MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oppgval Structured version   Visualization version   GIF version

Theorem oppgval 19255
Description: Value of the opposite group. (Contributed by Stefan O'Rear, 25-Aug-2015.) (Revised by Mario Carneiro, 16-Sep-2015.) (Revised by Fan Zheng, 26-Jun-2016.)
Hypotheses
Ref Expression
oppgval.2 + = (+g𝑅)
oppgval.3 𝑂 = (oppg𝑅)
Assertion
Ref Expression
oppgval 𝑂 = (𝑅 sSet ⟨(+g‘ndx), tpos + ⟩)

Proof of Theorem oppgval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 oppgval.3 . 2 𝑂 = (oppg𝑅)
2 id 22 . . . . 5 (𝑥 = 𝑅𝑥 = 𝑅)
3 fveq2 6840 . . . . . . . 8 (𝑥 = 𝑅 → (+g𝑥) = (+g𝑅))
4 oppgval.2 . . . . . . . 8 + = (+g𝑅)
53, 4eqtr4di 2782 . . . . . . 7 (𝑥 = 𝑅 → (+g𝑥) = + )
65tposeqd 8185 . . . . . 6 (𝑥 = 𝑅 → tpos (+g𝑥) = tpos + )
76opeq2d 4840 . . . . 5 (𝑥 = 𝑅 → ⟨(+g‘ndx), tpos (+g𝑥)⟩ = ⟨(+g‘ndx), tpos + ⟩)
82, 7oveq12d 7387 . . . 4 (𝑥 = 𝑅 → (𝑥 sSet ⟨(+g‘ndx), tpos (+g𝑥)⟩) = (𝑅 sSet ⟨(+g‘ndx), tpos + ⟩))
9 df-oppg 19254 . . . 4 oppg = (𝑥 ∈ V ↦ (𝑥 sSet ⟨(+g‘ndx), tpos (+g𝑥)⟩))
10 ovex 7402 . . . 4 (𝑅 sSet ⟨(+g‘ndx), tpos + ⟩) ∈ V
118, 9, 10fvmpt 6950 . . 3 (𝑅 ∈ V → (oppg𝑅) = (𝑅 sSet ⟨(+g‘ndx), tpos + ⟩))
12 fvprc 6832 . . . 4 𝑅 ∈ V → (oppg𝑅) = ∅)
13 reldmsets 17111 . . . . 5 Rel dom sSet
1413ovprc1 7408 . . . 4 𝑅 ∈ V → (𝑅 sSet ⟨(+g‘ndx), tpos + ⟩) = ∅)
1512, 14eqtr4d 2767 . . 3 𝑅 ∈ V → (oppg𝑅) = (𝑅 sSet ⟨(+g‘ndx), tpos + ⟩))
1611, 15pm2.61i 182 . 2 (oppg𝑅) = (𝑅 sSet ⟨(+g‘ndx), tpos + ⟩)
171, 16eqtri 2752 1 𝑂 = (𝑅 sSet ⟨(+g‘ndx), tpos + ⟩)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1540  wcel 2109  Vcvv 3444  c0 4292  cop 4591  cfv 6499  (class class class)co 7369  tpos ctpos 8181   sSet csts 17109  ndxcnx 17139  +gcplusg 17196  oppgcoppg 19253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-res 5643  df-iota 6452  df-fun 6501  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-tpos 8182  df-sets 17110  df-oppg 19254
This theorem is referenced by:  oppgplusfval  19256  oppgbas  19259  oppgtset  19260  oppgle  32861
  Copyright terms: Public domain W3C validator