Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > efmndbas | Structured version Visualization version GIF version |
Description: The base set of the monoid of endofunctions on class 𝐴. (Contributed by AV, 25-Jan-2024.) |
Ref | Expression |
---|---|
efmndbas.g | ⊢ 𝐺 = (EndoFMnd‘𝐴) |
efmndbas.b | ⊢ 𝐵 = (Base‘𝐺) |
Ref | Expression |
---|---|
efmndbas | ⊢ 𝐵 = (𝐴 ↑m 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | efmndbas.b | . 2 ⊢ 𝐵 = (Base‘𝐺) | |
2 | ovex 7203 | . . . . 5 ⊢ (𝐴 ↑m 𝐴) ∈ V | |
3 | eqid 2738 | . . . . . 6 ⊢ {〈(Base‘ndx), (𝐴 ↑m 𝐴)〉, 〈(+g‘ndx), (𝑓 ∈ (𝐴 ↑m 𝐴), 𝑔 ∈ (𝐴 ↑m 𝐴) ↦ (𝑓 ∘ 𝑔))〉, 〈(TopSet‘ndx), (∏t‘(𝐴 × {𝒫 𝐴}))〉} = {〈(Base‘ndx), (𝐴 ↑m 𝐴)〉, 〈(+g‘ndx), (𝑓 ∈ (𝐴 ↑m 𝐴), 𝑔 ∈ (𝐴 ↑m 𝐴) ↦ (𝑓 ∘ 𝑔))〉, 〈(TopSet‘ndx), (∏t‘(𝐴 × {𝒫 𝐴}))〉} | |
4 | 3 | topgrpbas 16765 | . . . . 5 ⊢ ((𝐴 ↑m 𝐴) ∈ V → (𝐴 ↑m 𝐴) = (Base‘{〈(Base‘ndx), (𝐴 ↑m 𝐴)〉, 〈(+g‘ndx), (𝑓 ∈ (𝐴 ↑m 𝐴), 𝑔 ∈ (𝐴 ↑m 𝐴) ↦ (𝑓 ∘ 𝑔))〉, 〈(TopSet‘ndx), (∏t‘(𝐴 × {𝒫 𝐴}))〉})) |
5 | 2, 4 | mp1i 13 | . . . 4 ⊢ (𝐴 ∈ V → (𝐴 ↑m 𝐴) = (Base‘{〈(Base‘ndx), (𝐴 ↑m 𝐴)〉, 〈(+g‘ndx), (𝑓 ∈ (𝐴 ↑m 𝐴), 𝑔 ∈ (𝐴 ↑m 𝐴) ↦ (𝑓 ∘ 𝑔))〉, 〈(TopSet‘ndx), (∏t‘(𝐴 × {𝒫 𝐴}))〉})) |
6 | efmndbas.g | . . . . . 6 ⊢ 𝐺 = (EndoFMnd‘𝐴) | |
7 | eqid 2738 | . . . . . 6 ⊢ (𝐴 ↑m 𝐴) = (𝐴 ↑m 𝐴) | |
8 | eqid 2738 | . . . . . 6 ⊢ (𝑓 ∈ (𝐴 ↑m 𝐴), 𝑔 ∈ (𝐴 ↑m 𝐴) ↦ (𝑓 ∘ 𝑔)) = (𝑓 ∈ (𝐴 ↑m 𝐴), 𝑔 ∈ (𝐴 ↑m 𝐴) ↦ (𝑓 ∘ 𝑔)) | |
9 | eqid 2738 | . . . . . 6 ⊢ (∏t‘(𝐴 × {𝒫 𝐴})) = (∏t‘(𝐴 × {𝒫 𝐴})) | |
10 | 6, 7, 8, 9 | efmnd 18151 | . . . . 5 ⊢ (𝐴 ∈ V → 𝐺 = {〈(Base‘ndx), (𝐴 ↑m 𝐴)〉, 〈(+g‘ndx), (𝑓 ∈ (𝐴 ↑m 𝐴), 𝑔 ∈ (𝐴 ↑m 𝐴) ↦ (𝑓 ∘ 𝑔))〉, 〈(TopSet‘ndx), (∏t‘(𝐴 × {𝒫 𝐴}))〉}) |
11 | 10 | fveq2d 6678 | . . . 4 ⊢ (𝐴 ∈ V → (Base‘𝐺) = (Base‘{〈(Base‘ndx), (𝐴 ↑m 𝐴)〉, 〈(+g‘ndx), (𝑓 ∈ (𝐴 ↑m 𝐴), 𝑔 ∈ (𝐴 ↑m 𝐴) ↦ (𝑓 ∘ 𝑔))〉, 〈(TopSet‘ndx), (∏t‘(𝐴 × {𝒫 𝐴}))〉})) |
12 | 5, 11 | eqtr4d 2776 | . . 3 ⊢ (𝐴 ∈ V → (𝐴 ↑m 𝐴) = (Base‘𝐺)) |
13 | base0 16639 | . . . 4 ⊢ ∅ = (Base‘∅) | |
14 | reldmmap 8446 | . . . . 5 ⊢ Rel dom ↑m | |
15 | 14 | ovprc1 7209 | . . . 4 ⊢ (¬ 𝐴 ∈ V → (𝐴 ↑m 𝐴) = ∅) |
16 | fvprc 6666 | . . . . . 6 ⊢ (¬ 𝐴 ∈ V → (EndoFMnd‘𝐴) = ∅) | |
17 | 6, 16 | syl5eq 2785 | . . . . 5 ⊢ (¬ 𝐴 ∈ V → 𝐺 = ∅) |
18 | 17 | fveq2d 6678 | . . . 4 ⊢ (¬ 𝐴 ∈ V → (Base‘𝐺) = (Base‘∅)) |
19 | 13, 15, 18 | 3eqtr4a 2799 | . . 3 ⊢ (¬ 𝐴 ∈ V → (𝐴 ↑m 𝐴) = (Base‘𝐺)) |
20 | 12, 19 | pm2.61i 185 | . 2 ⊢ (𝐴 ↑m 𝐴) = (Base‘𝐺) |
21 | 1, 20 | eqtr4i 2764 | 1 ⊢ 𝐵 = (𝐴 ↑m 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1542 ∈ wcel 2114 Vcvv 3398 ∅c0 4211 𝒫 cpw 4488 {csn 4516 {ctp 4520 〈cop 4522 × cxp 5523 ∘ ccom 5529 ‘cfv 6339 (class class class)co 7170 ∈ cmpo 7172 ↑m cmap 8437 ndxcnx 16583 Basecbs 16586 +gcplusg 16668 TopSetcts 16674 ∏tcpt 16815 EndoFMndcefmnd 18149 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7479 ax-cnex 10671 ax-resscn 10672 ax-1cn 10673 ax-icn 10674 ax-addcl 10675 ax-addrcl 10676 ax-mulcl 10677 ax-mulrcl 10678 ax-mulcom 10679 ax-addass 10680 ax-mulass 10681 ax-distr 10682 ax-i2m1 10683 ax-1ne0 10684 ax-1rid 10685 ax-rnegex 10686 ax-rrecex 10687 ax-cnre 10688 ax-pre-lttri 10689 ax-pre-lttrn 10690 ax-pre-ltadd 10691 ax-pre-mulgt0 10692 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-reu 3060 df-rab 3062 df-v 3400 df-sbc 3681 df-csb 3791 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-pss 3862 df-nul 4212 df-if 4415 df-pw 4490 df-sn 4517 df-pr 4519 df-tp 4521 df-op 4523 df-uni 4797 df-iun 4883 df-br 5031 df-opab 5093 df-mpt 5111 df-tr 5137 df-id 5429 df-eprel 5434 df-po 5442 df-so 5443 df-fr 5483 df-we 5485 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6129 df-ord 6175 df-on 6176 df-lim 6177 df-suc 6178 df-iota 6297 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-riota 7127 df-ov 7173 df-oprab 7174 df-mpo 7175 df-om 7600 df-1st 7714 df-2nd 7715 df-wrecs 7976 df-recs 8037 df-rdg 8075 df-1o 8131 df-er 8320 df-map 8439 df-en 8556 df-dom 8557 df-sdom 8558 df-fin 8559 df-pnf 10755 df-mnf 10756 df-xr 10757 df-ltxr 10758 df-le 10759 df-sub 10950 df-neg 10951 df-nn 11717 df-2 11779 df-3 11780 df-4 11781 df-5 11782 df-6 11783 df-7 11784 df-8 11785 df-9 11786 df-n0 11977 df-z 12063 df-uz 12325 df-fz 12982 df-struct 16588 df-ndx 16589 df-slot 16590 df-base 16592 df-plusg 16681 df-tset 16687 df-efmnd 18150 |
This theorem is referenced by: efmndbasabf 18153 elefmndbas 18154 efmndhash 18157 efmndbasfi 18158 efmndplusg 18161 efmndbas0 18172 efmnd1bas 18174 smndex1ibas 18181 smndex1gbas 18183 symgplusg 18629 symgpssefmnd 18642 symgvalstruct 18643 symgsubmefmndALT 18649 efmndtmd 22852 1aryenefmnd 45526 |
Copyright terms: Public domain | W3C validator |