![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oppgval | Structured version Visualization version GIF version |
Description: Value of the opposite group. (Contributed by Stefan O'Rear, 25-Aug-2015.) (Revised by Mario Carneiro, 16-Sep-2015.) (Revised by Fan Zheng, 26-Jun-2016.) |
Ref | Expression |
---|---|
oppgval.2 | ⊢ + = (+g‘𝑅) |
oppgval.3 | ⊢ 𝑂 = (oppg‘𝑅) |
Ref | Expression |
---|---|
oppgval | ⊢ 𝑂 = (𝑅 sSet 〈(+g‘ndx), tpos + 〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oppgval.3 | . 2 ⊢ 𝑂 = (oppg‘𝑅) | |
2 | id 22 | . . . . 5 ⊢ (𝑥 = 𝑅 → 𝑥 = 𝑅) | |
3 | fveq2 6920 | . . . . . . . 8 ⊢ (𝑥 = 𝑅 → (+g‘𝑥) = (+g‘𝑅)) | |
4 | oppgval.2 | . . . . . . . 8 ⊢ + = (+g‘𝑅) | |
5 | 3, 4 | eqtr4di 2798 | . . . . . . 7 ⊢ (𝑥 = 𝑅 → (+g‘𝑥) = + ) |
6 | 5 | tposeqd 8270 | . . . . . 6 ⊢ (𝑥 = 𝑅 → tpos (+g‘𝑥) = tpos + ) |
7 | 6 | opeq2d 4904 | . . . . 5 ⊢ (𝑥 = 𝑅 → 〈(+g‘ndx), tpos (+g‘𝑥)〉 = 〈(+g‘ndx), tpos + 〉) |
8 | 2, 7 | oveq12d 7466 | . . . 4 ⊢ (𝑥 = 𝑅 → (𝑥 sSet 〈(+g‘ndx), tpos (+g‘𝑥)〉) = (𝑅 sSet 〈(+g‘ndx), tpos + 〉)) |
9 | df-oppg 19386 | . . . 4 ⊢ oppg = (𝑥 ∈ V ↦ (𝑥 sSet 〈(+g‘ndx), tpos (+g‘𝑥)〉)) | |
10 | ovex 7481 | . . . 4 ⊢ (𝑅 sSet 〈(+g‘ndx), tpos + 〉) ∈ V | |
11 | 8, 9, 10 | fvmpt 7029 | . . 3 ⊢ (𝑅 ∈ V → (oppg‘𝑅) = (𝑅 sSet 〈(+g‘ndx), tpos + 〉)) |
12 | fvprc 6912 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (oppg‘𝑅) = ∅) | |
13 | reldmsets 17212 | . . . . 5 ⊢ Rel dom sSet | |
14 | 13 | ovprc1 7487 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (𝑅 sSet 〈(+g‘ndx), tpos + 〉) = ∅) |
15 | 12, 14 | eqtr4d 2783 | . . 3 ⊢ (¬ 𝑅 ∈ V → (oppg‘𝑅) = (𝑅 sSet 〈(+g‘ndx), tpos + 〉)) |
16 | 11, 15 | pm2.61i 182 | . 2 ⊢ (oppg‘𝑅) = (𝑅 sSet 〈(+g‘ndx), tpos + 〉) |
17 | 1, 16 | eqtri 2768 | 1 ⊢ 𝑂 = (𝑅 sSet 〈(+g‘ndx), tpos + 〉) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ∅c0 4352 〈cop 4654 ‘cfv 6573 (class class class)co 7448 tpos ctpos 8266 sSet csts 17210 ndxcnx 17240 +gcplusg 17311 oppgcoppg 19385 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-res 5712 df-iota 6525 df-fun 6575 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-tpos 8267 df-sets 17211 df-oppg 19386 |
This theorem is referenced by: oppgplusfval 19388 oppglemOLD 19391 oppgbas 19392 oppgtset 19394 oppgle 32933 |
Copyright terms: Public domain | W3C validator |