MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oppgplusfval Structured version   Visualization version   GIF version

Theorem oppgplusfval 19388
Description: Value of the addition operation of an opposite group. (Contributed by Stefan O'Rear, 26-Aug-2015.) (Revised by Fan Zheng, 26-Jun-2016.)
Hypotheses
Ref Expression
oppgval.2 + = (+g𝑅)
oppgval.3 𝑂 = (oppg𝑅)
oppgplusfval.4 = (+g𝑂)
Assertion
Ref Expression
oppgplusfval = tpos +

Proof of Theorem oppgplusfval
StepHypRef Expression
1 oppgplusfval.4 . 2 = (+g𝑂)
2 oppgval.2 . . . . . 6 + = (+g𝑅)
3 oppgval.3 . . . . . 6 𝑂 = (oppg𝑅)
42, 3oppgval 19387 . . . . 5 𝑂 = (𝑅 sSet ⟨(+g‘ndx), tpos + ⟩)
54fveq2i 6923 . . . 4 (+g𝑂) = (+g‘(𝑅 sSet ⟨(+g‘ndx), tpos + ⟩))
62fvexi 6934 . . . . . 6 + ∈ V
76tposex 8301 . . . . 5 tpos + ∈ V
8 plusgid 17338 . . . . . 6 +g = Slot (+g‘ndx)
98setsid 17255 . . . . 5 ((𝑅 ∈ V ∧ tpos + ∈ V) → tpos + = (+g‘(𝑅 sSet ⟨(+g‘ndx), tpos + ⟩)))
107, 9mpan2 690 . . . 4 (𝑅 ∈ V → tpos + = (+g‘(𝑅 sSet ⟨(+g‘ndx), tpos + ⟩)))
115, 10eqtr4id 2799 . . 3 (𝑅 ∈ V → (+g𝑂) = tpos + )
12 tpos0 8297 . . . . 5 tpos ∅ = ∅
138str0 17236 . . . . 5 ∅ = (+g‘∅)
1412, 13eqtr2i 2769 . . . 4 (+g‘∅) = tpos ∅
15 reldmsets 17212 . . . . . . 7 Rel dom sSet
1615ovprc1 7487 . . . . . 6 𝑅 ∈ V → (𝑅 sSet ⟨(+g‘ndx), tpos + ⟩) = ∅)
174, 16eqtrid 2792 . . . . 5 𝑅 ∈ V → 𝑂 = ∅)
1817fveq2d 6924 . . . 4 𝑅 ∈ V → (+g𝑂) = (+g‘∅))
19 fvprc 6912 . . . . . 6 𝑅 ∈ V → (+g𝑅) = ∅)
202, 19eqtrid 2792 . . . . 5 𝑅 ∈ V → + = ∅)
2120tposeqd 8270 . . . 4 𝑅 ∈ V → tpos + = tpos ∅)
2214, 18, 213eqtr4a 2806 . . 3 𝑅 ∈ V → (+g𝑂) = tpos + )
2311, 22pm2.61i 182 . 2 (+g𝑂) = tpos +
241, 23eqtri 2768 1 = tpos +
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1537  wcel 2108  Vcvv 3488  c0 4352  cop 4654  cfv 6573  (class class class)co 7448  tpos ctpos 8266   sSet csts 17210  ndxcnx 17240  +gcplusg 17311  oppgcoppg 19385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-1cn 11242  ax-addcl 11244
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-tpos 8267  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-nn 12294  df-2 12356  df-sets 17211  df-slot 17229  df-ndx 17241  df-plusg 17324  df-oppg 19386
This theorem is referenced by:  oppgplus  19389
  Copyright terms: Public domain W3C validator