MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oppgplusfval Structured version   Visualization version   GIF version

Theorem oppgplusfval 18952
Description: Value of the addition operation of an opposite group. (Contributed by Stefan O'Rear, 26-Aug-2015.) (Revised by Fan Zheng, 26-Jun-2016.)
Hypotheses
Ref Expression
oppgval.2 + = (+g𝑅)
oppgval.3 𝑂 = (oppg𝑅)
oppgplusfval.4 = (+g𝑂)
Assertion
Ref Expression
oppgplusfval = tpos +

Proof of Theorem oppgplusfval
StepHypRef Expression
1 oppgplusfval.4 . 2 = (+g𝑂)
2 oppgval.2 . . . . . 6 + = (+g𝑅)
3 oppgval.3 . . . . . 6 𝑂 = (oppg𝑅)
42, 3oppgval 18951 . . . . 5 𝑂 = (𝑅 sSet ⟨(+g‘ndx), tpos + ⟩)
54fveq2i 6777 . . . 4 (+g𝑂) = (+g‘(𝑅 sSet ⟨(+g‘ndx), tpos + ⟩))
62fvexi 6788 . . . . . 6 + ∈ V
76tposex 8076 . . . . 5 tpos + ∈ V
8 plusgid 16989 . . . . . 6 +g = Slot (+g‘ndx)
98setsid 16909 . . . . 5 ((𝑅 ∈ V ∧ tpos + ∈ V) → tpos + = (+g‘(𝑅 sSet ⟨(+g‘ndx), tpos + ⟩)))
107, 9mpan2 688 . . . 4 (𝑅 ∈ V → tpos + = (+g‘(𝑅 sSet ⟨(+g‘ndx), tpos + ⟩)))
115, 10eqtr4id 2797 . . 3 (𝑅 ∈ V → (+g𝑂) = tpos + )
12 tpos0 8072 . . . . 5 tpos ∅ = ∅
138str0 16890 . . . . 5 ∅ = (+g‘∅)
1412, 13eqtr2i 2767 . . . 4 (+g‘∅) = tpos ∅
15 reldmsets 16866 . . . . . . 7 Rel dom sSet
1615ovprc1 7314 . . . . . 6 𝑅 ∈ V → (𝑅 sSet ⟨(+g‘ndx), tpos + ⟩) = ∅)
174, 16eqtrid 2790 . . . . 5 𝑅 ∈ V → 𝑂 = ∅)
1817fveq2d 6778 . . . 4 𝑅 ∈ V → (+g𝑂) = (+g‘∅))
19 fvprc 6766 . . . . . 6 𝑅 ∈ V → (+g𝑅) = ∅)
202, 19eqtrid 2790 . . . . 5 𝑅 ∈ V → + = ∅)
2120tposeqd 8045 . . . 4 𝑅 ∈ V → tpos + = tpos ∅)
2214, 18, 213eqtr4a 2804 . . 3 𝑅 ∈ V → (+g𝑂) = tpos + )
2311, 22pm2.61i 182 . 2 (+g𝑂) = tpos +
241, 23eqtri 2766 1 = tpos +
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1539  wcel 2106  Vcvv 3432  c0 4256  cop 4567  cfv 6433  (class class class)co 7275  tpos ctpos 8041   sSet csts 16864  ndxcnx 16894  +gcplusg 16962  oppgcoppg 18949
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-1cn 10929  ax-addcl 10931
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-tpos 8042  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-nn 11974  df-2 12036  df-sets 16865  df-slot 16883  df-ndx 16895  df-plusg 16975  df-oppg 18950
This theorem is referenced by:  oppgplus  18953
  Copyright terms: Public domain W3C validator