| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > setsnid | Structured version Visualization version GIF version | ||
| Description: Value of the structure replacement function at an untouched index. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Mario Carneiro, 30-Apr-2015.) (Proof shortened by AV, 7-Nov-2024.) |
| Ref | Expression |
|---|---|
| setsid.e | ⊢ 𝐸 = Slot (𝐸‘ndx) |
| setsnid.n | ⊢ (𝐸‘ndx) ≠ 𝐷 |
| Ref | Expression |
|---|---|
| setsnid | ⊢ (𝐸‘𝑊) = (𝐸‘(𝑊 sSet 〈𝐷, 𝐶〉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | setsid.e | . . . 4 ⊢ 𝐸 = Slot (𝐸‘ndx) | |
| 2 | id 22 | . . . 4 ⊢ (𝑊 ∈ V → 𝑊 ∈ V) | |
| 3 | 1, 2 | strfvnd 17155 | . . 3 ⊢ (𝑊 ∈ V → (𝐸‘𝑊) = (𝑊‘(𝐸‘ndx))) |
| 4 | ovex 7420 | . . . . 5 ⊢ (𝑊 sSet 〈𝐷, 𝐶〉) ∈ V | |
| 5 | 4, 1 | strfvn 17156 | . . . 4 ⊢ (𝐸‘(𝑊 sSet 〈𝐷, 𝐶〉)) = ((𝑊 sSet 〈𝐷, 𝐶〉)‘(𝐸‘ndx)) |
| 6 | setsres 17148 | . . . . . 6 ⊢ (𝑊 ∈ V → ((𝑊 sSet 〈𝐷, 𝐶〉) ↾ (V ∖ {𝐷})) = (𝑊 ↾ (V ∖ {𝐷}))) | |
| 7 | 6 | fveq1d 6860 | . . . . 5 ⊢ (𝑊 ∈ V → (((𝑊 sSet 〈𝐷, 𝐶〉) ↾ (V ∖ {𝐷}))‘(𝐸‘ndx)) = ((𝑊 ↾ (V ∖ {𝐷}))‘(𝐸‘ndx))) |
| 8 | fvex 6871 | . . . . . . 7 ⊢ (𝐸‘ndx) ∈ V | |
| 9 | setsnid.n | . . . . . . 7 ⊢ (𝐸‘ndx) ≠ 𝐷 | |
| 10 | eldifsn 4750 | . . . . . . 7 ⊢ ((𝐸‘ndx) ∈ (V ∖ {𝐷}) ↔ ((𝐸‘ndx) ∈ V ∧ (𝐸‘ndx) ≠ 𝐷)) | |
| 11 | 8, 9, 10 | mpbir2an 711 | . . . . . 6 ⊢ (𝐸‘ndx) ∈ (V ∖ {𝐷}) |
| 12 | fvres 6877 | . . . . . 6 ⊢ ((𝐸‘ndx) ∈ (V ∖ {𝐷}) → (((𝑊 sSet 〈𝐷, 𝐶〉) ↾ (V ∖ {𝐷}))‘(𝐸‘ndx)) = ((𝑊 sSet 〈𝐷, 𝐶〉)‘(𝐸‘ndx))) | |
| 13 | 11, 12 | ax-mp 5 | . . . . 5 ⊢ (((𝑊 sSet 〈𝐷, 𝐶〉) ↾ (V ∖ {𝐷}))‘(𝐸‘ndx)) = ((𝑊 sSet 〈𝐷, 𝐶〉)‘(𝐸‘ndx)) |
| 14 | fvres 6877 | . . . . . 6 ⊢ ((𝐸‘ndx) ∈ (V ∖ {𝐷}) → ((𝑊 ↾ (V ∖ {𝐷}))‘(𝐸‘ndx)) = (𝑊‘(𝐸‘ndx))) | |
| 15 | 11, 14 | ax-mp 5 | . . . . 5 ⊢ ((𝑊 ↾ (V ∖ {𝐷}))‘(𝐸‘ndx)) = (𝑊‘(𝐸‘ndx)) |
| 16 | 7, 13, 15 | 3eqtr3g 2787 | . . . 4 ⊢ (𝑊 ∈ V → ((𝑊 sSet 〈𝐷, 𝐶〉)‘(𝐸‘ndx)) = (𝑊‘(𝐸‘ndx))) |
| 17 | 5, 16 | eqtrid 2776 | . . 3 ⊢ (𝑊 ∈ V → (𝐸‘(𝑊 sSet 〈𝐷, 𝐶〉)) = (𝑊‘(𝐸‘ndx))) |
| 18 | 3, 17 | eqtr4d 2767 | . 2 ⊢ (𝑊 ∈ V → (𝐸‘𝑊) = (𝐸‘(𝑊 sSet 〈𝐷, 𝐶〉))) |
| 19 | 1 | str0 17159 | . . . 4 ⊢ ∅ = (𝐸‘∅) |
| 20 | 19 | eqcomi 2738 | . . 3 ⊢ (𝐸‘∅) = ∅ |
| 21 | eqid 2729 | . . 3 ⊢ (𝑊 sSet 〈𝐷, 𝐶〉) = (𝑊 sSet 〈𝐷, 𝐶〉) | |
| 22 | reldmsets 17135 | . . 3 ⊢ Rel dom sSet | |
| 23 | 20, 21, 22 | oveqprc 17162 | . 2 ⊢ (¬ 𝑊 ∈ V → (𝐸‘𝑊) = (𝐸‘(𝑊 sSet 〈𝐷, 𝐶〉))) |
| 24 | 18, 23 | pm2.61i 182 | 1 ⊢ (𝐸‘𝑊) = (𝐸‘(𝑊 sSet 〈𝐷, 𝐶〉)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 ≠ wne 2925 Vcvv 3447 ∖ cdif 3911 ∅c0 4296 {csn 4589 〈cop 4595 ↾ cres 5640 ‘cfv 6511 (class class class)co 7387 sSet csts 17133 Slot cslot 17151 ndxcnx 17163 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-res 5650 df-iota 6464 df-fun 6513 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-sets 17134 df-slot 17152 |
| This theorem is referenced by: resseqnbas 17212 oppchomfval 17675 oppcbas 17679 rescbas 17791 rescco 17794 rescabs 17795 odubas 18252 setsplusg 19282 opprlem 20251 rmodislmod 20836 sralem 21083 srasca 21087 sravsca 21088 zlmlem 21426 zlmsca 21430 znbaslem 21448 thlbas 21605 thlle 21606 opsrbaslem 21956 matbas 22300 matplusg 22301 matsca 22302 matvsca 22303 tuslem 24154 setsmsbas 24363 setsmsds 24364 tnglem 24528 tngds 24536 ttgval 28802 ttglem 28803 cchhllem 28814 setsvtx 28962 resvlem 33305 zlmds 33952 zlmtset 33953 hlhilslem 41932 mnringnmulrd 44203 cznrnglem 48247 cznabel 48248 cznrng 48249 prstcnidlem 49541 prstcnid 49542 |
| Copyright terms: Public domain | W3C validator |