MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  setsnid Structured version   Visualization version   GIF version

Theorem setsnid 17008
Description: Value of the structure replacement function at an untouched index. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Mario Carneiro, 30-Apr-2015.) (Proof shortened by AV, 7-Nov-2024.)
Hypotheses
Ref Expression
setsid.e 𝐸 = Slot (𝐸‘ndx)
setsnid.n (𝐸‘ndx) ≠ 𝐷
Assertion
Ref Expression
setsnid (𝐸𝑊) = (𝐸‘(𝑊 sSet ⟨𝐷, 𝐶⟩))

Proof of Theorem setsnid
StepHypRef Expression
1 setsid.e . . . 4 𝐸 = Slot (𝐸‘ndx)
2 id 22 . . . 4 (𝑊 ∈ V → 𝑊 ∈ V)
31, 2strfvnd 16984 . . 3 (𝑊 ∈ V → (𝐸𝑊) = (𝑊‘(𝐸‘ndx)))
4 ovex 7371 . . . . 5 (𝑊 sSet ⟨𝐷, 𝐶⟩) ∈ V
54, 1strfvn 16985 . . . 4 (𝐸‘(𝑊 sSet ⟨𝐷, 𝐶⟩)) = ((𝑊 sSet ⟨𝐷, 𝐶⟩)‘(𝐸‘ndx))
6 setsres 16977 . . . . . 6 (𝑊 ∈ V → ((𝑊 sSet ⟨𝐷, 𝐶⟩) ↾ (V ∖ {𝐷})) = (𝑊 ↾ (V ∖ {𝐷})))
76fveq1d 6828 . . . . 5 (𝑊 ∈ V → (((𝑊 sSet ⟨𝐷, 𝐶⟩) ↾ (V ∖ {𝐷}))‘(𝐸‘ndx)) = ((𝑊 ↾ (V ∖ {𝐷}))‘(𝐸‘ndx)))
8 fvex 6839 . . . . . . 7 (𝐸‘ndx) ∈ V
9 setsnid.n . . . . . . 7 (𝐸‘ndx) ≠ 𝐷
10 eldifsn 4735 . . . . . . 7 ((𝐸‘ndx) ∈ (V ∖ {𝐷}) ↔ ((𝐸‘ndx) ∈ V ∧ (𝐸‘ndx) ≠ 𝐷))
118, 9, 10mpbir2an 708 . . . . . 6 (𝐸‘ndx) ∈ (V ∖ {𝐷})
12 fvres 6845 . . . . . 6 ((𝐸‘ndx) ∈ (V ∖ {𝐷}) → (((𝑊 sSet ⟨𝐷, 𝐶⟩) ↾ (V ∖ {𝐷}))‘(𝐸‘ndx)) = ((𝑊 sSet ⟨𝐷, 𝐶⟩)‘(𝐸‘ndx)))
1311, 12ax-mp 5 . . . . 5 (((𝑊 sSet ⟨𝐷, 𝐶⟩) ↾ (V ∖ {𝐷}))‘(𝐸‘ndx)) = ((𝑊 sSet ⟨𝐷, 𝐶⟩)‘(𝐸‘ndx))
14 fvres 6845 . . . . . 6 ((𝐸‘ndx) ∈ (V ∖ {𝐷}) → ((𝑊 ↾ (V ∖ {𝐷}))‘(𝐸‘ndx)) = (𝑊‘(𝐸‘ndx)))
1511, 14ax-mp 5 . . . . 5 ((𝑊 ↾ (V ∖ {𝐷}))‘(𝐸‘ndx)) = (𝑊‘(𝐸‘ndx))
167, 13, 153eqtr3g 2799 . . . 4 (𝑊 ∈ V → ((𝑊 sSet ⟨𝐷, 𝐶⟩)‘(𝐸‘ndx)) = (𝑊‘(𝐸‘ndx)))
175, 16eqtrid 2788 . . 3 (𝑊 ∈ V → (𝐸‘(𝑊 sSet ⟨𝐷, 𝐶⟩)) = (𝑊‘(𝐸‘ndx)))
183, 17eqtr4d 2779 . 2 (𝑊 ∈ V → (𝐸𝑊) = (𝐸‘(𝑊 sSet ⟨𝐷, 𝐶⟩)))
191str0 16988 . . . 4 ∅ = (𝐸‘∅)
2019eqcomi 2745 . . 3 (𝐸‘∅) = ∅
21 eqid 2736 . . 3 (𝑊 sSet ⟨𝐷, 𝐶⟩) = (𝑊 sSet ⟨𝐷, 𝐶⟩)
22 reldmsets 16964 . . 3 Rel dom sSet
2320, 21, 22oveqprc 16991 . 2 𝑊 ∈ V → (𝐸𝑊) = (𝐸‘(𝑊 sSet ⟨𝐷, 𝐶⟩)))
2418, 23pm2.61i 182 1 (𝐸𝑊) = (𝐸‘(𝑊 sSet ⟨𝐷, 𝐶⟩))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2105  wne 2940  Vcvv 3441  cdif 3895  c0 4270  {csn 4574  cop 4580  cres 5623  cfv 6480  (class class class)co 7338   sSet csts 16962  Slot cslot 16980  ndxcnx 16992
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5244  ax-nul 5251  ax-pr 5373  ax-un 7651
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3404  df-v 3443  df-sbc 3728  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4271  df-if 4475  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4854  df-br 5094  df-opab 5156  df-mpt 5177  df-id 5519  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-res 5633  df-iota 6432  df-fun 6482  df-fv 6488  df-ov 7341  df-oprab 7342  df-mpo 7343  df-sets 16963  df-slot 16981
This theorem is referenced by:  resseqnbas  17049  resslemOLD  17050  oppchomfval  17521  oppchomfvalOLD  17522  oppcbas  17526  oppcbasOLD  17527  rescbas  17639  rescbasOLD  17640  rescco  17643  resccoOLD  17644  rescabs  17645  rescabsOLD  17646  odubas  18107  odubasOLD  18108  setsplusg  19051  oppglemOLD  19052  mgplemOLD  19821  opprlem  19963  opprlemOLD  19964  rmodislmod  20298  rmodislmodOLD  20299  sralem  20546  sralemOLD  20547  srasca  20554  srascaOLD  20555  sravsca  20556  sravscaOLD  20557  zlmlem  20825  zlmlemOLD  20826  zlmsca  20833  znbaslem  20849  znbaslemOLD  20850  thlbas  21008  thlbasOLD  21009  thlle  21010  thlleOLD  21011  opsrbaslem  21357  opsrbaslemOLD  21358  matbas  21667  matplusg  21668  matsca  21669  matscaOLD  21670  matvsca  21671  matvscaOLD  21672  tuslem  23525  tuslemOLD  23526  setsmsbas  23735  setsmsbasOLD  23736  setsmsds  23737  setsmsdsOLD  23738  tnglem  23903  tnglemOLD  23904  tngds  23918  tngdsOLD  23919  ttgval  27526  ttgvalOLD  27527  ttglem  27528  ttglemOLD  27529  cchhllem  27544  cchhllemOLD  27545  setsvtx  27695  resvlem  31826  resvlemOLD  31827  zlmds  32210  zlmdsOLD  32211  zlmtset  32212  zlmtsetOLD  32213  hlhilslem  40257  hlhilslemOLD  40258  mnringnmulrd  42200  mnringnmulrdOLD  42201  cznrnglem  45929  cznabel  45930  cznrng  45931  prstcnidlem  46764  prstcnid  46765
  Copyright terms: Public domain W3C validator