| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mapssfset | Structured version Visualization version GIF version | ||
| Description: The value of the set exponentiation (𝐵 ↑m 𝐴) is a subset of the class of functions from 𝐴 to 𝐵. (Contributed by AV, 10-Aug-2024.) |
| Ref | Expression |
|---|---|
| mapssfset | ⊢ (𝐵 ↑m 𝐴) ⊆ {𝑓 ∣ 𝑓:𝐴⟶𝐵} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mapfset 8873 | . . 3 ⊢ (𝐵 ∈ V → {𝑓 ∣ 𝑓:𝐴⟶𝐵} = (𝐵 ↑m 𝐴)) | |
| 2 | eqimss2 4025 | . . 3 ⊢ ({𝑓 ∣ 𝑓:𝐴⟶𝐵} = (𝐵 ↑m 𝐴) → (𝐵 ↑m 𝐴) ⊆ {𝑓 ∣ 𝑓:𝐴⟶𝐵}) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (𝐵 ∈ V → (𝐵 ↑m 𝐴) ⊆ {𝑓 ∣ 𝑓:𝐴⟶𝐵}) |
| 4 | reldmmap 8858 | . . . 4 ⊢ Rel dom ↑m | |
| 5 | 4 | ovprc1 7453 | . . 3 ⊢ (¬ 𝐵 ∈ V → (𝐵 ↑m 𝐴) = ∅) |
| 6 | 0ss 4382 | . . 3 ⊢ ∅ ⊆ {𝑓 ∣ 𝑓:𝐴⟶𝐵} | |
| 7 | 5, 6 | eqsstrdi 4010 | . 2 ⊢ (¬ 𝐵 ∈ V → (𝐵 ↑m 𝐴) ⊆ {𝑓 ∣ 𝑓:𝐴⟶𝐵}) |
| 8 | 3, 7 | pm2.61i 182 | 1 ⊢ (𝐵 ↑m 𝐴) ⊆ {𝑓 ∣ 𝑓:𝐴⟶𝐵} |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1539 ∈ wcel 2107 {cab 2712 Vcvv 3464 ⊆ wss 3933 ∅c0 4315 ⟶wf 6538 (class class class)co 7414 ↑m cmap 8849 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ral 3051 df-rex 3060 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-iun 4975 df-br 5126 df-opab 5188 df-mpt 5208 df-id 5560 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-fv 6550 df-ov 7417 df-oprab 7418 df-mpo 7419 df-1st 7997 df-2nd 7998 df-map 8851 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |