| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > setsnid | Structured version Visualization version GIF version | ||
| Description: Value of the structure replacement function at an untouched index. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Mario Carneiro, 30-Apr-2015.) (Proof shortened by AV, 7-Nov-2024.) |
| Ref | Expression |
|---|---|
| setsid.e | ⊢ 𝐸 = Slot (𝐸‘ndx) |
| setsnid.n | ⊢ (𝐸‘ndx) ≠ 𝐷 |
| Ref | Expression |
|---|---|
| setsnid | ⊢ (𝐸‘𝑊) = (𝐸‘(𝑊 sSet 〈𝐷, 𝐶〉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | setsid.e | . . . 4 ⊢ 𝐸 = Slot (𝐸‘ndx) | |
| 2 | id 22 | . . . 4 ⊢ (𝑊 ∈ V → 𝑊 ∈ V) | |
| 3 | 1, 2 | strfvnd 17096 | . . 3 ⊢ (𝑊 ∈ V → (𝐸‘𝑊) = (𝑊‘(𝐸‘ndx))) |
| 4 | ovex 7382 | . . . . 5 ⊢ (𝑊 sSet 〈𝐷, 𝐶〉) ∈ V | |
| 5 | 4, 1 | strfvn 17097 | . . . 4 ⊢ (𝐸‘(𝑊 sSet 〈𝐷, 𝐶〉)) = ((𝑊 sSet 〈𝐷, 𝐶〉)‘(𝐸‘ndx)) |
| 6 | setsres 17089 | . . . . . 6 ⊢ (𝑊 ∈ V → ((𝑊 sSet 〈𝐷, 𝐶〉) ↾ (V ∖ {𝐷})) = (𝑊 ↾ (V ∖ {𝐷}))) | |
| 7 | 6 | fveq1d 6824 | . . . . 5 ⊢ (𝑊 ∈ V → (((𝑊 sSet 〈𝐷, 𝐶〉) ↾ (V ∖ {𝐷}))‘(𝐸‘ndx)) = ((𝑊 ↾ (V ∖ {𝐷}))‘(𝐸‘ndx))) |
| 8 | fvex 6835 | . . . . . . 7 ⊢ (𝐸‘ndx) ∈ V | |
| 9 | setsnid.n | . . . . . . 7 ⊢ (𝐸‘ndx) ≠ 𝐷 | |
| 10 | eldifsn 4737 | . . . . . . 7 ⊢ ((𝐸‘ndx) ∈ (V ∖ {𝐷}) ↔ ((𝐸‘ndx) ∈ V ∧ (𝐸‘ndx) ≠ 𝐷)) | |
| 11 | 8, 9, 10 | mpbir2an 711 | . . . . . 6 ⊢ (𝐸‘ndx) ∈ (V ∖ {𝐷}) |
| 12 | fvres 6841 | . . . . . 6 ⊢ ((𝐸‘ndx) ∈ (V ∖ {𝐷}) → (((𝑊 sSet 〈𝐷, 𝐶〉) ↾ (V ∖ {𝐷}))‘(𝐸‘ndx)) = ((𝑊 sSet 〈𝐷, 𝐶〉)‘(𝐸‘ndx))) | |
| 13 | 11, 12 | ax-mp 5 | . . . . 5 ⊢ (((𝑊 sSet 〈𝐷, 𝐶〉) ↾ (V ∖ {𝐷}))‘(𝐸‘ndx)) = ((𝑊 sSet 〈𝐷, 𝐶〉)‘(𝐸‘ndx)) |
| 14 | fvres 6841 | . . . . . 6 ⊢ ((𝐸‘ndx) ∈ (V ∖ {𝐷}) → ((𝑊 ↾ (V ∖ {𝐷}))‘(𝐸‘ndx)) = (𝑊‘(𝐸‘ndx))) | |
| 15 | 11, 14 | ax-mp 5 | . . . . 5 ⊢ ((𝑊 ↾ (V ∖ {𝐷}))‘(𝐸‘ndx)) = (𝑊‘(𝐸‘ndx)) |
| 16 | 7, 13, 15 | 3eqtr3g 2787 | . . . 4 ⊢ (𝑊 ∈ V → ((𝑊 sSet 〈𝐷, 𝐶〉)‘(𝐸‘ndx)) = (𝑊‘(𝐸‘ndx))) |
| 17 | 5, 16 | eqtrid 2776 | . . 3 ⊢ (𝑊 ∈ V → (𝐸‘(𝑊 sSet 〈𝐷, 𝐶〉)) = (𝑊‘(𝐸‘ndx))) |
| 18 | 3, 17 | eqtr4d 2767 | . 2 ⊢ (𝑊 ∈ V → (𝐸‘𝑊) = (𝐸‘(𝑊 sSet 〈𝐷, 𝐶〉))) |
| 19 | 1 | str0 17100 | . . . 4 ⊢ ∅ = (𝐸‘∅) |
| 20 | 19 | eqcomi 2738 | . . 3 ⊢ (𝐸‘∅) = ∅ |
| 21 | eqid 2729 | . . 3 ⊢ (𝑊 sSet 〈𝐷, 𝐶〉) = (𝑊 sSet 〈𝐷, 𝐶〉) | |
| 22 | reldmsets 17076 | . . 3 ⊢ Rel dom sSet | |
| 23 | 20, 21, 22 | oveqprc 17103 | . 2 ⊢ (¬ 𝑊 ∈ V → (𝐸‘𝑊) = (𝐸‘(𝑊 sSet 〈𝐷, 𝐶〉))) |
| 24 | 18, 23 | pm2.61i 182 | 1 ⊢ (𝐸‘𝑊) = (𝐸‘(𝑊 sSet 〈𝐷, 𝐶〉)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 ≠ wne 2925 Vcvv 3436 ∖ cdif 3900 ∅c0 4284 {csn 4577 〈cop 4583 ↾ cres 5621 ‘cfv 6482 (class class class)co 7349 sSet csts 17074 Slot cslot 17092 ndxcnx 17104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-res 5631 df-iota 6438 df-fun 6484 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-sets 17075 df-slot 17093 |
| This theorem is referenced by: resseqnbas 17153 oppchomfval 17620 oppcbas 17624 rescbas 17736 rescco 17739 rescabs 17740 odubas 18197 setsplusg 19229 opprlem 20227 rmodislmod 20833 sralem 21080 srasca 21084 sravsca 21085 zlmlem 21423 zlmsca 21427 znbaslem 21445 thlbas 21603 thlle 21604 opsrbaslem 21954 matbas 22298 matplusg 22299 matsca 22300 matvsca 22301 tuslem 24152 setsmsbas 24361 setsmsds 24362 tnglem 24526 tngds 24534 ttgval 28820 ttglem 28821 cchhllem 28832 setsvtx 28980 resvlem 33271 zlmds 33929 zlmtset 33930 hlhilslem 41921 mnringnmulrd 44191 cznrnglem 48247 cznabel 48248 cznrng 48249 prstcnidlem 49541 prstcnid 49542 |
| Copyright terms: Public domain | W3C validator |