| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > setsnid | Structured version Visualization version GIF version | ||
| Description: Value of the structure replacement function at an untouched index. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Mario Carneiro, 30-Apr-2015.) (Proof shortened by AV, 7-Nov-2024.) |
| Ref | Expression |
|---|---|
| setsid.e | ⊢ 𝐸 = Slot (𝐸‘ndx) |
| setsnid.n | ⊢ (𝐸‘ndx) ≠ 𝐷 |
| Ref | Expression |
|---|---|
| setsnid | ⊢ (𝐸‘𝑊) = (𝐸‘(𝑊 sSet 〈𝐷, 𝐶〉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | setsid.e | . . . 4 ⊢ 𝐸 = Slot (𝐸‘ndx) | |
| 2 | id 22 | . . . 4 ⊢ (𝑊 ∈ V → 𝑊 ∈ V) | |
| 3 | 1, 2 | strfvnd 17096 | . . 3 ⊢ (𝑊 ∈ V → (𝐸‘𝑊) = (𝑊‘(𝐸‘ndx))) |
| 4 | ovex 7379 | . . . . 5 ⊢ (𝑊 sSet 〈𝐷, 𝐶〉) ∈ V | |
| 5 | 4, 1 | strfvn 17097 | . . . 4 ⊢ (𝐸‘(𝑊 sSet 〈𝐷, 𝐶〉)) = ((𝑊 sSet 〈𝐷, 𝐶〉)‘(𝐸‘ndx)) |
| 6 | setsres 17089 | . . . . . 6 ⊢ (𝑊 ∈ V → ((𝑊 sSet 〈𝐷, 𝐶〉) ↾ (V ∖ {𝐷})) = (𝑊 ↾ (V ∖ {𝐷}))) | |
| 7 | 6 | fveq1d 6824 | . . . . 5 ⊢ (𝑊 ∈ V → (((𝑊 sSet 〈𝐷, 𝐶〉) ↾ (V ∖ {𝐷}))‘(𝐸‘ndx)) = ((𝑊 ↾ (V ∖ {𝐷}))‘(𝐸‘ndx))) |
| 8 | fvex 6835 | . . . . . . 7 ⊢ (𝐸‘ndx) ∈ V | |
| 9 | setsnid.n | . . . . . . 7 ⊢ (𝐸‘ndx) ≠ 𝐷 | |
| 10 | eldifsn 4735 | . . . . . . 7 ⊢ ((𝐸‘ndx) ∈ (V ∖ {𝐷}) ↔ ((𝐸‘ndx) ∈ V ∧ (𝐸‘ndx) ≠ 𝐷)) | |
| 11 | 8, 9, 10 | mpbir2an 711 | . . . . . 6 ⊢ (𝐸‘ndx) ∈ (V ∖ {𝐷}) |
| 12 | fvres 6841 | . . . . . 6 ⊢ ((𝐸‘ndx) ∈ (V ∖ {𝐷}) → (((𝑊 sSet 〈𝐷, 𝐶〉) ↾ (V ∖ {𝐷}))‘(𝐸‘ndx)) = ((𝑊 sSet 〈𝐷, 𝐶〉)‘(𝐸‘ndx))) | |
| 13 | 11, 12 | ax-mp 5 | . . . . 5 ⊢ (((𝑊 sSet 〈𝐷, 𝐶〉) ↾ (V ∖ {𝐷}))‘(𝐸‘ndx)) = ((𝑊 sSet 〈𝐷, 𝐶〉)‘(𝐸‘ndx)) |
| 14 | fvres 6841 | . . . . . 6 ⊢ ((𝐸‘ndx) ∈ (V ∖ {𝐷}) → ((𝑊 ↾ (V ∖ {𝐷}))‘(𝐸‘ndx)) = (𝑊‘(𝐸‘ndx))) | |
| 15 | 11, 14 | ax-mp 5 | . . . . 5 ⊢ ((𝑊 ↾ (V ∖ {𝐷}))‘(𝐸‘ndx)) = (𝑊‘(𝐸‘ndx)) |
| 16 | 7, 13, 15 | 3eqtr3g 2789 | . . . 4 ⊢ (𝑊 ∈ V → ((𝑊 sSet 〈𝐷, 𝐶〉)‘(𝐸‘ndx)) = (𝑊‘(𝐸‘ndx))) |
| 17 | 5, 16 | eqtrid 2778 | . . 3 ⊢ (𝑊 ∈ V → (𝐸‘(𝑊 sSet 〈𝐷, 𝐶〉)) = (𝑊‘(𝐸‘ndx))) |
| 18 | 3, 17 | eqtr4d 2769 | . 2 ⊢ (𝑊 ∈ V → (𝐸‘𝑊) = (𝐸‘(𝑊 sSet 〈𝐷, 𝐶〉))) |
| 19 | 1 | str0 17100 | . . . 4 ⊢ ∅ = (𝐸‘∅) |
| 20 | 19 | eqcomi 2740 | . . 3 ⊢ (𝐸‘∅) = ∅ |
| 21 | eqid 2731 | . . 3 ⊢ (𝑊 sSet 〈𝐷, 𝐶〉) = (𝑊 sSet 〈𝐷, 𝐶〉) | |
| 22 | reldmsets 17076 | . . 3 ⊢ Rel dom sSet | |
| 23 | 20, 21, 22 | oveqprc 17103 | . 2 ⊢ (¬ 𝑊 ∈ V → (𝐸‘𝑊) = (𝐸‘(𝑊 sSet 〈𝐷, 𝐶〉))) |
| 24 | 18, 23 | pm2.61i 182 | 1 ⊢ (𝐸‘𝑊) = (𝐸‘(𝑊 sSet 〈𝐷, 𝐶〉)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 ≠ wne 2928 Vcvv 3436 ∖ cdif 3894 ∅c0 4280 {csn 4573 〈cop 4579 ↾ cres 5616 ‘cfv 6481 (class class class)co 7346 sSet csts 17074 Slot cslot 17092 ndxcnx 17104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-res 5626 df-iota 6437 df-fun 6483 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-sets 17075 df-slot 17093 |
| This theorem is referenced by: resseqnbas 17153 oppchomfval 17620 oppcbas 17624 rescbas 17736 rescco 17739 rescabs 17740 odubas 18197 setsplusg 19262 opprlem 20260 rmodislmod 20863 sralem 21110 srasca 21114 sravsca 21115 zlmlem 21453 zlmsca 21457 znbaslem 21475 thlbas 21633 thlle 21634 opsrbaslem 21984 matbas 22328 matplusg 22329 matsca 22330 matvsca 22331 tuslem 24181 setsmsbas 24390 setsmsds 24391 tnglem 24555 tngds 24563 ttgval 28853 ttglem 28854 cchhllem 28865 setsvtx 29013 resvlem 33298 zlmds 33975 zlmtset 33976 hlhilslem 42047 mnringnmulrd 44317 cznrnglem 48369 cznabel 48370 cznrng 48371 prstcnidlem 49663 prstcnid 49664 |
| Copyright terms: Public domain | W3C validator |