![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oppgval | Structured version Visualization version GIF version |
Description: Value of the opposite group. (Contributed by Stefan O'Rear, 25-Aug-2015.) (Revised by Mario Carneiro, 16-Sep-2015.) (Revised by Fan Zheng, 26-Jun-2016.) |
Ref | Expression |
---|---|
oppgval.2 | β’ + = (+gβπ ) |
oppgval.3 | β’ π = (oppgβπ ) |
Ref | Expression |
---|---|
oppgval | β’ π = (π sSet β¨(+gβndx), tpos + β©) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oppgval.3 | . 2 β’ π = (oppgβπ ) | |
2 | id 22 | . . . . 5 β’ (π₯ = π β π₯ = π ) | |
3 | fveq2 6890 | . . . . . . . 8 β’ (π₯ = π β (+gβπ₯) = (+gβπ )) | |
4 | oppgval.2 | . . . . . . . 8 β’ + = (+gβπ ) | |
5 | 3, 4 | eqtr4di 2788 | . . . . . . 7 β’ (π₯ = π β (+gβπ₯) = + ) |
6 | 5 | tposeqd 8216 | . . . . . 6 β’ (π₯ = π β tpos (+gβπ₯) = tpos + ) |
7 | 6 | opeq2d 4879 | . . . . 5 β’ (π₯ = π β β¨(+gβndx), tpos (+gβπ₯)β© = β¨(+gβndx), tpos + β©) |
8 | 2, 7 | oveq12d 7429 | . . . 4 β’ (π₯ = π β (π₯ sSet β¨(+gβndx), tpos (+gβπ₯)β©) = (π sSet β¨(+gβndx), tpos + β©)) |
9 | df-oppg 19251 | . . . 4 β’ oppg = (π₯ β V β¦ (π₯ sSet β¨(+gβndx), tpos (+gβπ₯)β©)) | |
10 | ovex 7444 | . . . 4 β’ (π sSet β¨(+gβndx), tpos + β©) β V | |
11 | 8, 9, 10 | fvmpt 6997 | . . 3 β’ (π β V β (oppgβπ ) = (π sSet β¨(+gβndx), tpos + β©)) |
12 | fvprc 6882 | . . . 4 β’ (Β¬ π β V β (oppgβπ ) = β ) | |
13 | reldmsets 17102 | . . . . 5 β’ Rel dom sSet | |
14 | 13 | ovprc1 7450 | . . . 4 β’ (Β¬ π β V β (π sSet β¨(+gβndx), tpos + β©) = β ) |
15 | 12, 14 | eqtr4d 2773 | . . 3 β’ (Β¬ π β V β (oppgβπ ) = (π sSet β¨(+gβndx), tpos + β©)) |
16 | 11, 15 | pm2.61i 182 | . 2 β’ (oppgβπ ) = (π sSet β¨(+gβndx), tpos + β©) |
17 | 1, 16 | eqtri 2758 | 1 β’ π = (π sSet β¨(+gβndx), tpos + β©) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 = wceq 1539 β wcel 2104 Vcvv 3472 β c0 4321 β¨cop 4633 βcfv 6542 (class class class)co 7411 tpos ctpos 8212 sSet csts 17100 ndxcnx 17130 +gcplusg 17201 oppgcoppg 19250 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-res 5687 df-iota 6494 df-fun 6544 df-fv 6550 df-ov 7414 df-oprab 7415 df-mpo 7416 df-tpos 8213 df-sets 17101 df-oppg 19251 |
This theorem is referenced by: oppgplusfval 19253 oppglemOLD 19256 oppgbas 19257 oppgtset 19259 oppgle 32397 |
Copyright terms: Public domain | W3C validator |