MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relexpsucld Structured version   Visualization version   GIF version

Theorem relexpsucld 14980
Description: A reduction for relation exponentiation to the left. (Contributed by Drahflow, 12-Nov-2015.) (Revised by RP, 30-May-2020.) (Revised by AV, 12-Jul-2024.)
Hypotheses
Ref Expression
relexpsucrd.1 (𝜑 → Rel 𝑅)
relexpsucrd.2 (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
relexpsucld (𝜑 → (𝑅𝑟(𝑁 + 1)) = (𝑅 ∘ (𝑅𝑟𝑁)))

Proof of Theorem relexpsucld
StepHypRef Expression
1 simpr 485 . . . 4 ((𝜑𝑅 ∈ V) → 𝑅 ∈ V)
2 relexpsucrd.1 . . . . 5 (𝜑 → Rel 𝑅)
32adantr 481 . . . 4 ((𝜑𝑅 ∈ V) → Rel 𝑅)
4 relexpsucrd.2 . . . . 5 (𝜑𝑁 ∈ ℕ0)
54adantr 481 . . . 4 ((𝜑𝑅 ∈ V) → 𝑁 ∈ ℕ0)
6 relexpsucl 14977 . . . 4 ((𝑅 ∈ V ∧ Rel 𝑅𝑁 ∈ ℕ0) → (𝑅𝑟(𝑁 + 1)) = (𝑅 ∘ (𝑅𝑟𝑁)))
71, 3, 5, 6syl3anc 1371 . . 3 ((𝜑𝑅 ∈ V) → (𝑅𝑟(𝑁 + 1)) = (𝑅 ∘ (𝑅𝑟𝑁)))
87ex 413 . 2 (𝜑 → (𝑅 ∈ V → (𝑅𝑟(𝑁 + 1)) = (𝑅 ∘ (𝑅𝑟𝑁))))
9 reldmrelexp 14967 . . . 4 Rel dom ↑𝑟
109ovprc1 7447 . . 3 𝑅 ∈ V → (𝑅𝑟(𝑁 + 1)) = ∅)
119ovprc1 7447 . . . . 5 𝑅 ∈ V → (𝑅𝑟𝑁) = ∅)
1211coeq2d 5862 . . . 4 𝑅 ∈ V → (𝑅 ∘ (𝑅𝑟𝑁)) = (𝑅 ∘ ∅))
13 co02 6259 . . . 4 (𝑅 ∘ ∅) = ∅
1412, 13eqtr2di 2789 . . 3 𝑅 ∈ V → ∅ = (𝑅 ∘ (𝑅𝑟𝑁)))
1510, 14eqtrd 2772 . 2 𝑅 ∈ V → (𝑅𝑟(𝑁 + 1)) = (𝑅 ∘ (𝑅𝑟𝑁)))
168, 15pm2.61d1 180 1 (𝜑 → (𝑅𝑟(𝑁 + 1)) = (𝑅 ∘ (𝑅𝑟𝑁)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1541  wcel 2106  Vcvv 3474  c0 4322  ccom 5680  Rel wrel 5681  (class class class)co 7408  1c1 11110   + caddc 11112  0cn0 12471  𝑟crelexp 14965
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-om 7855  df-2nd 7975  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-er 8702  df-en 8939  df-dom 8940  df-sdom 8941  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-nn 12212  df-n0 12472  df-z 12558  df-uz 12822  df-seq 13966  df-relexp 14966
This theorem is referenced by:  relexpindlem  15009
  Copyright terms: Public domain W3C validator