MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oppgval Structured version   Visualization version   GIF version

Theorem oppgval 19252
Description: Value of the opposite group. (Contributed by Stefan O'Rear, 25-Aug-2015.) (Revised by Mario Carneiro, 16-Sep-2015.) (Revised by Fan Zheng, 26-Jun-2016.)
Hypotheses
Ref Expression
oppgval.2 + = (+gβ€˜π‘…)
oppgval.3 𝑂 = (oppgβ€˜π‘…)
Assertion
Ref Expression
oppgval 𝑂 = (𝑅 sSet ⟨(+gβ€˜ndx), tpos + ⟩)

Proof of Theorem oppgval
Dummy variable π‘₯ is distinct from all other variables.
StepHypRef Expression
1 oppgval.3 . 2 𝑂 = (oppgβ€˜π‘…)
2 id 22 . . . . 5 (π‘₯ = 𝑅 β†’ π‘₯ = 𝑅)
3 fveq2 6890 . . . . . . . 8 (π‘₯ = 𝑅 β†’ (+gβ€˜π‘₯) = (+gβ€˜π‘…))
4 oppgval.2 . . . . . . . 8 + = (+gβ€˜π‘…)
53, 4eqtr4di 2788 . . . . . . 7 (π‘₯ = 𝑅 β†’ (+gβ€˜π‘₯) = + )
65tposeqd 8216 . . . . . 6 (π‘₯ = 𝑅 β†’ tpos (+gβ€˜π‘₯) = tpos + )
76opeq2d 4879 . . . . 5 (π‘₯ = 𝑅 β†’ ⟨(+gβ€˜ndx), tpos (+gβ€˜π‘₯)⟩ = ⟨(+gβ€˜ndx), tpos + ⟩)
82, 7oveq12d 7429 . . . 4 (π‘₯ = 𝑅 β†’ (π‘₯ sSet ⟨(+gβ€˜ndx), tpos (+gβ€˜π‘₯)⟩) = (𝑅 sSet ⟨(+gβ€˜ndx), tpos + ⟩))
9 df-oppg 19251 . . . 4 oppg = (π‘₯ ∈ V ↦ (π‘₯ sSet ⟨(+gβ€˜ndx), tpos (+gβ€˜π‘₯)⟩))
10 ovex 7444 . . . 4 (𝑅 sSet ⟨(+gβ€˜ndx), tpos + ⟩) ∈ V
118, 9, 10fvmpt 6997 . . 3 (𝑅 ∈ V β†’ (oppgβ€˜π‘…) = (𝑅 sSet ⟨(+gβ€˜ndx), tpos + ⟩))
12 fvprc 6882 . . . 4 (Β¬ 𝑅 ∈ V β†’ (oppgβ€˜π‘…) = βˆ…)
13 reldmsets 17102 . . . . 5 Rel dom sSet
1413ovprc1 7450 . . . 4 (Β¬ 𝑅 ∈ V β†’ (𝑅 sSet ⟨(+gβ€˜ndx), tpos + ⟩) = βˆ…)
1512, 14eqtr4d 2773 . . 3 (Β¬ 𝑅 ∈ V β†’ (oppgβ€˜π‘…) = (𝑅 sSet ⟨(+gβ€˜ndx), tpos + ⟩))
1611, 15pm2.61i 182 . 2 (oppgβ€˜π‘…) = (𝑅 sSet ⟨(+gβ€˜ndx), tpos + ⟩)
171, 16eqtri 2758 1 𝑂 = (𝑅 sSet ⟨(+gβ€˜ndx), tpos + ⟩)
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   = wceq 1539   ∈ wcel 2104  Vcvv 3472  βˆ…c0 4321  βŸ¨cop 4633  β€˜cfv 6542  (class class class)co 7411  tpos ctpos 8212   sSet csts 17100  ndxcnx 17130  +gcplusg 17201  oppgcoppg 19250
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-res 5687  df-iota 6494  df-fun 6544  df-fv 6550  df-ov 7414  df-oprab 7415  df-mpo 7416  df-tpos 8213  df-sets 17101  df-oppg 19251
This theorem is referenced by:  oppgplusfval  19253  oppglemOLD  19256  oppgbas  19257  oppgtset  19259  oppgle  32397
  Copyright terms: Public domain W3C validator