| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > efmndbas | Structured version Visualization version GIF version | ||
| Description: The base set of the monoid of endofunctions on class 𝐴. (Contributed by AV, 25-Jan-2024.) |
| Ref | Expression |
|---|---|
| efmndbas.g | ⊢ 𝐺 = (EndoFMnd‘𝐴) |
| efmndbas.b | ⊢ 𝐵 = (Base‘𝐺) |
| Ref | Expression |
|---|---|
| efmndbas | ⊢ 𝐵 = (𝐴 ↑m 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | efmndbas.b | . 2 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | ovex 7379 | . . . . 5 ⊢ (𝐴 ↑m 𝐴) ∈ V | |
| 3 | eqid 2731 | . . . . . 6 ⊢ {〈(Base‘ndx), (𝐴 ↑m 𝐴)〉, 〈(+g‘ndx), (𝑓 ∈ (𝐴 ↑m 𝐴), 𝑔 ∈ (𝐴 ↑m 𝐴) ↦ (𝑓 ∘ 𝑔))〉, 〈(TopSet‘ndx), (∏t‘(𝐴 × {𝒫 𝐴}))〉} = {〈(Base‘ndx), (𝐴 ↑m 𝐴)〉, 〈(+g‘ndx), (𝑓 ∈ (𝐴 ↑m 𝐴), 𝑔 ∈ (𝐴 ↑m 𝐴) ↦ (𝑓 ∘ 𝑔))〉, 〈(TopSet‘ndx), (∏t‘(𝐴 × {𝒫 𝐴}))〉} | |
| 4 | 3 | topgrpbas 17266 | . . . . 5 ⊢ ((𝐴 ↑m 𝐴) ∈ V → (𝐴 ↑m 𝐴) = (Base‘{〈(Base‘ndx), (𝐴 ↑m 𝐴)〉, 〈(+g‘ndx), (𝑓 ∈ (𝐴 ↑m 𝐴), 𝑔 ∈ (𝐴 ↑m 𝐴) ↦ (𝑓 ∘ 𝑔))〉, 〈(TopSet‘ndx), (∏t‘(𝐴 × {𝒫 𝐴}))〉})) |
| 5 | 2, 4 | mp1i 13 | . . . 4 ⊢ (𝐴 ∈ V → (𝐴 ↑m 𝐴) = (Base‘{〈(Base‘ndx), (𝐴 ↑m 𝐴)〉, 〈(+g‘ndx), (𝑓 ∈ (𝐴 ↑m 𝐴), 𝑔 ∈ (𝐴 ↑m 𝐴) ↦ (𝑓 ∘ 𝑔))〉, 〈(TopSet‘ndx), (∏t‘(𝐴 × {𝒫 𝐴}))〉})) |
| 6 | efmndbas.g | . . . . . 6 ⊢ 𝐺 = (EndoFMnd‘𝐴) | |
| 7 | eqid 2731 | . . . . . 6 ⊢ (𝐴 ↑m 𝐴) = (𝐴 ↑m 𝐴) | |
| 8 | eqid 2731 | . . . . . 6 ⊢ (𝑓 ∈ (𝐴 ↑m 𝐴), 𝑔 ∈ (𝐴 ↑m 𝐴) ↦ (𝑓 ∘ 𝑔)) = (𝑓 ∈ (𝐴 ↑m 𝐴), 𝑔 ∈ (𝐴 ↑m 𝐴) ↦ (𝑓 ∘ 𝑔)) | |
| 9 | eqid 2731 | . . . . . 6 ⊢ (∏t‘(𝐴 × {𝒫 𝐴})) = (∏t‘(𝐴 × {𝒫 𝐴})) | |
| 10 | 6, 7, 8, 9 | efmnd 18778 | . . . . 5 ⊢ (𝐴 ∈ V → 𝐺 = {〈(Base‘ndx), (𝐴 ↑m 𝐴)〉, 〈(+g‘ndx), (𝑓 ∈ (𝐴 ↑m 𝐴), 𝑔 ∈ (𝐴 ↑m 𝐴) ↦ (𝑓 ∘ 𝑔))〉, 〈(TopSet‘ndx), (∏t‘(𝐴 × {𝒫 𝐴}))〉}) |
| 11 | 10 | fveq2d 6826 | . . . 4 ⊢ (𝐴 ∈ V → (Base‘𝐺) = (Base‘{〈(Base‘ndx), (𝐴 ↑m 𝐴)〉, 〈(+g‘ndx), (𝑓 ∈ (𝐴 ↑m 𝐴), 𝑔 ∈ (𝐴 ↑m 𝐴) ↦ (𝑓 ∘ 𝑔))〉, 〈(TopSet‘ndx), (∏t‘(𝐴 × {𝒫 𝐴}))〉})) |
| 12 | 5, 11 | eqtr4d 2769 | . . 3 ⊢ (𝐴 ∈ V → (𝐴 ↑m 𝐴) = (Base‘𝐺)) |
| 13 | base0 17125 | . . . 4 ⊢ ∅ = (Base‘∅) | |
| 14 | reldmmap 8759 | . . . . 5 ⊢ Rel dom ↑m | |
| 15 | 14 | ovprc1 7385 | . . . 4 ⊢ (¬ 𝐴 ∈ V → (𝐴 ↑m 𝐴) = ∅) |
| 16 | fvprc 6814 | . . . . . 6 ⊢ (¬ 𝐴 ∈ V → (EndoFMnd‘𝐴) = ∅) | |
| 17 | 6, 16 | eqtrid 2778 | . . . . 5 ⊢ (¬ 𝐴 ∈ V → 𝐺 = ∅) |
| 18 | 17 | fveq2d 6826 | . . . 4 ⊢ (¬ 𝐴 ∈ V → (Base‘𝐺) = (Base‘∅)) |
| 19 | 13, 15, 18 | 3eqtr4a 2792 | . . 3 ⊢ (¬ 𝐴 ∈ V → (𝐴 ↑m 𝐴) = (Base‘𝐺)) |
| 20 | 12, 19 | pm2.61i 182 | . 2 ⊢ (𝐴 ↑m 𝐴) = (Base‘𝐺) |
| 21 | 1, 20 | eqtr4i 2757 | 1 ⊢ 𝐵 = (𝐴 ↑m 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∅c0 4280 𝒫 cpw 4547 {csn 4573 {ctp 4577 〈cop 4579 × cxp 5612 ∘ ccom 5618 ‘cfv 6481 (class class class)co 7346 ∈ cmpo 7348 ↑m cmap 8750 ndxcnx 17104 Basecbs 17120 +gcplusg 17161 TopSetcts 17167 ∏tcpt 17342 EndoFMndcefmnd 18776 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-z 12469 df-uz 12733 df-fz 13408 df-struct 17058 df-slot 17093 df-ndx 17105 df-base 17121 df-plusg 17174 df-tset 17180 df-efmnd 18777 |
| This theorem is referenced by: efmndbasabf 18780 elefmndbas 18781 efmndhash 18784 efmndbasfi 18785 efmndplusg 18788 efmndbas0 18799 efmnd1bas 18801 smndex1ibas 18808 smndex1gbas 18810 symgplusg 19295 symgpssefmnd 19308 symgvalstruct 19309 symgsubmefmndALT 19315 efmndtmd 24016 1aryenefmnd 48686 |
| Copyright terms: Public domain | W3C validator |