| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mapvalg | Structured version Visualization version GIF version | ||
| Description: The value of set exponentiation. (𝐴 ↑m 𝐵) is the set of all functions that map from 𝐵 to 𝐴. Definition 10.24 of [Kunen] p. 24. (Contributed by NM, 8-Dec-2003.) (Revised by Mario Carneiro, 8-Sep-2013.) |
| Ref | Expression |
|---|---|
| mapvalg | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴 ↑m 𝐵) = {𝑓 ∣ 𝑓:𝐵⟶𝐴}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mapex 7942 | . . 3 ⊢ ((𝐵 ∈ 𝐷 ∧ 𝐴 ∈ 𝐶) → {𝑓 ∣ 𝑓:𝐵⟶𝐴} ∈ V) | |
| 2 | 1 | ancoms 458 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → {𝑓 ∣ 𝑓:𝐵⟶𝐴} ∈ V) |
| 3 | elex 3485 | . . 3 ⊢ (𝐴 ∈ 𝐶 → 𝐴 ∈ V) | |
| 4 | elex 3485 | . . 3 ⊢ (𝐵 ∈ 𝐷 → 𝐵 ∈ V) | |
| 5 | feq3 6693 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝑓:𝑦⟶𝑥 ↔ 𝑓:𝑦⟶𝐴)) | |
| 6 | 5 | abbidv 2802 | . . . . 5 ⊢ (𝑥 = 𝐴 → {𝑓 ∣ 𝑓:𝑦⟶𝑥} = {𝑓 ∣ 𝑓:𝑦⟶𝐴}) |
| 7 | feq2 6692 | . . . . . 6 ⊢ (𝑦 = 𝐵 → (𝑓:𝑦⟶𝐴 ↔ 𝑓:𝐵⟶𝐴)) | |
| 8 | 7 | abbidv 2802 | . . . . 5 ⊢ (𝑦 = 𝐵 → {𝑓 ∣ 𝑓:𝑦⟶𝐴} = {𝑓 ∣ 𝑓:𝐵⟶𝐴}) |
| 9 | df-map 8847 | . . . . 5 ⊢ ↑m = (𝑥 ∈ V, 𝑦 ∈ V ↦ {𝑓 ∣ 𝑓:𝑦⟶𝑥}) | |
| 10 | 6, 8, 9 | ovmpog 7571 | . . . 4 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ {𝑓 ∣ 𝑓:𝐵⟶𝐴} ∈ V) → (𝐴 ↑m 𝐵) = {𝑓 ∣ 𝑓:𝐵⟶𝐴}) |
| 11 | 10 | 3expia 1121 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ({𝑓 ∣ 𝑓:𝐵⟶𝐴} ∈ V → (𝐴 ↑m 𝐵) = {𝑓 ∣ 𝑓:𝐵⟶𝐴})) |
| 12 | 3, 4, 11 | syl2an 596 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → ({𝑓 ∣ 𝑓:𝐵⟶𝐴} ∈ V → (𝐴 ↑m 𝐵) = {𝑓 ∣ 𝑓:𝐵⟶𝐴})) |
| 13 | 2, 12 | mpd 15 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴 ↑m 𝐵) = {𝑓 ∣ 𝑓:𝐵⟶𝐴}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cab 2714 Vcvv 3464 ⟶wf 6532 (class class class)co 7410 ↑m cmap 8845 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-map 8847 |
| This theorem is referenced by: mapval 8857 elmapg 8858 ixpconstg 8925 hashf1lem2 14479 efmndbasabf 18855 symgbasfi 19365 birthdaylem1 26918 birthdaylem2 26919 cnfex 45019 |
| Copyright terms: Public domain | W3C validator |