| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oppgplusfval | Structured version Visualization version GIF version | ||
| Description: Value of the addition operation of an opposite group. (Contributed by Stefan O'Rear, 26-Aug-2015.) (Revised by Fan Zheng, 26-Jun-2016.) |
| Ref | Expression |
|---|---|
| oppgval.2 | ⊢ + = (+g‘𝑅) |
| oppgval.3 | ⊢ 𝑂 = (oppg‘𝑅) |
| oppgplusfval.4 | ⊢ ✚ = (+g‘𝑂) |
| Ref | Expression |
|---|---|
| oppgplusfval | ⊢ ✚ = tpos + |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppgplusfval.4 | . 2 ⊢ ✚ = (+g‘𝑂) | |
| 2 | oppgval.2 | . . . . . 6 ⊢ + = (+g‘𝑅) | |
| 3 | oppgval.3 | . . . . . 6 ⊢ 𝑂 = (oppg‘𝑅) | |
| 4 | 2, 3 | oppgval 19261 | . . . . 5 ⊢ 𝑂 = (𝑅 sSet 〈(+g‘ndx), tpos + 〉) |
| 5 | 4 | fveq2i 6831 | . . . 4 ⊢ (+g‘𝑂) = (+g‘(𝑅 sSet 〈(+g‘ndx), tpos + 〉)) |
| 6 | 2 | fvexi 6842 | . . . . . 6 ⊢ + ∈ V |
| 7 | 6 | tposex 8196 | . . . . 5 ⊢ tpos + ∈ V |
| 8 | plusgid 17190 | . . . . . 6 ⊢ +g = Slot (+g‘ndx) | |
| 9 | 8 | setsid 17120 | . . . . 5 ⊢ ((𝑅 ∈ V ∧ tpos + ∈ V) → tpos + = (+g‘(𝑅 sSet 〈(+g‘ndx), tpos + 〉))) |
| 10 | 7, 9 | mpan2 691 | . . . 4 ⊢ (𝑅 ∈ V → tpos + = (+g‘(𝑅 sSet 〈(+g‘ndx), tpos + 〉))) |
| 11 | 5, 10 | eqtr4id 2787 | . . 3 ⊢ (𝑅 ∈ V → (+g‘𝑂) = tpos + ) |
| 12 | tpos0 8192 | . . . . 5 ⊢ tpos ∅ = ∅ | |
| 13 | 8 | str0 17102 | . . . . 5 ⊢ ∅ = (+g‘∅) |
| 14 | 12, 13 | eqtr2i 2757 | . . . 4 ⊢ (+g‘∅) = tpos ∅ |
| 15 | reldmsets 17078 | . . . . . . 7 ⊢ Rel dom sSet | |
| 16 | 15 | ovprc1 7391 | . . . . . 6 ⊢ (¬ 𝑅 ∈ V → (𝑅 sSet 〈(+g‘ndx), tpos + 〉) = ∅) |
| 17 | 4, 16 | eqtrid 2780 | . . . . 5 ⊢ (¬ 𝑅 ∈ V → 𝑂 = ∅) |
| 18 | 17 | fveq2d 6832 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (+g‘𝑂) = (+g‘∅)) |
| 19 | fvprc 6820 | . . . . . 6 ⊢ (¬ 𝑅 ∈ V → (+g‘𝑅) = ∅) | |
| 20 | 2, 19 | eqtrid 2780 | . . . . 5 ⊢ (¬ 𝑅 ∈ V → + = ∅) |
| 21 | 20 | tposeqd 8165 | . . . 4 ⊢ (¬ 𝑅 ∈ V → tpos + = tpos ∅) |
| 22 | 14, 18, 21 | 3eqtr4a 2794 | . . 3 ⊢ (¬ 𝑅 ∈ V → (+g‘𝑂) = tpos + ) |
| 23 | 11, 22 | pm2.61i 182 | . 2 ⊢ (+g‘𝑂) = tpos + |
| 24 | 1, 23 | eqtri 2756 | 1 ⊢ ✚ = tpos + |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1541 ∈ wcel 2113 Vcvv 3437 ∅c0 4282 〈cop 4581 ‘cfv 6486 (class class class)co 7352 tpos ctpos 8161 sSet csts 17076 ndxcnx 17106 +gcplusg 17163 oppgcoppg 19259 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-1cn 11071 ax-addcl 11073 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-2nd 7928 df-tpos 8162 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-nn 12133 df-2 12195 df-sets 17077 df-slot 17095 df-ndx 17107 df-plusg 17176 df-oppg 19260 |
| This theorem is referenced by: oppgplus 19263 oppgoppcco 49716 |
| Copyright terms: Public domain | W3C validator |