| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oppgval | Structured version Visualization version GIF version | ||
| Description: Value of the opposite group. (Contributed by Stefan O'Rear, 25-Aug-2015.) (Revised by Mario Carneiro, 16-Sep-2015.) (Revised by Fan Zheng, 26-Jun-2016.) |
| Ref | Expression |
|---|---|
| oppgval.2 | ⊢ + = (+g‘𝑅) |
| oppgval.3 | ⊢ 𝑂 = (oppg‘𝑅) |
| Ref | Expression |
|---|---|
| oppgval | ⊢ 𝑂 = (𝑅 sSet 〈(+g‘ndx), tpos + 〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppgval.3 | . 2 ⊢ 𝑂 = (oppg‘𝑅) | |
| 2 | id 22 | . . . . 5 ⊢ (𝑥 = 𝑅 → 𝑥 = 𝑅) | |
| 3 | fveq2 6861 | . . . . . . . 8 ⊢ (𝑥 = 𝑅 → (+g‘𝑥) = (+g‘𝑅)) | |
| 4 | oppgval.2 | . . . . . . . 8 ⊢ + = (+g‘𝑅) | |
| 5 | 3, 4 | eqtr4di 2783 | . . . . . . 7 ⊢ (𝑥 = 𝑅 → (+g‘𝑥) = + ) |
| 6 | 5 | tposeqd 8211 | . . . . . 6 ⊢ (𝑥 = 𝑅 → tpos (+g‘𝑥) = tpos + ) |
| 7 | 6 | opeq2d 4847 | . . . . 5 ⊢ (𝑥 = 𝑅 → 〈(+g‘ndx), tpos (+g‘𝑥)〉 = 〈(+g‘ndx), tpos + 〉) |
| 8 | 2, 7 | oveq12d 7408 | . . . 4 ⊢ (𝑥 = 𝑅 → (𝑥 sSet 〈(+g‘ndx), tpos (+g‘𝑥)〉) = (𝑅 sSet 〈(+g‘ndx), tpos + 〉)) |
| 9 | df-oppg 19285 | . . . 4 ⊢ oppg = (𝑥 ∈ V ↦ (𝑥 sSet 〈(+g‘ndx), tpos (+g‘𝑥)〉)) | |
| 10 | ovex 7423 | . . . 4 ⊢ (𝑅 sSet 〈(+g‘ndx), tpos + 〉) ∈ V | |
| 11 | 8, 9, 10 | fvmpt 6971 | . . 3 ⊢ (𝑅 ∈ V → (oppg‘𝑅) = (𝑅 sSet 〈(+g‘ndx), tpos + 〉)) |
| 12 | fvprc 6853 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (oppg‘𝑅) = ∅) | |
| 13 | reldmsets 17142 | . . . . 5 ⊢ Rel dom sSet | |
| 14 | 13 | ovprc1 7429 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (𝑅 sSet 〈(+g‘ndx), tpos + 〉) = ∅) |
| 15 | 12, 14 | eqtr4d 2768 | . . 3 ⊢ (¬ 𝑅 ∈ V → (oppg‘𝑅) = (𝑅 sSet 〈(+g‘ndx), tpos + 〉)) |
| 16 | 11, 15 | pm2.61i 182 | . 2 ⊢ (oppg‘𝑅) = (𝑅 sSet 〈(+g‘ndx), tpos + 〉) |
| 17 | 1, 16 | eqtri 2753 | 1 ⊢ 𝑂 = (𝑅 sSet 〈(+g‘ndx), tpos + 〉) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ∅c0 4299 〈cop 4598 ‘cfv 6514 (class class class)co 7390 tpos ctpos 8207 sSet csts 17140 ndxcnx 17170 +gcplusg 17227 oppgcoppg 19284 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-res 5653 df-iota 6467 df-fun 6516 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-tpos 8208 df-sets 17141 df-oppg 19285 |
| This theorem is referenced by: oppgplusfval 19287 oppgbas 19290 oppgtset 19291 oppgle 32895 |
| Copyright terms: Public domain | W3C validator |