MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  setsnid Structured version   Visualization version   GIF version

Theorem setsnid 17211
Description: Value of the structure replacement function at an untouched index. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Mario Carneiro, 30-Apr-2015.) (Proof shortened by AV, 7-Nov-2024.)
Hypotheses
Ref Expression
setsid.e 𝐸 = Slot (𝐸‘ndx)
setsnid.n (𝐸‘ndx) ≠ 𝐷
Assertion
Ref Expression
setsnid (𝐸𝑊) = (𝐸‘(𝑊 sSet ⟨𝐷, 𝐶⟩))

Proof of Theorem setsnid
StepHypRef Expression
1 setsid.e . . . 4 𝐸 = Slot (𝐸‘ndx)
2 id 22 . . . 4 (𝑊 ∈ V → 𝑊 ∈ V)
31, 2strfvnd 17187 . . 3 (𝑊 ∈ V → (𝐸𝑊) = (𝑊‘(𝐸‘ndx)))
4 ovex 7457 . . . . 5 (𝑊 sSet ⟨𝐷, 𝐶⟩) ∈ V
54, 1strfvn 17188 . . . 4 (𝐸‘(𝑊 sSet ⟨𝐷, 𝐶⟩)) = ((𝑊 sSet ⟨𝐷, 𝐶⟩)‘(𝐸‘ndx))
6 setsres 17180 . . . . . 6 (𝑊 ∈ V → ((𝑊 sSet ⟨𝐷, 𝐶⟩) ↾ (V ∖ {𝐷})) = (𝑊 ↾ (V ∖ {𝐷})))
76fveq1d 6903 . . . . 5 (𝑊 ∈ V → (((𝑊 sSet ⟨𝐷, 𝐶⟩) ↾ (V ∖ {𝐷}))‘(𝐸‘ndx)) = ((𝑊 ↾ (V ∖ {𝐷}))‘(𝐸‘ndx)))
8 fvex 6914 . . . . . . 7 (𝐸‘ndx) ∈ V
9 setsnid.n . . . . . . 7 (𝐸‘ndx) ≠ 𝐷
10 eldifsn 4795 . . . . . . 7 ((𝐸‘ndx) ∈ (V ∖ {𝐷}) ↔ ((𝐸‘ndx) ∈ V ∧ (𝐸‘ndx) ≠ 𝐷))
118, 9, 10mpbir2an 709 . . . . . 6 (𝐸‘ndx) ∈ (V ∖ {𝐷})
12 fvres 6920 . . . . . 6 ((𝐸‘ndx) ∈ (V ∖ {𝐷}) → (((𝑊 sSet ⟨𝐷, 𝐶⟩) ↾ (V ∖ {𝐷}))‘(𝐸‘ndx)) = ((𝑊 sSet ⟨𝐷, 𝐶⟩)‘(𝐸‘ndx)))
1311, 12ax-mp 5 . . . . 5 (((𝑊 sSet ⟨𝐷, 𝐶⟩) ↾ (V ∖ {𝐷}))‘(𝐸‘ndx)) = ((𝑊 sSet ⟨𝐷, 𝐶⟩)‘(𝐸‘ndx))
14 fvres 6920 . . . . . 6 ((𝐸‘ndx) ∈ (V ∖ {𝐷}) → ((𝑊 ↾ (V ∖ {𝐷}))‘(𝐸‘ndx)) = (𝑊‘(𝐸‘ndx)))
1511, 14ax-mp 5 . . . . 5 ((𝑊 ↾ (V ∖ {𝐷}))‘(𝐸‘ndx)) = (𝑊‘(𝐸‘ndx))
167, 13, 153eqtr3g 2789 . . . 4 (𝑊 ∈ V → ((𝑊 sSet ⟨𝐷, 𝐶⟩)‘(𝐸‘ndx)) = (𝑊‘(𝐸‘ndx)))
175, 16eqtrid 2778 . . 3 (𝑊 ∈ V → (𝐸‘(𝑊 sSet ⟨𝐷, 𝐶⟩)) = (𝑊‘(𝐸‘ndx)))
183, 17eqtr4d 2769 . 2 (𝑊 ∈ V → (𝐸𝑊) = (𝐸‘(𝑊 sSet ⟨𝐷, 𝐶⟩)))
191str0 17191 . . . 4 ∅ = (𝐸‘∅)
2019eqcomi 2735 . . 3 (𝐸‘∅) = ∅
21 eqid 2726 . . 3 (𝑊 sSet ⟨𝐷, 𝐶⟩) = (𝑊 sSet ⟨𝐷, 𝐶⟩)
22 reldmsets 17167 . . 3 Rel dom sSet
2320, 21, 22oveqprc 17194 . 2 𝑊 ∈ V → (𝐸𝑊) = (𝐸‘(𝑊 sSet ⟨𝐷, 𝐶⟩)))
2418, 23pm2.61i 182 1 (𝐸𝑊) = (𝐸‘(𝑊 sSet ⟨𝐷, 𝐶⟩))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1534  wcel 2099  wne 2930  Vcvv 3462  cdif 3944  c0 4325  {csn 4633  cop 4639  cres 5684  cfv 6554  (class class class)co 7424   sSet csts 17165  Slot cslot 17183  ndxcnx 17195
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5304  ax-nul 5311  ax-pr 5433  ax-un 7746
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3464  df-sbc 3777  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4326  df-if 4534  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-br 5154  df-opab 5216  df-mpt 5237  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-res 5694  df-iota 6506  df-fun 6556  df-fv 6562  df-ov 7427  df-oprab 7428  df-mpo 7429  df-sets 17166  df-slot 17184
This theorem is referenced by:  resseqnbas  17255  resslemOLD  17256  oppchomfval  17727  oppchomfvalOLD  17728  oppcbas  17732  oppcbasOLD  17733  rescbas  17845  rescbasOLD  17846  rescco  17849  resccoOLD  17850  rescabs  17851  rescabsOLD  17852  odubas  18316  odubasOLD  18317  setsplusg  19344  oppglemOLD  19345  mgplemOLD  20122  opprlem  20321  opprlemOLD  20322  rmodislmod  20906  rmodislmodOLD  20907  sralem  21154  sralemOLD  21155  srasca  21162  srascaOLD  21163  sravsca  21164  sravscaOLD  21165  zlmlem  21506  zlmlemOLD  21507  zlmsca  21514  znbaslem  21532  znbaslemOLD  21533  thlbas  21692  thlbasOLD  21693  thlle  21694  thlleOLD  21695  opsrbaslem  22056  opsrbaslemOLD  22057  matbas  22404  matplusg  22405  matsca  22406  matscaOLD  22407  matvsca  22408  matvscaOLD  22409  tuslem  24262  tuslemOLD  24263  setsmsbas  24472  setsmsbasOLD  24473  setsmsds  24474  setsmsdsOLD  24475  tnglem  24640  tnglemOLD  24641  tngds  24655  tngdsOLD  24656  ttgval  28802  ttgvalOLD  28803  ttglem  28804  ttglemOLD  28805  cchhllem  28820  cchhllemOLD  28821  setsvtx  28971  resvlem  33205  resvlemOLD  33206  zlmds  33777  zlmdsOLD  33778  zlmtset  33779  zlmtsetOLD  33780  hlhilslem  41637  hlhilslemOLD  41638  mnringnmulrd  43883  mnringnmulrdOLD  43884  cznrnglem  47636  cznabel  47637  cznrng  47638  prstcnidlem  48386  prstcnid  48387
  Copyright terms: Public domain W3C validator