| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oppgplusfval | Structured version Visualization version GIF version | ||
| Description: Value of the addition operation of an opposite group. (Contributed by Stefan O'Rear, 26-Aug-2015.) (Revised by Fan Zheng, 26-Jun-2016.) |
| Ref | Expression |
|---|---|
| oppgval.2 | ⊢ + = (+g‘𝑅) |
| oppgval.3 | ⊢ 𝑂 = (oppg‘𝑅) |
| oppgplusfval.4 | ⊢ ✚ = (+g‘𝑂) |
| Ref | Expression |
|---|---|
| oppgplusfval | ⊢ ✚ = tpos + |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppgplusfval.4 | . 2 ⊢ ✚ = (+g‘𝑂) | |
| 2 | oppgval.2 | . . . . . 6 ⊢ + = (+g‘𝑅) | |
| 3 | oppgval.3 | . . . . . 6 ⊢ 𝑂 = (oppg‘𝑅) | |
| 4 | 2, 3 | oppgval 19244 | . . . . 5 ⊢ 𝑂 = (𝑅 sSet 〈(+g‘ndx), tpos + 〉) |
| 5 | 4 | fveq2i 6829 | . . . 4 ⊢ (+g‘𝑂) = (+g‘(𝑅 sSet 〈(+g‘ndx), tpos + 〉)) |
| 6 | 2 | fvexi 6840 | . . . . . 6 ⊢ + ∈ V |
| 7 | 6 | tposex 8200 | . . . . 5 ⊢ tpos + ∈ V |
| 8 | plusgid 17206 | . . . . . 6 ⊢ +g = Slot (+g‘ndx) | |
| 9 | 8 | setsid 17136 | . . . . 5 ⊢ ((𝑅 ∈ V ∧ tpos + ∈ V) → tpos + = (+g‘(𝑅 sSet 〈(+g‘ndx), tpos + 〉))) |
| 10 | 7, 9 | mpan2 691 | . . . 4 ⊢ (𝑅 ∈ V → tpos + = (+g‘(𝑅 sSet 〈(+g‘ndx), tpos + 〉))) |
| 11 | 5, 10 | eqtr4id 2783 | . . 3 ⊢ (𝑅 ∈ V → (+g‘𝑂) = tpos + ) |
| 12 | tpos0 8196 | . . . . 5 ⊢ tpos ∅ = ∅ | |
| 13 | 8 | str0 17118 | . . . . 5 ⊢ ∅ = (+g‘∅) |
| 14 | 12, 13 | eqtr2i 2753 | . . . 4 ⊢ (+g‘∅) = tpos ∅ |
| 15 | reldmsets 17094 | . . . . . . 7 ⊢ Rel dom sSet | |
| 16 | 15 | ovprc1 7392 | . . . . . 6 ⊢ (¬ 𝑅 ∈ V → (𝑅 sSet 〈(+g‘ndx), tpos + 〉) = ∅) |
| 17 | 4, 16 | eqtrid 2776 | . . . . 5 ⊢ (¬ 𝑅 ∈ V → 𝑂 = ∅) |
| 18 | 17 | fveq2d 6830 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (+g‘𝑂) = (+g‘∅)) |
| 19 | fvprc 6818 | . . . . . 6 ⊢ (¬ 𝑅 ∈ V → (+g‘𝑅) = ∅) | |
| 20 | 2, 19 | eqtrid 2776 | . . . . 5 ⊢ (¬ 𝑅 ∈ V → + = ∅) |
| 21 | 20 | tposeqd 8169 | . . . 4 ⊢ (¬ 𝑅 ∈ V → tpos + = tpos ∅) |
| 22 | 14, 18, 21 | 3eqtr4a 2790 | . . 3 ⊢ (¬ 𝑅 ∈ V → (+g‘𝑂) = tpos + ) |
| 23 | 11, 22 | pm2.61i 182 | . 2 ⊢ (+g‘𝑂) = tpos + |
| 24 | 1, 23 | eqtri 2752 | 1 ⊢ ✚ = tpos + |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2109 Vcvv 3438 ∅c0 4286 〈cop 4585 ‘cfv 6486 (class class class)co 7353 tpos ctpos 8165 sSet csts 17092 ndxcnx 17122 +gcplusg 17179 oppgcoppg 19242 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-1cn 11086 ax-addcl 11088 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-2nd 7932 df-tpos 8166 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-nn 12147 df-2 12209 df-sets 17093 df-slot 17111 df-ndx 17123 df-plusg 17192 df-oppg 19243 |
| This theorem is referenced by: oppgplus 19246 oppgoppcco 49577 |
| Copyright terms: Public domain | W3C validator |