| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > setsnid | Structured version Visualization version GIF version | ||
| Description: Value of the structure replacement function at an untouched index. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Mario Carneiro, 30-Apr-2015.) (Proof shortened by AV, 7-Nov-2024.) |
| Ref | Expression |
|---|---|
| setsid.e | ⊢ 𝐸 = Slot (𝐸‘ndx) |
| setsnid.n | ⊢ (𝐸‘ndx) ≠ 𝐷 |
| Ref | Expression |
|---|---|
| setsnid | ⊢ (𝐸‘𝑊) = (𝐸‘(𝑊 sSet 〈𝐷, 𝐶〉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | setsid.e | . . . 4 ⊢ 𝐸 = Slot (𝐸‘ndx) | |
| 2 | id 22 | . . . 4 ⊢ (𝑊 ∈ V → 𝑊 ∈ V) | |
| 3 | 1, 2 | strfvnd 17131 | . . 3 ⊢ (𝑊 ∈ V → (𝐸‘𝑊) = (𝑊‘(𝐸‘ndx))) |
| 4 | ovex 7402 | . . . . 5 ⊢ (𝑊 sSet 〈𝐷, 𝐶〉) ∈ V | |
| 5 | 4, 1 | strfvn 17132 | . . . 4 ⊢ (𝐸‘(𝑊 sSet 〈𝐷, 𝐶〉)) = ((𝑊 sSet 〈𝐷, 𝐶〉)‘(𝐸‘ndx)) |
| 6 | setsres 17124 | . . . . . 6 ⊢ (𝑊 ∈ V → ((𝑊 sSet 〈𝐷, 𝐶〉) ↾ (V ∖ {𝐷})) = (𝑊 ↾ (V ∖ {𝐷}))) | |
| 7 | 6 | fveq1d 6842 | . . . . 5 ⊢ (𝑊 ∈ V → (((𝑊 sSet 〈𝐷, 𝐶〉) ↾ (V ∖ {𝐷}))‘(𝐸‘ndx)) = ((𝑊 ↾ (V ∖ {𝐷}))‘(𝐸‘ndx))) |
| 8 | fvex 6853 | . . . . . . 7 ⊢ (𝐸‘ndx) ∈ V | |
| 9 | setsnid.n | . . . . . . 7 ⊢ (𝐸‘ndx) ≠ 𝐷 | |
| 10 | eldifsn 4746 | . . . . . . 7 ⊢ ((𝐸‘ndx) ∈ (V ∖ {𝐷}) ↔ ((𝐸‘ndx) ∈ V ∧ (𝐸‘ndx) ≠ 𝐷)) | |
| 11 | 8, 9, 10 | mpbir2an 711 | . . . . . 6 ⊢ (𝐸‘ndx) ∈ (V ∖ {𝐷}) |
| 12 | fvres 6859 | . . . . . 6 ⊢ ((𝐸‘ndx) ∈ (V ∖ {𝐷}) → (((𝑊 sSet 〈𝐷, 𝐶〉) ↾ (V ∖ {𝐷}))‘(𝐸‘ndx)) = ((𝑊 sSet 〈𝐷, 𝐶〉)‘(𝐸‘ndx))) | |
| 13 | 11, 12 | ax-mp 5 | . . . . 5 ⊢ (((𝑊 sSet 〈𝐷, 𝐶〉) ↾ (V ∖ {𝐷}))‘(𝐸‘ndx)) = ((𝑊 sSet 〈𝐷, 𝐶〉)‘(𝐸‘ndx)) |
| 14 | fvres 6859 | . . . . . 6 ⊢ ((𝐸‘ndx) ∈ (V ∖ {𝐷}) → ((𝑊 ↾ (V ∖ {𝐷}))‘(𝐸‘ndx)) = (𝑊‘(𝐸‘ndx))) | |
| 15 | 11, 14 | ax-mp 5 | . . . . 5 ⊢ ((𝑊 ↾ (V ∖ {𝐷}))‘(𝐸‘ndx)) = (𝑊‘(𝐸‘ndx)) |
| 16 | 7, 13, 15 | 3eqtr3g 2787 | . . . 4 ⊢ (𝑊 ∈ V → ((𝑊 sSet 〈𝐷, 𝐶〉)‘(𝐸‘ndx)) = (𝑊‘(𝐸‘ndx))) |
| 17 | 5, 16 | eqtrid 2776 | . . 3 ⊢ (𝑊 ∈ V → (𝐸‘(𝑊 sSet 〈𝐷, 𝐶〉)) = (𝑊‘(𝐸‘ndx))) |
| 18 | 3, 17 | eqtr4d 2767 | . 2 ⊢ (𝑊 ∈ V → (𝐸‘𝑊) = (𝐸‘(𝑊 sSet 〈𝐷, 𝐶〉))) |
| 19 | 1 | str0 17135 | . . . 4 ⊢ ∅ = (𝐸‘∅) |
| 20 | 19 | eqcomi 2738 | . . 3 ⊢ (𝐸‘∅) = ∅ |
| 21 | eqid 2729 | . . 3 ⊢ (𝑊 sSet 〈𝐷, 𝐶〉) = (𝑊 sSet 〈𝐷, 𝐶〉) | |
| 22 | reldmsets 17111 | . . 3 ⊢ Rel dom sSet | |
| 23 | 20, 21, 22 | oveqprc 17138 | . 2 ⊢ (¬ 𝑊 ∈ V → (𝐸‘𝑊) = (𝐸‘(𝑊 sSet 〈𝐷, 𝐶〉))) |
| 24 | 18, 23 | pm2.61i 182 | 1 ⊢ (𝐸‘𝑊) = (𝐸‘(𝑊 sSet 〈𝐷, 𝐶〉)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 ≠ wne 2925 Vcvv 3444 ∖ cdif 3908 ∅c0 4292 {csn 4585 〈cop 4591 ↾ cres 5633 ‘cfv 6499 (class class class)co 7369 sSet csts 17109 Slot cslot 17127 ndxcnx 17139 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-res 5643 df-iota 6452 df-fun 6501 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-sets 17110 df-slot 17128 |
| This theorem is referenced by: resseqnbas 17188 oppchomfval 17655 oppcbas 17659 rescbas 17771 rescco 17774 rescabs 17775 odubas 18232 setsplusg 19264 opprlem 20262 rmodislmod 20868 sralem 21115 srasca 21119 sravsca 21120 zlmlem 21458 zlmsca 21462 znbaslem 21480 thlbas 21638 thlle 21639 opsrbaslem 21989 matbas 22333 matplusg 22334 matsca 22335 matvsca 22336 tuslem 24187 setsmsbas 24396 setsmsds 24397 tnglem 24561 tngds 24569 ttgval 28855 ttglem 28856 cchhllem 28867 setsvtx 29015 resvlem 33298 zlmds 33945 zlmtset 33946 hlhilslem 41925 mnringnmulrd 44196 cznrnglem 48240 cznabel 48241 cznrng 48242 prstcnidlem 49534 prstcnid 49535 |
| Copyright terms: Public domain | W3C validator |