| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > efmndbas | Structured version Visualization version GIF version | ||
| Description: The base set of the monoid of endofunctions on class 𝐴. (Contributed by AV, 25-Jan-2024.) |
| Ref | Expression |
|---|---|
| efmndbas.g | ⊢ 𝐺 = (EndoFMnd‘𝐴) |
| efmndbas.b | ⊢ 𝐵 = (Base‘𝐺) |
| Ref | Expression |
|---|---|
| efmndbas | ⊢ 𝐵 = (𝐴 ↑m 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | efmndbas.b | . 2 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | ovex 7423 | . . . . 5 ⊢ (𝐴 ↑m 𝐴) ∈ V | |
| 3 | eqid 2730 | . . . . . 6 ⊢ {〈(Base‘ndx), (𝐴 ↑m 𝐴)〉, 〈(+g‘ndx), (𝑓 ∈ (𝐴 ↑m 𝐴), 𝑔 ∈ (𝐴 ↑m 𝐴) ↦ (𝑓 ∘ 𝑔))〉, 〈(TopSet‘ndx), (∏t‘(𝐴 × {𝒫 𝐴}))〉} = {〈(Base‘ndx), (𝐴 ↑m 𝐴)〉, 〈(+g‘ndx), (𝑓 ∈ (𝐴 ↑m 𝐴), 𝑔 ∈ (𝐴 ↑m 𝐴) ↦ (𝑓 ∘ 𝑔))〉, 〈(TopSet‘ndx), (∏t‘(𝐴 × {𝒫 𝐴}))〉} | |
| 4 | 3 | topgrpbas 17332 | . . . . 5 ⊢ ((𝐴 ↑m 𝐴) ∈ V → (𝐴 ↑m 𝐴) = (Base‘{〈(Base‘ndx), (𝐴 ↑m 𝐴)〉, 〈(+g‘ndx), (𝑓 ∈ (𝐴 ↑m 𝐴), 𝑔 ∈ (𝐴 ↑m 𝐴) ↦ (𝑓 ∘ 𝑔))〉, 〈(TopSet‘ndx), (∏t‘(𝐴 × {𝒫 𝐴}))〉})) |
| 5 | 2, 4 | mp1i 13 | . . . 4 ⊢ (𝐴 ∈ V → (𝐴 ↑m 𝐴) = (Base‘{〈(Base‘ndx), (𝐴 ↑m 𝐴)〉, 〈(+g‘ndx), (𝑓 ∈ (𝐴 ↑m 𝐴), 𝑔 ∈ (𝐴 ↑m 𝐴) ↦ (𝑓 ∘ 𝑔))〉, 〈(TopSet‘ndx), (∏t‘(𝐴 × {𝒫 𝐴}))〉})) |
| 6 | efmndbas.g | . . . . . 6 ⊢ 𝐺 = (EndoFMnd‘𝐴) | |
| 7 | eqid 2730 | . . . . . 6 ⊢ (𝐴 ↑m 𝐴) = (𝐴 ↑m 𝐴) | |
| 8 | eqid 2730 | . . . . . 6 ⊢ (𝑓 ∈ (𝐴 ↑m 𝐴), 𝑔 ∈ (𝐴 ↑m 𝐴) ↦ (𝑓 ∘ 𝑔)) = (𝑓 ∈ (𝐴 ↑m 𝐴), 𝑔 ∈ (𝐴 ↑m 𝐴) ↦ (𝑓 ∘ 𝑔)) | |
| 9 | eqid 2730 | . . . . . 6 ⊢ (∏t‘(𝐴 × {𝒫 𝐴})) = (∏t‘(𝐴 × {𝒫 𝐴})) | |
| 10 | 6, 7, 8, 9 | efmnd 18804 | . . . . 5 ⊢ (𝐴 ∈ V → 𝐺 = {〈(Base‘ndx), (𝐴 ↑m 𝐴)〉, 〈(+g‘ndx), (𝑓 ∈ (𝐴 ↑m 𝐴), 𝑔 ∈ (𝐴 ↑m 𝐴) ↦ (𝑓 ∘ 𝑔))〉, 〈(TopSet‘ndx), (∏t‘(𝐴 × {𝒫 𝐴}))〉}) |
| 11 | 10 | fveq2d 6865 | . . . 4 ⊢ (𝐴 ∈ V → (Base‘𝐺) = (Base‘{〈(Base‘ndx), (𝐴 ↑m 𝐴)〉, 〈(+g‘ndx), (𝑓 ∈ (𝐴 ↑m 𝐴), 𝑔 ∈ (𝐴 ↑m 𝐴) ↦ (𝑓 ∘ 𝑔))〉, 〈(TopSet‘ndx), (∏t‘(𝐴 × {𝒫 𝐴}))〉})) |
| 12 | 5, 11 | eqtr4d 2768 | . . 3 ⊢ (𝐴 ∈ V → (𝐴 ↑m 𝐴) = (Base‘𝐺)) |
| 13 | base0 17191 | . . . 4 ⊢ ∅ = (Base‘∅) | |
| 14 | reldmmap 8811 | . . . . 5 ⊢ Rel dom ↑m | |
| 15 | 14 | ovprc1 7429 | . . . 4 ⊢ (¬ 𝐴 ∈ V → (𝐴 ↑m 𝐴) = ∅) |
| 16 | fvprc 6853 | . . . . . 6 ⊢ (¬ 𝐴 ∈ V → (EndoFMnd‘𝐴) = ∅) | |
| 17 | 6, 16 | eqtrid 2777 | . . . . 5 ⊢ (¬ 𝐴 ∈ V → 𝐺 = ∅) |
| 18 | 17 | fveq2d 6865 | . . . 4 ⊢ (¬ 𝐴 ∈ V → (Base‘𝐺) = (Base‘∅)) |
| 19 | 13, 15, 18 | 3eqtr4a 2791 | . . 3 ⊢ (¬ 𝐴 ∈ V → (𝐴 ↑m 𝐴) = (Base‘𝐺)) |
| 20 | 12, 19 | pm2.61i 182 | . 2 ⊢ (𝐴 ↑m 𝐴) = (Base‘𝐺) |
| 21 | 1, 20 | eqtr4i 2756 | 1 ⊢ 𝐵 = (𝐴 ↑m 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ∅c0 4299 𝒫 cpw 4566 {csn 4592 {ctp 4596 〈cop 4598 × cxp 5639 ∘ ccom 5645 ‘cfv 6514 (class class class)co 7390 ∈ cmpo 7392 ↑m cmap 8802 ndxcnx 17170 Basecbs 17186 +gcplusg 17227 TopSetcts 17233 ∏tcpt 17408 EndoFMndcefmnd 18802 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-map 8804 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-uz 12801 df-fz 13476 df-struct 17124 df-slot 17159 df-ndx 17171 df-base 17187 df-plusg 17240 df-tset 17246 df-efmnd 18803 |
| This theorem is referenced by: efmndbasabf 18806 elefmndbas 18807 efmndhash 18810 efmndbasfi 18811 efmndplusg 18814 efmndbas0 18825 efmnd1bas 18827 smndex1ibas 18834 smndex1gbas 18836 symgplusg 19320 symgpssefmnd 19333 symgvalstruct 19334 symgsubmefmndALT 19340 efmndtmd 23995 1aryenefmnd 48639 |
| Copyright terms: Public domain | W3C validator |