MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oppgval Structured version   Visualization version   GIF version

Theorem oppgval 19378
Description: Value of the opposite group. (Contributed by Stefan O'Rear, 25-Aug-2015.) (Revised by Mario Carneiro, 16-Sep-2015.) (Revised by Fan Zheng, 26-Jun-2016.)
Hypotheses
Ref Expression
oppgval.2 + = (+g𝑅)
oppgval.3 𝑂 = (oppg𝑅)
Assertion
Ref Expression
oppgval 𝑂 = (𝑅 sSet ⟨(+g‘ndx), tpos + ⟩)

Proof of Theorem oppgval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 oppgval.3 . 2 𝑂 = (oppg𝑅)
2 id 22 . . . . 5 (𝑥 = 𝑅𝑥 = 𝑅)
3 fveq2 6907 . . . . . . . 8 (𝑥 = 𝑅 → (+g𝑥) = (+g𝑅))
4 oppgval.2 . . . . . . . 8 + = (+g𝑅)
53, 4eqtr4di 2793 . . . . . . 7 (𝑥 = 𝑅 → (+g𝑥) = + )
65tposeqd 8253 . . . . . 6 (𝑥 = 𝑅 → tpos (+g𝑥) = tpos + )
76opeq2d 4885 . . . . 5 (𝑥 = 𝑅 → ⟨(+g‘ndx), tpos (+g𝑥)⟩ = ⟨(+g‘ndx), tpos + ⟩)
82, 7oveq12d 7449 . . . 4 (𝑥 = 𝑅 → (𝑥 sSet ⟨(+g‘ndx), tpos (+g𝑥)⟩) = (𝑅 sSet ⟨(+g‘ndx), tpos + ⟩))
9 df-oppg 19377 . . . 4 oppg = (𝑥 ∈ V ↦ (𝑥 sSet ⟨(+g‘ndx), tpos (+g𝑥)⟩))
10 ovex 7464 . . . 4 (𝑅 sSet ⟨(+g‘ndx), tpos + ⟩) ∈ V
118, 9, 10fvmpt 7016 . . 3 (𝑅 ∈ V → (oppg𝑅) = (𝑅 sSet ⟨(+g‘ndx), tpos + ⟩))
12 fvprc 6899 . . . 4 𝑅 ∈ V → (oppg𝑅) = ∅)
13 reldmsets 17199 . . . . 5 Rel dom sSet
1413ovprc1 7470 . . . 4 𝑅 ∈ V → (𝑅 sSet ⟨(+g‘ndx), tpos + ⟩) = ∅)
1512, 14eqtr4d 2778 . . 3 𝑅 ∈ V → (oppg𝑅) = (𝑅 sSet ⟨(+g‘ndx), tpos + ⟩))
1611, 15pm2.61i 182 . 2 (oppg𝑅) = (𝑅 sSet ⟨(+g‘ndx), tpos + ⟩)
171, 16eqtri 2763 1 𝑂 = (𝑅 sSet ⟨(+g‘ndx), tpos + ⟩)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1537  wcel 2106  Vcvv 3478  c0 4339  cop 4637  cfv 6563  (class class class)co 7431  tpos ctpos 8249   sSet csts 17197  ndxcnx 17227  +gcplusg 17298  oppgcoppg 19376
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-res 5701  df-iota 6516  df-fun 6565  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-tpos 8250  df-sets 17198  df-oppg 19377
This theorem is referenced by:  oppgplusfval  19379  oppglemOLD  19382  oppgbas  19383  oppgtset  19385  oppgle  32936
  Copyright terms: Public domain W3C validator