)
21ancoms 458 . 2 ((𝐴𝐶𝐵𝐷) → {𝑓𝑓:𝐵𝐴} ∈ V)
3 elex 3459 . . 3 (𝐴𝐶𝐴 ∈ V)
4 elex 3459 . . 3 (𝐵𝐷𝐵 ∈ V)
5 feq3 6636 . . . . . 6 (𝑥 = 𝐴 → (𝑓:𝑦𝑥𝑓:𝑦𝐴))
65abbidv 2795 . . . . 5 (𝑥 = 𝐴 → {𝑓𝑓:𝑦𝑥} = {𝑓𝑓:𝑦𝐴})
7 feq2 6635 . . . . . 6 (𝑦 = 𝐵 → (𝑓:𝑦𝐴𝑓:𝐵𝐴))
87abbidv 2795 . . . . 5 (𝑦 = 𝐵 → {𝑓𝑓:𝑦𝐴} = {𝑓𝑓:𝐵𝐴})
9 df-map 8762 . . . . 5 m = (𝑥 ∈ V, 𝑦 ∈ V ↦ {𝑓𝑓:𝑦𝑥})
106, 8, 9ovmpog 7512 . . . 4 ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ {𝑓𝑓:𝐵𝐴} ∈ V) → (𝐴m 𝐵) = {𝑓𝑓:𝐵𝐴})
11103expia 1121 . . 3 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ({𝑓𝑓:𝐵𝐴} ∈ V → (𝐴m 𝐵) = {𝑓𝑓:𝐵𝐴}))
123, 4, 11syl2an 596 . 2 ((𝐴𝐶𝐵𝐷) → ({𝑓𝑓:𝐵𝐴} ∈ V → (𝐴m 𝐵) = {𝑓𝑓:𝐵𝐴}))
132, 12mpd 15 1 ((𝐴𝐶𝐵𝐷) → (𝐴m 𝐵) = {𝑓𝑓:𝐵𝐴})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {cab 2707  Vcvv 3438  wf 6482  (class class class)co 7353  m cmap 8760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-map 8762
This theorem is referenced by:  mapval  8772  elmapg  8773  ixpconstg  8840  hashf1lem2  14382  efmndbasabf  18765  symgbasfi  19277  birthdaylem1  26878  birthdaylem2  26879  cnfex  45026
  Copyright terms: Public domain W3C validator