MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mapssfset Structured version   Visualization version   GIF version

Theorem mapssfset 8870
Description: The value of the set exponentiation (𝐵m 𝐴) is a subset of the class of functions from 𝐴 to 𝐵. (Contributed by AV, 10-Aug-2024.)
Assertion
Ref Expression
mapssfset (𝐵m 𝐴) ⊆ {𝑓𝑓:𝐴𝐵}
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓

Proof of Theorem mapssfset
StepHypRef Expression
1 mapfset 8869 . . 3 (𝐵 ∈ V → {𝑓𝑓:𝐴𝐵} = (𝐵m 𝐴))
2 eqimss2 4023 . . 3 ({𝑓𝑓:𝐴𝐵} = (𝐵m 𝐴) → (𝐵m 𝐴) ⊆ {𝑓𝑓:𝐴𝐵})
31, 2syl 17 . 2 (𝐵 ∈ V → (𝐵m 𝐴) ⊆ {𝑓𝑓:𝐴𝐵})
4 reldmmap 8854 . . . 4 Rel dom ↑m
54ovprc1 7449 . . 3 𝐵 ∈ V → (𝐵m 𝐴) = ∅)
6 0ss 4380 . . 3 ∅ ⊆ {𝑓𝑓:𝐴𝐵}
75, 6eqsstrdi 4008 . 2 𝐵 ∈ V → (𝐵m 𝐴) ⊆ {𝑓𝑓:𝐴𝐵})
83, 7pm2.61i 182 1 (𝐵m 𝐴) ⊆ {𝑓𝑓:𝐴𝐵}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1540  wcel 2109  {cab 2714  Vcvv 3464  wss 3931  c0 4313  wf 6532  (class class class)co 7410  m cmap 8845
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-1st 7993  df-2nd 7994  df-map 8847
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator