![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > setsnid | Structured version Visualization version GIF version |
Description: Value of the structure replacement function at an untouched index. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Mario Carneiro, 30-Apr-2015.) (Proof shortened by AV, 7-Nov-2024.) |
Ref | Expression |
---|---|
setsid.e | ⊢ 𝐸 = Slot (𝐸‘ndx) |
setsnid.n | ⊢ (𝐸‘ndx) ≠ 𝐷 |
Ref | Expression |
---|---|
setsnid | ⊢ (𝐸‘𝑊) = (𝐸‘(𝑊 sSet 〈𝐷, 𝐶〉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | setsid.e | . . . 4 ⊢ 𝐸 = Slot (𝐸‘ndx) | |
2 | id 22 | . . . 4 ⊢ (𝑊 ∈ V → 𝑊 ∈ V) | |
3 | 1, 2 | strfvnd 17232 | . . 3 ⊢ (𝑊 ∈ V → (𝐸‘𝑊) = (𝑊‘(𝐸‘ndx))) |
4 | ovex 7481 | . . . . 5 ⊢ (𝑊 sSet 〈𝐷, 𝐶〉) ∈ V | |
5 | 4, 1 | strfvn 17233 | . . . 4 ⊢ (𝐸‘(𝑊 sSet 〈𝐷, 𝐶〉)) = ((𝑊 sSet 〈𝐷, 𝐶〉)‘(𝐸‘ndx)) |
6 | setsres 17225 | . . . . . 6 ⊢ (𝑊 ∈ V → ((𝑊 sSet 〈𝐷, 𝐶〉) ↾ (V ∖ {𝐷})) = (𝑊 ↾ (V ∖ {𝐷}))) | |
7 | 6 | fveq1d 6922 | . . . . 5 ⊢ (𝑊 ∈ V → (((𝑊 sSet 〈𝐷, 𝐶〉) ↾ (V ∖ {𝐷}))‘(𝐸‘ndx)) = ((𝑊 ↾ (V ∖ {𝐷}))‘(𝐸‘ndx))) |
8 | fvex 6933 | . . . . . . 7 ⊢ (𝐸‘ndx) ∈ V | |
9 | setsnid.n | . . . . . . 7 ⊢ (𝐸‘ndx) ≠ 𝐷 | |
10 | eldifsn 4811 | . . . . . . 7 ⊢ ((𝐸‘ndx) ∈ (V ∖ {𝐷}) ↔ ((𝐸‘ndx) ∈ V ∧ (𝐸‘ndx) ≠ 𝐷)) | |
11 | 8, 9, 10 | mpbir2an 710 | . . . . . 6 ⊢ (𝐸‘ndx) ∈ (V ∖ {𝐷}) |
12 | fvres 6939 | . . . . . 6 ⊢ ((𝐸‘ndx) ∈ (V ∖ {𝐷}) → (((𝑊 sSet 〈𝐷, 𝐶〉) ↾ (V ∖ {𝐷}))‘(𝐸‘ndx)) = ((𝑊 sSet 〈𝐷, 𝐶〉)‘(𝐸‘ndx))) | |
13 | 11, 12 | ax-mp 5 | . . . . 5 ⊢ (((𝑊 sSet 〈𝐷, 𝐶〉) ↾ (V ∖ {𝐷}))‘(𝐸‘ndx)) = ((𝑊 sSet 〈𝐷, 𝐶〉)‘(𝐸‘ndx)) |
14 | fvres 6939 | . . . . . 6 ⊢ ((𝐸‘ndx) ∈ (V ∖ {𝐷}) → ((𝑊 ↾ (V ∖ {𝐷}))‘(𝐸‘ndx)) = (𝑊‘(𝐸‘ndx))) | |
15 | 11, 14 | ax-mp 5 | . . . . 5 ⊢ ((𝑊 ↾ (V ∖ {𝐷}))‘(𝐸‘ndx)) = (𝑊‘(𝐸‘ndx)) |
16 | 7, 13, 15 | 3eqtr3g 2803 | . . . 4 ⊢ (𝑊 ∈ V → ((𝑊 sSet 〈𝐷, 𝐶〉)‘(𝐸‘ndx)) = (𝑊‘(𝐸‘ndx))) |
17 | 5, 16 | eqtrid 2792 | . . 3 ⊢ (𝑊 ∈ V → (𝐸‘(𝑊 sSet 〈𝐷, 𝐶〉)) = (𝑊‘(𝐸‘ndx))) |
18 | 3, 17 | eqtr4d 2783 | . 2 ⊢ (𝑊 ∈ V → (𝐸‘𝑊) = (𝐸‘(𝑊 sSet 〈𝐷, 𝐶〉))) |
19 | 1 | str0 17236 | . . . 4 ⊢ ∅ = (𝐸‘∅) |
20 | 19 | eqcomi 2749 | . . 3 ⊢ (𝐸‘∅) = ∅ |
21 | eqid 2740 | . . 3 ⊢ (𝑊 sSet 〈𝐷, 𝐶〉) = (𝑊 sSet 〈𝐷, 𝐶〉) | |
22 | reldmsets 17212 | . . 3 ⊢ Rel dom sSet | |
23 | 20, 21, 22 | oveqprc 17239 | . 2 ⊢ (¬ 𝑊 ∈ V → (𝐸‘𝑊) = (𝐸‘(𝑊 sSet 〈𝐷, 𝐶〉))) |
24 | 18, 23 | pm2.61i 182 | 1 ⊢ (𝐸‘𝑊) = (𝐸‘(𝑊 sSet 〈𝐷, 𝐶〉)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2108 ≠ wne 2946 Vcvv 3488 ∖ cdif 3973 ∅c0 4352 {csn 4648 〈cop 4654 ↾ cres 5702 ‘cfv 6573 (class class class)co 7448 sSet csts 17210 Slot cslot 17228 ndxcnx 17240 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-res 5712 df-iota 6525 df-fun 6575 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-sets 17211 df-slot 17229 |
This theorem is referenced by: resseqnbas 17300 resslemOLD 17301 oppchomfval 17772 oppchomfvalOLD 17773 oppcbas 17777 oppcbasOLD 17778 rescbas 17890 rescbasOLD 17891 rescco 17894 resccoOLD 17895 rescabs 17896 rescabsOLD 17897 odubas 18361 odubasOLD 18362 setsplusg 19390 oppglemOLD 19391 mgplemOLD 20166 opprlem 20365 opprlemOLD 20366 rmodislmod 20950 rmodislmodOLD 20951 sralem 21198 sralemOLD 21199 srasca 21206 srascaOLD 21207 sravsca 21208 sravscaOLD 21209 zlmlem 21550 zlmlemOLD 21551 zlmsca 21558 znbaslem 21576 znbaslemOLD 21577 thlbas 21737 thlbasOLD 21738 thlle 21739 thlleOLD 21740 opsrbaslem 22090 opsrbaslemOLD 22091 matbas 22438 matplusg 22439 matsca 22440 matscaOLD 22441 matvsca 22442 matvscaOLD 22443 tuslem 24296 tuslemOLD 24297 setsmsbas 24506 setsmsbasOLD 24507 setsmsds 24508 setsmsdsOLD 24509 tnglem 24674 tnglemOLD 24675 tngds 24689 tngdsOLD 24690 ttgval 28901 ttgvalOLD 28902 ttglem 28903 ttglemOLD 28904 cchhllem 28919 cchhllemOLD 28920 setsvtx 29070 resvlem 33322 resvlemOLD 33323 zlmds 33908 zlmdsOLD 33909 zlmtset 33910 zlmtsetOLD 33911 hlhilslem 41895 hlhilslemOLD 41896 mnringnmulrd 44178 mnringnmulrdOLD 44179 cznrnglem 47982 cznabel 47983 cznrng 47984 prstcnidlem 48732 prstcnid 48733 |
Copyright terms: Public domain | W3C validator |