MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unima Structured version   Visualization version   GIF version

Theorem unima 6843
Description: Image of a union. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Assertion
Ref Expression
unima ((𝐹 Fn 𝐴𝐵𝐴𝐶𝐴) → (𝐹 “ (𝐵𝐶)) = ((𝐹𝐵) ∪ (𝐹𝐶)))

Proof of Theorem unima
Dummy variables 𝑦 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1135 . . . . . 6 ((𝐹 Fn 𝐴𝐵𝐴𝐶𝐴) → 𝐹 Fn 𝐴)
2 simpl 483 . . . . . . . 8 ((𝐵𝐴𝐶𝐴) → 𝐵𝐴)
3 simpr 485 . . . . . . . 8 ((𝐵𝐴𝐶𝐴) → 𝐶𝐴)
42, 3unssd 4120 . . . . . . 7 ((𝐵𝐴𝐶𝐴) → (𝐵𝐶) ⊆ 𝐴)
543adant1 1129 . . . . . 6 ((𝐹 Fn 𝐴𝐵𝐴𝐶𝐴) → (𝐵𝐶) ⊆ 𝐴)
61, 5fvelimabd 6842 . . . . 5 ((𝐹 Fn 𝐴𝐵𝐴𝐶𝐴) → (𝑦 ∈ (𝐹 “ (𝐵𝐶)) ↔ ∃𝑥 ∈ (𝐵𝐶)(𝐹𝑥) = 𝑦))
7 rexun 4124 . . . . 5 (∃𝑥 ∈ (𝐵𝐶)(𝐹𝑥) = 𝑦 ↔ (∃𝑥𝐵 (𝐹𝑥) = 𝑦 ∨ ∃𝑥𝐶 (𝐹𝑥) = 𝑦))
86, 7bitrdi 287 . . . 4 ((𝐹 Fn 𝐴𝐵𝐴𝐶𝐴) → (𝑦 ∈ (𝐹 “ (𝐵𝐶)) ↔ (∃𝑥𝐵 (𝐹𝑥) = 𝑦 ∨ ∃𝑥𝐶 (𝐹𝑥) = 𝑦)))
9 fvelimab 6841 . . . . . 6 ((𝐹 Fn 𝐴𝐵𝐴) → (𝑦 ∈ (𝐹𝐵) ↔ ∃𝑥𝐵 (𝐹𝑥) = 𝑦))
1093adant3 1131 . . . . 5 ((𝐹 Fn 𝐴𝐵𝐴𝐶𝐴) → (𝑦 ∈ (𝐹𝐵) ↔ ∃𝑥𝐵 (𝐹𝑥) = 𝑦))
11 fvelimab 6841 . . . . . 6 ((𝐹 Fn 𝐴𝐶𝐴) → (𝑦 ∈ (𝐹𝐶) ↔ ∃𝑥𝐶 (𝐹𝑥) = 𝑦))
12113adant2 1130 . . . . 5 ((𝐹 Fn 𝐴𝐵𝐴𝐶𝐴) → (𝑦 ∈ (𝐹𝐶) ↔ ∃𝑥𝐶 (𝐹𝑥) = 𝑦))
1310, 12orbi12d 916 . . . 4 ((𝐹 Fn 𝐴𝐵𝐴𝐶𝐴) → ((𝑦 ∈ (𝐹𝐵) ∨ 𝑦 ∈ (𝐹𝐶)) ↔ (∃𝑥𝐵 (𝐹𝑥) = 𝑦 ∨ ∃𝑥𝐶 (𝐹𝑥) = 𝑦)))
148, 13bitr4d 281 . . 3 ((𝐹 Fn 𝐴𝐵𝐴𝐶𝐴) → (𝑦 ∈ (𝐹 “ (𝐵𝐶)) ↔ (𝑦 ∈ (𝐹𝐵) ∨ 𝑦 ∈ (𝐹𝐶))))
15 elun 4083 . . 3 (𝑦 ∈ ((𝐹𝐵) ∪ (𝐹𝐶)) ↔ (𝑦 ∈ (𝐹𝐵) ∨ 𝑦 ∈ (𝐹𝐶)))
1614, 15bitr4di 289 . 2 ((𝐹 Fn 𝐴𝐵𝐴𝐶𝐴) → (𝑦 ∈ (𝐹 “ (𝐵𝐶)) ↔ 𝑦 ∈ ((𝐹𝐵) ∪ (𝐹𝐶))))
1716eqrdv 2736 1 ((𝐹 Fn 𝐴𝐵𝐴𝐶𝐴) → (𝐹 “ (𝐵𝐶)) = ((𝐹𝐵) ∪ (𝐹𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 844  w3a 1086   = wceq 1539  wcel 2106  wrex 3065  cun 3885  wss 3887  cima 5592   Fn wfn 6428  cfv 6433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-fv 6441
This theorem is referenced by:  cycpmco2rn  31392  icccncfext  43428
  Copyright terms: Public domain W3C validator