| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mapssfset | Structured version Visualization version GIF version | ||
| Description: The value of the set exponentiation (𝐵 ↑m 𝐴) is a subset of the class of functions from 𝐴 to 𝐵. (Contributed by AV, 10-Aug-2024.) |
| Ref | Expression |
|---|---|
| mapssfset | ⊢ (𝐵 ↑m 𝐴) ⊆ {𝑓 ∣ 𝑓:𝐴⟶𝐵} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mapfset 8823 | . . 3 ⊢ (𝐵 ∈ V → {𝑓 ∣ 𝑓:𝐴⟶𝐵} = (𝐵 ↑m 𝐴)) | |
| 2 | eqimss2 4006 | . . 3 ⊢ ({𝑓 ∣ 𝑓:𝐴⟶𝐵} = (𝐵 ↑m 𝐴) → (𝐵 ↑m 𝐴) ⊆ {𝑓 ∣ 𝑓:𝐴⟶𝐵}) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (𝐵 ∈ V → (𝐵 ↑m 𝐴) ⊆ {𝑓 ∣ 𝑓:𝐴⟶𝐵}) |
| 4 | reldmmap 8808 | . . . 4 ⊢ Rel dom ↑m | |
| 5 | 4 | ovprc1 7426 | . . 3 ⊢ (¬ 𝐵 ∈ V → (𝐵 ↑m 𝐴) = ∅) |
| 6 | 0ss 4363 | . . 3 ⊢ ∅ ⊆ {𝑓 ∣ 𝑓:𝐴⟶𝐵} | |
| 7 | 5, 6 | eqsstrdi 3991 | . 2 ⊢ (¬ 𝐵 ∈ V → (𝐵 ↑m 𝐴) ⊆ {𝑓 ∣ 𝑓:𝐴⟶𝐵}) |
| 8 | 3, 7 | pm2.61i 182 | 1 ⊢ (𝐵 ↑m 𝐴) ⊆ {𝑓 ∣ 𝑓:𝐴⟶𝐵} |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2109 {cab 2707 Vcvv 3447 ⊆ wss 3914 ∅c0 4296 ⟶wf 6507 (class class class)co 7387 ↑m cmap 8799 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-map 8801 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |