| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oppgval | Structured version Visualization version GIF version | ||
| Description: Value of the opposite group. (Contributed by Stefan O'Rear, 25-Aug-2015.) (Revised by Mario Carneiro, 16-Sep-2015.) (Revised by Fan Zheng, 26-Jun-2016.) |
| Ref | Expression |
|---|---|
| oppgval.2 | ⊢ + = (+g‘𝑅) |
| oppgval.3 | ⊢ 𝑂 = (oppg‘𝑅) |
| Ref | Expression |
|---|---|
| oppgval | ⊢ 𝑂 = (𝑅 sSet 〈(+g‘ndx), tpos + 〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppgval.3 | . 2 ⊢ 𝑂 = (oppg‘𝑅) | |
| 2 | id 22 | . . . . 5 ⊢ (𝑥 = 𝑅 → 𝑥 = 𝑅) | |
| 3 | fveq2 6881 | . . . . . . . 8 ⊢ (𝑥 = 𝑅 → (+g‘𝑥) = (+g‘𝑅)) | |
| 4 | oppgval.2 | . . . . . . . 8 ⊢ + = (+g‘𝑅) | |
| 5 | 3, 4 | eqtr4di 2789 | . . . . . . 7 ⊢ (𝑥 = 𝑅 → (+g‘𝑥) = + ) |
| 6 | 5 | tposeqd 8233 | . . . . . 6 ⊢ (𝑥 = 𝑅 → tpos (+g‘𝑥) = tpos + ) |
| 7 | 6 | opeq2d 4861 | . . . . 5 ⊢ (𝑥 = 𝑅 → 〈(+g‘ndx), tpos (+g‘𝑥)〉 = 〈(+g‘ndx), tpos + 〉) |
| 8 | 2, 7 | oveq12d 7428 | . . . 4 ⊢ (𝑥 = 𝑅 → (𝑥 sSet 〈(+g‘ndx), tpos (+g‘𝑥)〉) = (𝑅 sSet 〈(+g‘ndx), tpos + 〉)) |
| 9 | df-oppg 19334 | . . . 4 ⊢ oppg = (𝑥 ∈ V ↦ (𝑥 sSet 〈(+g‘ndx), tpos (+g‘𝑥)〉)) | |
| 10 | ovex 7443 | . . . 4 ⊢ (𝑅 sSet 〈(+g‘ndx), tpos + 〉) ∈ V | |
| 11 | 8, 9, 10 | fvmpt 6991 | . . 3 ⊢ (𝑅 ∈ V → (oppg‘𝑅) = (𝑅 sSet 〈(+g‘ndx), tpos + 〉)) |
| 12 | fvprc 6873 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (oppg‘𝑅) = ∅) | |
| 13 | reldmsets 17189 | . . . . 5 ⊢ Rel dom sSet | |
| 14 | 13 | ovprc1 7449 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (𝑅 sSet 〈(+g‘ndx), tpos + 〉) = ∅) |
| 15 | 12, 14 | eqtr4d 2774 | . . 3 ⊢ (¬ 𝑅 ∈ V → (oppg‘𝑅) = (𝑅 sSet 〈(+g‘ndx), tpos + 〉)) |
| 16 | 11, 15 | pm2.61i 182 | . 2 ⊢ (oppg‘𝑅) = (𝑅 sSet 〈(+g‘ndx), tpos + 〉) |
| 17 | 1, 16 | eqtri 2759 | 1 ⊢ 𝑂 = (𝑅 sSet 〈(+g‘ndx), tpos + 〉) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2109 Vcvv 3464 ∅c0 4313 〈cop 4612 ‘cfv 6536 (class class class)co 7410 tpos ctpos 8229 sSet csts 17187 ndxcnx 17217 +gcplusg 17276 oppgcoppg 19333 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-res 5671 df-iota 6489 df-fun 6538 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-tpos 8230 df-sets 17188 df-oppg 19334 |
| This theorem is referenced by: oppgplusfval 19336 oppgbas 19339 oppgtset 19340 oppgle 32947 |
| Copyright terms: Public domain | W3C validator |