Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > oppgval | Structured version Visualization version GIF version |
Description: Value of the opposite group. (Contributed by Stefan O'Rear, 25-Aug-2015.) (Revised by Mario Carneiro, 16-Sep-2015.) (Revised by Fan Zheng, 26-Jun-2016.) |
Ref | Expression |
---|---|
oppgval.2 | ⊢ + = (+g‘𝑅) |
oppgval.3 | ⊢ 𝑂 = (oppg‘𝑅) |
Ref | Expression |
---|---|
oppgval | ⊢ 𝑂 = (𝑅 sSet 〈(+g‘ndx), tpos + 〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oppgval.3 | . 2 ⊢ 𝑂 = (oppg‘𝑅) | |
2 | id 22 | . . . . 5 ⊢ (𝑥 = 𝑅 → 𝑥 = 𝑅) | |
3 | fveq2 6756 | . . . . . . . 8 ⊢ (𝑥 = 𝑅 → (+g‘𝑥) = (+g‘𝑅)) | |
4 | oppgval.2 | . . . . . . . 8 ⊢ + = (+g‘𝑅) | |
5 | 3, 4 | eqtr4di 2797 | . . . . . . 7 ⊢ (𝑥 = 𝑅 → (+g‘𝑥) = + ) |
6 | 5 | tposeqd 8016 | . . . . . 6 ⊢ (𝑥 = 𝑅 → tpos (+g‘𝑥) = tpos + ) |
7 | 6 | opeq2d 4808 | . . . . 5 ⊢ (𝑥 = 𝑅 → 〈(+g‘ndx), tpos (+g‘𝑥)〉 = 〈(+g‘ndx), tpos + 〉) |
8 | 2, 7 | oveq12d 7273 | . . . 4 ⊢ (𝑥 = 𝑅 → (𝑥 sSet 〈(+g‘ndx), tpos (+g‘𝑥)〉) = (𝑅 sSet 〈(+g‘ndx), tpos + 〉)) |
9 | df-oppg 18865 | . . . 4 ⊢ oppg = (𝑥 ∈ V ↦ (𝑥 sSet 〈(+g‘ndx), tpos (+g‘𝑥)〉)) | |
10 | ovex 7288 | . . . 4 ⊢ (𝑅 sSet 〈(+g‘ndx), tpos + 〉) ∈ V | |
11 | 8, 9, 10 | fvmpt 6857 | . . 3 ⊢ (𝑅 ∈ V → (oppg‘𝑅) = (𝑅 sSet 〈(+g‘ndx), tpos + 〉)) |
12 | fvprc 6748 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (oppg‘𝑅) = ∅) | |
13 | reldmsets 16794 | . . . . 5 ⊢ Rel dom sSet | |
14 | 13 | ovprc1 7294 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (𝑅 sSet 〈(+g‘ndx), tpos + 〉) = ∅) |
15 | 12, 14 | eqtr4d 2781 | . . 3 ⊢ (¬ 𝑅 ∈ V → (oppg‘𝑅) = (𝑅 sSet 〈(+g‘ndx), tpos + 〉)) |
16 | 11, 15 | pm2.61i 182 | . 2 ⊢ (oppg‘𝑅) = (𝑅 sSet 〈(+g‘ndx), tpos + 〉) |
17 | 1, 16 | eqtri 2766 | 1 ⊢ 𝑂 = (𝑅 sSet 〈(+g‘ndx), tpos + 〉) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ∅c0 4253 〈cop 4564 ‘cfv 6418 (class class class)co 7255 tpos ctpos 8012 sSet csts 16792 ndxcnx 16822 +gcplusg 16888 oppgcoppg 18864 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-res 5592 df-iota 6376 df-fun 6420 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-tpos 8013 df-sets 16793 df-oppg 18865 |
This theorem is referenced by: oppgplusfval 18867 oppglemOLD 18870 oppgbas 18871 oppgtset 18873 oppgle 31140 |
Copyright terms: Public domain | W3C validator |