MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  setsnid Structured version   Visualization version   GIF version

Theorem setsnid 17256
Description: Value of the structure replacement function at an untouched index. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Mario Carneiro, 30-Apr-2015.) (Proof shortened by AV, 7-Nov-2024.)
Hypotheses
Ref Expression
setsid.e 𝐸 = Slot (𝐸‘ndx)
setsnid.n (𝐸‘ndx) ≠ 𝐷
Assertion
Ref Expression
setsnid (𝐸𝑊) = (𝐸‘(𝑊 sSet ⟨𝐷, 𝐶⟩))

Proof of Theorem setsnid
StepHypRef Expression
1 setsid.e . . . 4 𝐸 = Slot (𝐸‘ndx)
2 id 22 . . . 4 (𝑊 ∈ V → 𝑊 ∈ V)
31, 2strfvnd 17232 . . 3 (𝑊 ∈ V → (𝐸𝑊) = (𝑊‘(𝐸‘ndx)))
4 ovex 7481 . . . . 5 (𝑊 sSet ⟨𝐷, 𝐶⟩) ∈ V
54, 1strfvn 17233 . . . 4 (𝐸‘(𝑊 sSet ⟨𝐷, 𝐶⟩)) = ((𝑊 sSet ⟨𝐷, 𝐶⟩)‘(𝐸‘ndx))
6 setsres 17225 . . . . . 6 (𝑊 ∈ V → ((𝑊 sSet ⟨𝐷, 𝐶⟩) ↾ (V ∖ {𝐷})) = (𝑊 ↾ (V ∖ {𝐷})))
76fveq1d 6922 . . . . 5 (𝑊 ∈ V → (((𝑊 sSet ⟨𝐷, 𝐶⟩) ↾ (V ∖ {𝐷}))‘(𝐸‘ndx)) = ((𝑊 ↾ (V ∖ {𝐷}))‘(𝐸‘ndx)))
8 fvex 6933 . . . . . . 7 (𝐸‘ndx) ∈ V
9 setsnid.n . . . . . . 7 (𝐸‘ndx) ≠ 𝐷
10 eldifsn 4811 . . . . . . 7 ((𝐸‘ndx) ∈ (V ∖ {𝐷}) ↔ ((𝐸‘ndx) ∈ V ∧ (𝐸‘ndx) ≠ 𝐷))
118, 9, 10mpbir2an 710 . . . . . 6 (𝐸‘ndx) ∈ (V ∖ {𝐷})
12 fvres 6939 . . . . . 6 ((𝐸‘ndx) ∈ (V ∖ {𝐷}) → (((𝑊 sSet ⟨𝐷, 𝐶⟩) ↾ (V ∖ {𝐷}))‘(𝐸‘ndx)) = ((𝑊 sSet ⟨𝐷, 𝐶⟩)‘(𝐸‘ndx)))
1311, 12ax-mp 5 . . . . 5 (((𝑊 sSet ⟨𝐷, 𝐶⟩) ↾ (V ∖ {𝐷}))‘(𝐸‘ndx)) = ((𝑊 sSet ⟨𝐷, 𝐶⟩)‘(𝐸‘ndx))
14 fvres 6939 . . . . . 6 ((𝐸‘ndx) ∈ (V ∖ {𝐷}) → ((𝑊 ↾ (V ∖ {𝐷}))‘(𝐸‘ndx)) = (𝑊‘(𝐸‘ndx)))
1511, 14ax-mp 5 . . . . 5 ((𝑊 ↾ (V ∖ {𝐷}))‘(𝐸‘ndx)) = (𝑊‘(𝐸‘ndx))
167, 13, 153eqtr3g 2803 . . . 4 (𝑊 ∈ V → ((𝑊 sSet ⟨𝐷, 𝐶⟩)‘(𝐸‘ndx)) = (𝑊‘(𝐸‘ndx)))
175, 16eqtrid 2792 . . 3 (𝑊 ∈ V → (𝐸‘(𝑊 sSet ⟨𝐷, 𝐶⟩)) = (𝑊‘(𝐸‘ndx)))
183, 17eqtr4d 2783 . 2 (𝑊 ∈ V → (𝐸𝑊) = (𝐸‘(𝑊 sSet ⟨𝐷, 𝐶⟩)))
191str0 17236 . . . 4 ∅ = (𝐸‘∅)
2019eqcomi 2749 . . 3 (𝐸‘∅) = ∅
21 eqid 2740 . . 3 (𝑊 sSet ⟨𝐷, 𝐶⟩) = (𝑊 sSet ⟨𝐷, 𝐶⟩)
22 reldmsets 17212 . . 3 Rel dom sSet
2320, 21, 22oveqprc 17239 . 2 𝑊 ∈ V → (𝐸𝑊) = (𝐸‘(𝑊 sSet ⟨𝐷, 𝐶⟩)))
2418, 23pm2.61i 182 1 (𝐸𝑊) = (𝐸‘(𝑊 sSet ⟨𝐷, 𝐶⟩))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  wcel 2108  wne 2946  Vcvv 3488  cdif 3973  c0 4352  {csn 4648  cop 4654  cres 5702  cfv 6573  (class class class)co 7448   sSet csts 17210  Slot cslot 17228  ndxcnx 17240
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-res 5712  df-iota 6525  df-fun 6575  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-sets 17211  df-slot 17229
This theorem is referenced by:  resseqnbas  17300  resslemOLD  17301  oppchomfval  17772  oppchomfvalOLD  17773  oppcbas  17777  oppcbasOLD  17778  rescbas  17890  rescbasOLD  17891  rescco  17894  resccoOLD  17895  rescabs  17896  rescabsOLD  17897  odubas  18361  odubasOLD  18362  setsplusg  19390  oppglemOLD  19391  mgplemOLD  20166  opprlem  20365  opprlemOLD  20366  rmodislmod  20950  rmodislmodOLD  20951  sralem  21198  sralemOLD  21199  srasca  21206  srascaOLD  21207  sravsca  21208  sravscaOLD  21209  zlmlem  21550  zlmlemOLD  21551  zlmsca  21558  znbaslem  21576  znbaslemOLD  21577  thlbas  21737  thlbasOLD  21738  thlle  21739  thlleOLD  21740  opsrbaslem  22090  opsrbaslemOLD  22091  matbas  22438  matplusg  22439  matsca  22440  matscaOLD  22441  matvsca  22442  matvscaOLD  22443  tuslem  24296  tuslemOLD  24297  setsmsbas  24506  setsmsbasOLD  24507  setsmsds  24508  setsmsdsOLD  24509  tnglem  24674  tnglemOLD  24675  tngds  24689  tngdsOLD  24690  ttgval  28901  ttgvalOLD  28902  ttglem  28903  ttglemOLD  28904  cchhllem  28919  cchhllemOLD  28920  setsvtx  29070  resvlem  33322  resvlemOLD  33323  zlmds  33908  zlmdsOLD  33909  zlmtset  33910  zlmtsetOLD  33911  hlhilslem  41895  hlhilslemOLD  41896  mnringnmulrd  44178  mnringnmulrdOLD  44179  cznrnglem  47982  cznabel  47983  cznrng  47984  prstcnidlem  48732  prstcnid  48733
  Copyright terms: Public domain W3C validator