MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oppgplusfval Structured version   Visualization version   GIF version

Theorem oppgplusfval 19287
Description: Value of the addition operation of an opposite group. (Contributed by Stefan O'Rear, 26-Aug-2015.) (Revised by Fan Zheng, 26-Jun-2016.)
Hypotheses
Ref Expression
oppgval.2 + = (+g𝑅)
oppgval.3 𝑂 = (oppg𝑅)
oppgplusfval.4 = (+g𝑂)
Assertion
Ref Expression
oppgplusfval = tpos +

Proof of Theorem oppgplusfval
StepHypRef Expression
1 oppgplusfval.4 . 2 = (+g𝑂)
2 oppgval.2 . . . . . 6 + = (+g𝑅)
3 oppgval.3 . . . . . 6 𝑂 = (oppg𝑅)
42, 3oppgval 19286 . . . . 5 𝑂 = (𝑅 sSet ⟨(+g‘ndx), tpos + ⟩)
54fveq2i 6864 . . . 4 (+g𝑂) = (+g‘(𝑅 sSet ⟨(+g‘ndx), tpos + ⟩))
62fvexi 6875 . . . . . 6 + ∈ V
76tposex 8242 . . . . 5 tpos + ∈ V
8 plusgid 17254 . . . . . 6 +g = Slot (+g‘ndx)
98setsid 17184 . . . . 5 ((𝑅 ∈ V ∧ tpos + ∈ V) → tpos + = (+g‘(𝑅 sSet ⟨(+g‘ndx), tpos + ⟩)))
107, 9mpan2 691 . . . 4 (𝑅 ∈ V → tpos + = (+g‘(𝑅 sSet ⟨(+g‘ndx), tpos + ⟩)))
115, 10eqtr4id 2784 . . 3 (𝑅 ∈ V → (+g𝑂) = tpos + )
12 tpos0 8238 . . . . 5 tpos ∅ = ∅
138str0 17166 . . . . 5 ∅ = (+g‘∅)
1412, 13eqtr2i 2754 . . . 4 (+g‘∅) = tpos ∅
15 reldmsets 17142 . . . . . . 7 Rel dom sSet
1615ovprc1 7429 . . . . . 6 𝑅 ∈ V → (𝑅 sSet ⟨(+g‘ndx), tpos + ⟩) = ∅)
174, 16eqtrid 2777 . . . . 5 𝑅 ∈ V → 𝑂 = ∅)
1817fveq2d 6865 . . . 4 𝑅 ∈ V → (+g𝑂) = (+g‘∅))
19 fvprc 6853 . . . . . 6 𝑅 ∈ V → (+g𝑅) = ∅)
202, 19eqtrid 2777 . . . . 5 𝑅 ∈ V → + = ∅)
2120tposeqd 8211 . . . 4 𝑅 ∈ V → tpos + = tpos ∅)
2214, 18, 213eqtr4a 2791 . . 3 𝑅 ∈ V → (+g𝑂) = tpos + )
2311, 22pm2.61i 182 . 2 (+g𝑂) = tpos +
241, 23eqtri 2753 1 = tpos +
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1540  wcel 2109  Vcvv 3450  c0 4299  cop 4598  cfv 6514  (class class class)co 7390  tpos ctpos 8207   sSet csts 17140  ndxcnx 17170  +gcplusg 17227  oppgcoppg 19284
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-1cn 11133  ax-addcl 11135
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-tpos 8208  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-nn 12194  df-2 12256  df-sets 17141  df-slot 17159  df-ndx 17171  df-plusg 17240  df-oppg 19285
This theorem is referenced by:  oppgplus  19288  oppgoppcco  49584
  Copyright terms: Public domain W3C validator