| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oppgplusfval | Structured version Visualization version GIF version | ||
| Description: Value of the addition operation of an opposite group. (Contributed by Stefan O'Rear, 26-Aug-2015.) (Revised by Fan Zheng, 26-Jun-2016.) |
| Ref | Expression |
|---|---|
| oppgval.2 | ⊢ + = (+g‘𝑅) |
| oppgval.3 | ⊢ 𝑂 = (oppg‘𝑅) |
| oppgplusfval.4 | ⊢ ✚ = (+g‘𝑂) |
| Ref | Expression |
|---|---|
| oppgplusfval | ⊢ ✚ = tpos + |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppgplusfval.4 | . 2 ⊢ ✚ = (+g‘𝑂) | |
| 2 | oppgval.2 | . . . . . 6 ⊢ + = (+g‘𝑅) | |
| 3 | oppgval.3 | . . . . . 6 ⊢ 𝑂 = (oppg‘𝑅) | |
| 4 | 2, 3 | oppgval 19257 | . . . . 5 ⊢ 𝑂 = (𝑅 sSet 〈(+g‘ndx), tpos + 〉) |
| 5 | 4 | fveq2i 6825 | . . . 4 ⊢ (+g‘𝑂) = (+g‘(𝑅 sSet 〈(+g‘ndx), tpos + 〉)) |
| 6 | 2 | fvexi 6836 | . . . . . 6 ⊢ + ∈ V |
| 7 | 6 | tposex 8190 | . . . . 5 ⊢ tpos + ∈ V |
| 8 | plusgid 17185 | . . . . . 6 ⊢ +g = Slot (+g‘ndx) | |
| 9 | 8 | setsid 17115 | . . . . 5 ⊢ ((𝑅 ∈ V ∧ tpos + ∈ V) → tpos + = (+g‘(𝑅 sSet 〈(+g‘ndx), tpos + 〉))) |
| 10 | 7, 9 | mpan2 691 | . . . 4 ⊢ (𝑅 ∈ V → tpos + = (+g‘(𝑅 sSet 〈(+g‘ndx), tpos + 〉))) |
| 11 | 5, 10 | eqtr4id 2785 | . . 3 ⊢ (𝑅 ∈ V → (+g‘𝑂) = tpos + ) |
| 12 | tpos0 8186 | . . . . 5 ⊢ tpos ∅ = ∅ | |
| 13 | 8 | str0 17097 | . . . . 5 ⊢ ∅ = (+g‘∅) |
| 14 | 12, 13 | eqtr2i 2755 | . . . 4 ⊢ (+g‘∅) = tpos ∅ |
| 15 | reldmsets 17073 | . . . . . . 7 ⊢ Rel dom sSet | |
| 16 | 15 | ovprc1 7385 | . . . . . 6 ⊢ (¬ 𝑅 ∈ V → (𝑅 sSet 〈(+g‘ndx), tpos + 〉) = ∅) |
| 17 | 4, 16 | eqtrid 2778 | . . . . 5 ⊢ (¬ 𝑅 ∈ V → 𝑂 = ∅) |
| 18 | 17 | fveq2d 6826 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (+g‘𝑂) = (+g‘∅)) |
| 19 | fvprc 6814 | . . . . . 6 ⊢ (¬ 𝑅 ∈ V → (+g‘𝑅) = ∅) | |
| 20 | 2, 19 | eqtrid 2778 | . . . . 5 ⊢ (¬ 𝑅 ∈ V → + = ∅) |
| 21 | 20 | tposeqd 8159 | . . . 4 ⊢ (¬ 𝑅 ∈ V → tpos + = tpos ∅) |
| 22 | 14, 18, 21 | 3eqtr4a 2792 | . . 3 ⊢ (¬ 𝑅 ∈ V → (+g‘𝑂) = tpos + ) |
| 23 | 11, 22 | pm2.61i 182 | . 2 ⊢ (+g‘𝑂) = tpos + |
| 24 | 1, 23 | eqtri 2754 | 1 ⊢ ✚ = tpos + |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∅c0 4283 〈cop 4582 ‘cfv 6481 (class class class)co 7346 tpos ctpos 8155 sSet csts 17071 ndxcnx 17101 +gcplusg 17158 oppgcoppg 19255 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-1cn 11061 ax-addcl 11063 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-tpos 8156 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-nn 12123 df-2 12185 df-sets 17072 df-slot 17090 df-ndx 17102 df-plusg 17171 df-oppg 19256 |
| This theorem is referenced by: oppgplus 19259 oppgoppcco 49622 |
| Copyright terms: Public domain | W3C validator |