Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > oppgval | Structured version Visualization version GIF version |
Description: Value of the opposite group. (Contributed by Stefan O'Rear, 25-Aug-2015.) (Revised by Mario Carneiro, 16-Sep-2015.) (Revised by Fan Zheng, 26-Jun-2016.) |
Ref | Expression |
---|---|
oppgval.2 | ⊢ + = (+g‘𝑅) |
oppgval.3 | ⊢ 𝑂 = (oppg‘𝑅) |
Ref | Expression |
---|---|
oppgval | ⊢ 𝑂 = (𝑅 sSet 〈(+g‘ndx), tpos + 〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oppgval.3 | . 2 ⊢ 𝑂 = (oppg‘𝑅) | |
2 | id 22 | . . . . 5 ⊢ (𝑥 = 𝑅 → 𝑥 = 𝑅) | |
3 | fveq2 6809 | . . . . . . . 8 ⊢ (𝑥 = 𝑅 → (+g‘𝑥) = (+g‘𝑅)) | |
4 | oppgval.2 | . . . . . . . 8 ⊢ + = (+g‘𝑅) | |
5 | 3, 4 | eqtr4di 2795 | . . . . . . 7 ⊢ (𝑥 = 𝑅 → (+g‘𝑥) = + ) |
6 | 5 | tposeqd 8090 | . . . . . 6 ⊢ (𝑥 = 𝑅 → tpos (+g‘𝑥) = tpos + ) |
7 | 6 | opeq2d 4820 | . . . . 5 ⊢ (𝑥 = 𝑅 → 〈(+g‘ndx), tpos (+g‘𝑥)〉 = 〈(+g‘ndx), tpos + 〉) |
8 | 2, 7 | oveq12d 7331 | . . . 4 ⊢ (𝑥 = 𝑅 → (𝑥 sSet 〈(+g‘ndx), tpos (+g‘𝑥)〉) = (𝑅 sSet 〈(+g‘ndx), tpos + 〉)) |
9 | df-oppg 19017 | . . . 4 ⊢ oppg = (𝑥 ∈ V ↦ (𝑥 sSet 〈(+g‘ndx), tpos (+g‘𝑥)〉)) | |
10 | ovex 7346 | . . . 4 ⊢ (𝑅 sSet 〈(+g‘ndx), tpos + 〉) ∈ V | |
11 | 8, 9, 10 | fvmpt 6912 | . . 3 ⊢ (𝑅 ∈ V → (oppg‘𝑅) = (𝑅 sSet 〈(+g‘ndx), tpos + 〉)) |
12 | fvprc 6801 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (oppg‘𝑅) = ∅) | |
13 | reldmsets 16933 | . . . . 5 ⊢ Rel dom sSet | |
14 | 13 | ovprc1 7352 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (𝑅 sSet 〈(+g‘ndx), tpos + 〉) = ∅) |
15 | 12, 14 | eqtr4d 2780 | . . 3 ⊢ (¬ 𝑅 ∈ V → (oppg‘𝑅) = (𝑅 sSet 〈(+g‘ndx), tpos + 〉)) |
16 | 11, 15 | pm2.61i 182 | . 2 ⊢ (oppg‘𝑅) = (𝑅 sSet 〈(+g‘ndx), tpos + 〉) |
17 | 1, 16 | eqtri 2765 | 1 ⊢ 𝑂 = (𝑅 sSet 〈(+g‘ndx), tpos + 〉) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2105 Vcvv 3441 ∅c0 4266 〈cop 4575 ‘cfv 6463 (class class class)co 7313 tpos ctpos 8086 sSet csts 16931 ndxcnx 16961 +gcplusg 17029 oppgcoppg 19016 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-sep 5236 ax-nul 5243 ax-pr 5365 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3405 df-v 3443 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-nul 4267 df-if 4470 df-sn 4570 df-pr 4572 df-op 4576 df-uni 4849 df-br 5086 df-opab 5148 df-mpt 5169 df-id 5505 df-xp 5611 df-rel 5612 df-cnv 5613 df-co 5614 df-dm 5615 df-res 5617 df-iota 6415 df-fun 6465 df-fv 6471 df-ov 7316 df-oprab 7317 df-mpo 7318 df-tpos 8087 df-sets 16932 df-oppg 19017 |
This theorem is referenced by: oppgplusfval 19019 oppglemOLD 19022 oppgbas 19023 oppgtset 19025 oppgle 31346 |
Copyright terms: Public domain | W3C validator |