Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > setsnid | Structured version Visualization version GIF version |
Description: Value of the structure replacement function at an untouched index. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Mario Carneiro, 30-Apr-2015.) (Proof shortened by AV, 7-Nov-2024.) |
Ref | Expression |
---|---|
setsid.e | ⊢ 𝐸 = Slot (𝐸‘ndx) |
setsnid.n | ⊢ (𝐸‘ndx) ≠ 𝐷 |
Ref | Expression |
---|---|
setsnid | ⊢ (𝐸‘𝑊) = (𝐸‘(𝑊 sSet 〈𝐷, 𝐶〉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | setsid.e | . . . 4 ⊢ 𝐸 = Slot (𝐸‘ndx) | |
2 | id 22 | . . . 4 ⊢ (𝑊 ∈ V → 𝑊 ∈ V) | |
3 | 1, 2 | strfvnd 16984 | . . 3 ⊢ (𝑊 ∈ V → (𝐸‘𝑊) = (𝑊‘(𝐸‘ndx))) |
4 | ovex 7371 | . . . . 5 ⊢ (𝑊 sSet 〈𝐷, 𝐶〉) ∈ V | |
5 | 4, 1 | strfvn 16985 | . . . 4 ⊢ (𝐸‘(𝑊 sSet 〈𝐷, 𝐶〉)) = ((𝑊 sSet 〈𝐷, 𝐶〉)‘(𝐸‘ndx)) |
6 | setsres 16977 | . . . . . 6 ⊢ (𝑊 ∈ V → ((𝑊 sSet 〈𝐷, 𝐶〉) ↾ (V ∖ {𝐷})) = (𝑊 ↾ (V ∖ {𝐷}))) | |
7 | 6 | fveq1d 6828 | . . . . 5 ⊢ (𝑊 ∈ V → (((𝑊 sSet 〈𝐷, 𝐶〉) ↾ (V ∖ {𝐷}))‘(𝐸‘ndx)) = ((𝑊 ↾ (V ∖ {𝐷}))‘(𝐸‘ndx))) |
8 | fvex 6839 | . . . . . . 7 ⊢ (𝐸‘ndx) ∈ V | |
9 | setsnid.n | . . . . . . 7 ⊢ (𝐸‘ndx) ≠ 𝐷 | |
10 | eldifsn 4735 | . . . . . . 7 ⊢ ((𝐸‘ndx) ∈ (V ∖ {𝐷}) ↔ ((𝐸‘ndx) ∈ V ∧ (𝐸‘ndx) ≠ 𝐷)) | |
11 | 8, 9, 10 | mpbir2an 708 | . . . . . 6 ⊢ (𝐸‘ndx) ∈ (V ∖ {𝐷}) |
12 | fvres 6845 | . . . . . 6 ⊢ ((𝐸‘ndx) ∈ (V ∖ {𝐷}) → (((𝑊 sSet 〈𝐷, 𝐶〉) ↾ (V ∖ {𝐷}))‘(𝐸‘ndx)) = ((𝑊 sSet 〈𝐷, 𝐶〉)‘(𝐸‘ndx))) | |
13 | 11, 12 | ax-mp 5 | . . . . 5 ⊢ (((𝑊 sSet 〈𝐷, 𝐶〉) ↾ (V ∖ {𝐷}))‘(𝐸‘ndx)) = ((𝑊 sSet 〈𝐷, 𝐶〉)‘(𝐸‘ndx)) |
14 | fvres 6845 | . . . . . 6 ⊢ ((𝐸‘ndx) ∈ (V ∖ {𝐷}) → ((𝑊 ↾ (V ∖ {𝐷}))‘(𝐸‘ndx)) = (𝑊‘(𝐸‘ndx))) | |
15 | 11, 14 | ax-mp 5 | . . . . 5 ⊢ ((𝑊 ↾ (V ∖ {𝐷}))‘(𝐸‘ndx)) = (𝑊‘(𝐸‘ndx)) |
16 | 7, 13, 15 | 3eqtr3g 2799 | . . . 4 ⊢ (𝑊 ∈ V → ((𝑊 sSet 〈𝐷, 𝐶〉)‘(𝐸‘ndx)) = (𝑊‘(𝐸‘ndx))) |
17 | 5, 16 | eqtrid 2788 | . . 3 ⊢ (𝑊 ∈ V → (𝐸‘(𝑊 sSet 〈𝐷, 𝐶〉)) = (𝑊‘(𝐸‘ndx))) |
18 | 3, 17 | eqtr4d 2779 | . 2 ⊢ (𝑊 ∈ V → (𝐸‘𝑊) = (𝐸‘(𝑊 sSet 〈𝐷, 𝐶〉))) |
19 | 1 | str0 16988 | . . . 4 ⊢ ∅ = (𝐸‘∅) |
20 | 19 | eqcomi 2745 | . . 3 ⊢ (𝐸‘∅) = ∅ |
21 | eqid 2736 | . . 3 ⊢ (𝑊 sSet 〈𝐷, 𝐶〉) = (𝑊 sSet 〈𝐷, 𝐶〉) | |
22 | reldmsets 16964 | . . 3 ⊢ Rel dom sSet | |
23 | 20, 21, 22 | oveqprc 16991 | . 2 ⊢ (¬ 𝑊 ∈ V → (𝐸‘𝑊) = (𝐸‘(𝑊 sSet 〈𝐷, 𝐶〉))) |
24 | 18, 23 | pm2.61i 182 | 1 ⊢ (𝐸‘𝑊) = (𝐸‘(𝑊 sSet 〈𝐷, 𝐶〉)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1540 ∈ wcel 2105 ≠ wne 2940 Vcvv 3441 ∖ cdif 3895 ∅c0 4270 {csn 4574 〈cop 4580 ↾ cres 5623 ‘cfv 6480 (class class class)co 7338 sSet csts 16962 Slot cslot 16980 ndxcnx 16992 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5244 ax-nul 5251 ax-pr 5373 ax-un 7651 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-sbc 3728 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4271 df-if 4475 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4854 df-br 5094 df-opab 5156 df-mpt 5177 df-id 5519 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-res 5633 df-iota 6432 df-fun 6482 df-fv 6488 df-ov 7341 df-oprab 7342 df-mpo 7343 df-sets 16963 df-slot 16981 |
This theorem is referenced by: resseqnbas 17049 resslemOLD 17050 oppchomfval 17521 oppchomfvalOLD 17522 oppcbas 17526 oppcbasOLD 17527 rescbas 17639 rescbasOLD 17640 rescco 17643 resccoOLD 17644 rescabs 17645 rescabsOLD 17646 odubas 18107 odubasOLD 18108 setsplusg 19051 oppglemOLD 19052 mgplemOLD 19821 opprlem 19963 opprlemOLD 19964 rmodislmod 20298 rmodislmodOLD 20299 sralem 20546 sralemOLD 20547 srasca 20554 srascaOLD 20555 sravsca 20556 sravscaOLD 20557 zlmlem 20825 zlmlemOLD 20826 zlmsca 20833 znbaslem 20849 znbaslemOLD 20850 thlbas 21008 thlbasOLD 21009 thlle 21010 thlleOLD 21011 opsrbaslem 21357 opsrbaslemOLD 21358 matbas 21667 matplusg 21668 matsca 21669 matscaOLD 21670 matvsca 21671 matvscaOLD 21672 tuslem 23525 tuslemOLD 23526 setsmsbas 23735 setsmsbasOLD 23736 setsmsds 23737 setsmsdsOLD 23738 tnglem 23903 tnglemOLD 23904 tngds 23918 tngdsOLD 23919 ttgval 27526 ttgvalOLD 27527 ttglem 27528 ttglemOLD 27529 cchhllem 27544 cchhllemOLD 27545 setsvtx 27695 resvlem 31826 resvlemOLD 31827 zlmds 32210 zlmdsOLD 32211 zlmtset 32212 zlmtsetOLD 32213 hlhilslem 40257 hlhilslemOLD 40258 mnringnmulrd 42200 mnringnmulrdOLD 42201 cznrnglem 45929 cznabel 45930 cznrng 45931 prstcnidlem 46764 prstcnid 46765 |
Copyright terms: Public domain | W3C validator |