| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > efmndbas | Structured version Visualization version GIF version | ||
| Description: The base set of the monoid of endofunctions on class 𝐴. (Contributed by AV, 25-Jan-2024.) |
| Ref | Expression |
|---|---|
| efmndbas.g | ⊢ 𝐺 = (EndoFMnd‘𝐴) |
| efmndbas.b | ⊢ 𝐵 = (Base‘𝐺) |
| Ref | Expression |
|---|---|
| efmndbas | ⊢ 𝐵 = (𝐴 ↑m 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | efmndbas.b | . 2 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | ovex 7438 | . . . . 5 ⊢ (𝐴 ↑m 𝐴) ∈ V | |
| 3 | eqid 2735 | . . . . . 6 ⊢ {〈(Base‘ndx), (𝐴 ↑m 𝐴)〉, 〈(+g‘ndx), (𝑓 ∈ (𝐴 ↑m 𝐴), 𝑔 ∈ (𝐴 ↑m 𝐴) ↦ (𝑓 ∘ 𝑔))〉, 〈(TopSet‘ndx), (∏t‘(𝐴 × {𝒫 𝐴}))〉} = {〈(Base‘ndx), (𝐴 ↑m 𝐴)〉, 〈(+g‘ndx), (𝑓 ∈ (𝐴 ↑m 𝐴), 𝑔 ∈ (𝐴 ↑m 𝐴) ↦ (𝑓 ∘ 𝑔))〉, 〈(TopSet‘ndx), (∏t‘(𝐴 × {𝒫 𝐴}))〉} | |
| 4 | 3 | topgrpbas 17376 | . . . . 5 ⊢ ((𝐴 ↑m 𝐴) ∈ V → (𝐴 ↑m 𝐴) = (Base‘{〈(Base‘ndx), (𝐴 ↑m 𝐴)〉, 〈(+g‘ndx), (𝑓 ∈ (𝐴 ↑m 𝐴), 𝑔 ∈ (𝐴 ↑m 𝐴) ↦ (𝑓 ∘ 𝑔))〉, 〈(TopSet‘ndx), (∏t‘(𝐴 × {𝒫 𝐴}))〉})) |
| 5 | 2, 4 | mp1i 13 | . . . 4 ⊢ (𝐴 ∈ V → (𝐴 ↑m 𝐴) = (Base‘{〈(Base‘ndx), (𝐴 ↑m 𝐴)〉, 〈(+g‘ndx), (𝑓 ∈ (𝐴 ↑m 𝐴), 𝑔 ∈ (𝐴 ↑m 𝐴) ↦ (𝑓 ∘ 𝑔))〉, 〈(TopSet‘ndx), (∏t‘(𝐴 × {𝒫 𝐴}))〉})) |
| 6 | efmndbas.g | . . . . . 6 ⊢ 𝐺 = (EndoFMnd‘𝐴) | |
| 7 | eqid 2735 | . . . . . 6 ⊢ (𝐴 ↑m 𝐴) = (𝐴 ↑m 𝐴) | |
| 8 | eqid 2735 | . . . . . 6 ⊢ (𝑓 ∈ (𝐴 ↑m 𝐴), 𝑔 ∈ (𝐴 ↑m 𝐴) ↦ (𝑓 ∘ 𝑔)) = (𝑓 ∈ (𝐴 ↑m 𝐴), 𝑔 ∈ (𝐴 ↑m 𝐴) ↦ (𝑓 ∘ 𝑔)) | |
| 9 | eqid 2735 | . . . . . 6 ⊢ (∏t‘(𝐴 × {𝒫 𝐴})) = (∏t‘(𝐴 × {𝒫 𝐴})) | |
| 10 | 6, 7, 8, 9 | efmnd 18848 | . . . . 5 ⊢ (𝐴 ∈ V → 𝐺 = {〈(Base‘ndx), (𝐴 ↑m 𝐴)〉, 〈(+g‘ndx), (𝑓 ∈ (𝐴 ↑m 𝐴), 𝑔 ∈ (𝐴 ↑m 𝐴) ↦ (𝑓 ∘ 𝑔))〉, 〈(TopSet‘ndx), (∏t‘(𝐴 × {𝒫 𝐴}))〉}) |
| 11 | 10 | fveq2d 6880 | . . . 4 ⊢ (𝐴 ∈ V → (Base‘𝐺) = (Base‘{〈(Base‘ndx), (𝐴 ↑m 𝐴)〉, 〈(+g‘ndx), (𝑓 ∈ (𝐴 ↑m 𝐴), 𝑔 ∈ (𝐴 ↑m 𝐴) ↦ (𝑓 ∘ 𝑔))〉, 〈(TopSet‘ndx), (∏t‘(𝐴 × {𝒫 𝐴}))〉})) |
| 12 | 5, 11 | eqtr4d 2773 | . . 3 ⊢ (𝐴 ∈ V → (𝐴 ↑m 𝐴) = (Base‘𝐺)) |
| 13 | base0 17233 | . . . 4 ⊢ ∅ = (Base‘∅) | |
| 14 | reldmmap 8849 | . . . . 5 ⊢ Rel dom ↑m | |
| 15 | 14 | ovprc1 7444 | . . . 4 ⊢ (¬ 𝐴 ∈ V → (𝐴 ↑m 𝐴) = ∅) |
| 16 | fvprc 6868 | . . . . . 6 ⊢ (¬ 𝐴 ∈ V → (EndoFMnd‘𝐴) = ∅) | |
| 17 | 6, 16 | eqtrid 2782 | . . . . 5 ⊢ (¬ 𝐴 ∈ V → 𝐺 = ∅) |
| 18 | 17 | fveq2d 6880 | . . . 4 ⊢ (¬ 𝐴 ∈ V → (Base‘𝐺) = (Base‘∅)) |
| 19 | 13, 15, 18 | 3eqtr4a 2796 | . . 3 ⊢ (¬ 𝐴 ∈ V → (𝐴 ↑m 𝐴) = (Base‘𝐺)) |
| 20 | 12, 19 | pm2.61i 182 | . 2 ⊢ (𝐴 ↑m 𝐴) = (Base‘𝐺) |
| 21 | 1, 20 | eqtr4i 2761 | 1 ⊢ 𝐵 = (𝐴 ↑m 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2108 Vcvv 3459 ∅c0 4308 𝒫 cpw 4575 {csn 4601 {ctp 4605 〈cop 4607 × cxp 5652 ∘ ccom 5658 ‘cfv 6531 (class class class)co 7405 ∈ cmpo 7407 ↑m cmap 8840 ndxcnx 17212 Basecbs 17228 +gcplusg 17271 TopSetcts 17277 ∏tcpt 17452 EndoFMndcefmnd 18846 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8719 df-map 8842 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12502 df-z 12589 df-uz 12853 df-fz 13525 df-struct 17166 df-slot 17201 df-ndx 17213 df-base 17229 df-plusg 17284 df-tset 17290 df-efmnd 18847 |
| This theorem is referenced by: efmndbasabf 18850 elefmndbas 18851 efmndhash 18854 efmndbasfi 18855 efmndplusg 18858 efmndbas0 18869 efmnd1bas 18871 smndex1ibas 18878 smndex1gbas 18880 symgplusg 19364 symgpssefmnd 19377 symgvalstruct 19378 symgsubmefmndALT 19384 efmndtmd 24039 1aryenefmnd 48626 |
| Copyright terms: Public domain | W3C validator |