MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oppgplusfval Structured version   Visualization version   GIF version

Theorem oppgplusfval 19280
Description: Value of the addition operation of an opposite group. (Contributed by Stefan O'Rear, 26-Aug-2015.) (Revised by Fan Zheng, 26-Jun-2016.)
Hypotheses
Ref Expression
oppgval.2 + = (+g𝑅)
oppgval.3 𝑂 = (oppg𝑅)
oppgplusfval.4 = (+g𝑂)
Assertion
Ref Expression
oppgplusfval = tpos +

Proof of Theorem oppgplusfval
StepHypRef Expression
1 oppgplusfval.4 . 2 = (+g𝑂)
2 oppgval.2 . . . . . 6 + = (+g𝑅)
3 oppgval.3 . . . . . 6 𝑂 = (oppg𝑅)
42, 3oppgval 19279 . . . . 5 𝑂 = (𝑅 sSet ⟨(+g‘ndx), tpos + ⟩)
54fveq2i 6861 . . . 4 (+g𝑂) = (+g‘(𝑅 sSet ⟨(+g‘ndx), tpos + ⟩))
62fvexi 6872 . . . . . 6 + ∈ V
76tposex 8239 . . . . 5 tpos + ∈ V
8 plusgid 17247 . . . . . 6 +g = Slot (+g‘ndx)
98setsid 17177 . . . . 5 ((𝑅 ∈ V ∧ tpos + ∈ V) → tpos + = (+g‘(𝑅 sSet ⟨(+g‘ndx), tpos + ⟩)))
107, 9mpan2 691 . . . 4 (𝑅 ∈ V → tpos + = (+g‘(𝑅 sSet ⟨(+g‘ndx), tpos + ⟩)))
115, 10eqtr4id 2783 . . 3 (𝑅 ∈ V → (+g𝑂) = tpos + )
12 tpos0 8235 . . . . 5 tpos ∅ = ∅
138str0 17159 . . . . 5 ∅ = (+g‘∅)
1412, 13eqtr2i 2753 . . . 4 (+g‘∅) = tpos ∅
15 reldmsets 17135 . . . . . . 7 Rel dom sSet
1615ovprc1 7426 . . . . . 6 𝑅 ∈ V → (𝑅 sSet ⟨(+g‘ndx), tpos + ⟩) = ∅)
174, 16eqtrid 2776 . . . . 5 𝑅 ∈ V → 𝑂 = ∅)
1817fveq2d 6862 . . . 4 𝑅 ∈ V → (+g𝑂) = (+g‘∅))
19 fvprc 6850 . . . . . 6 𝑅 ∈ V → (+g𝑅) = ∅)
202, 19eqtrid 2776 . . . . 5 𝑅 ∈ V → + = ∅)
2120tposeqd 8208 . . . 4 𝑅 ∈ V → tpos + = tpos ∅)
2214, 18, 213eqtr4a 2790 . . 3 𝑅 ∈ V → (+g𝑂) = tpos + )
2311, 22pm2.61i 182 . 2 (+g𝑂) = tpos +
241, 23eqtri 2752 1 = tpos +
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1540  wcel 2109  Vcvv 3447  c0 4296  cop 4595  cfv 6511  (class class class)co 7387  tpos ctpos 8204   sSet csts 17133  ndxcnx 17163  +gcplusg 17220  oppgcoppg 19277
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-1cn 11126  ax-addcl 11128
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-tpos 8205  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-nn 12187  df-2 12249  df-sets 17134  df-slot 17152  df-ndx 17164  df-plusg 17233  df-oppg 19278
This theorem is referenced by:  oppgplus  19281  oppgoppcco  49580
  Copyright terms: Public domain W3C validator