Step | Hyp | Ref
| Expression |
1 | | simp1 1134 |
. . . . . 6
⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐶 ⊆ 𝐴) → 𝐹 Fn 𝐴) |
2 | | simpl 482 |
. . . . . . . 8
⊢ ((𝐵 ⊆ 𝐴 ∧ 𝐶 ⊆ 𝐴) → 𝐵 ⊆ 𝐴) |
3 | | simpr 484 |
. . . . . . . 8
⊢ ((𝐵 ⊆ 𝐴 ∧ 𝐶 ⊆ 𝐴) → 𝐶 ⊆ 𝐴) |
4 | 2, 3 | unssd 4116 |
. . . . . . 7
⊢ ((𝐵 ⊆ 𝐴 ∧ 𝐶 ⊆ 𝐴) → (𝐵 ∪ 𝐶) ⊆ 𝐴) |
5 | 4 | 3adant1 1128 |
. . . . . 6
⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐶 ⊆ 𝐴) → (𝐵 ∪ 𝐶) ⊆ 𝐴) |
6 | 1, 5 | fvelimabd 6824 |
. . . . 5
⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐶 ⊆ 𝐴) → (𝑦 ∈ (𝐹 “ (𝐵 ∪ 𝐶)) ↔ ∃𝑥 ∈ (𝐵 ∪ 𝐶)(𝐹‘𝑥) = 𝑦)) |
7 | | rexun 4120 |
. . . . 5
⊢
(∃𝑥 ∈
(𝐵 ∪ 𝐶)(𝐹‘𝑥) = 𝑦 ↔ (∃𝑥 ∈ 𝐵 (𝐹‘𝑥) = 𝑦 ∨ ∃𝑥 ∈ 𝐶 (𝐹‘𝑥) = 𝑦)) |
8 | 6, 7 | bitrdi 286 |
. . . 4
⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐶 ⊆ 𝐴) → (𝑦 ∈ (𝐹 “ (𝐵 ∪ 𝐶)) ↔ (∃𝑥 ∈ 𝐵 (𝐹‘𝑥) = 𝑦 ∨ ∃𝑥 ∈ 𝐶 (𝐹‘𝑥) = 𝑦))) |
9 | | fvelimab 6823 |
. . . . . 6
⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (𝑦 ∈ (𝐹 “ 𝐵) ↔ ∃𝑥 ∈ 𝐵 (𝐹‘𝑥) = 𝑦)) |
10 | 9 | 3adant3 1130 |
. . . . 5
⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐶 ⊆ 𝐴) → (𝑦 ∈ (𝐹 “ 𝐵) ↔ ∃𝑥 ∈ 𝐵 (𝐹‘𝑥) = 𝑦)) |
11 | | fvelimab 6823 |
. . . . . 6
⊢ ((𝐹 Fn 𝐴 ∧ 𝐶 ⊆ 𝐴) → (𝑦 ∈ (𝐹 “ 𝐶) ↔ ∃𝑥 ∈ 𝐶 (𝐹‘𝑥) = 𝑦)) |
12 | 11 | 3adant2 1129 |
. . . . 5
⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐶 ⊆ 𝐴) → (𝑦 ∈ (𝐹 “ 𝐶) ↔ ∃𝑥 ∈ 𝐶 (𝐹‘𝑥) = 𝑦)) |
13 | 10, 12 | orbi12d 915 |
. . . 4
⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐶 ⊆ 𝐴) → ((𝑦 ∈ (𝐹 “ 𝐵) ∨ 𝑦 ∈ (𝐹 “ 𝐶)) ↔ (∃𝑥 ∈ 𝐵 (𝐹‘𝑥) = 𝑦 ∨ ∃𝑥 ∈ 𝐶 (𝐹‘𝑥) = 𝑦))) |
14 | 8, 13 | bitr4d 281 |
. . 3
⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐶 ⊆ 𝐴) → (𝑦 ∈ (𝐹 “ (𝐵 ∪ 𝐶)) ↔ (𝑦 ∈ (𝐹 “ 𝐵) ∨ 𝑦 ∈ (𝐹 “ 𝐶)))) |
15 | | elun 4079 |
. . 3
⊢ (𝑦 ∈ ((𝐹 “ 𝐵) ∪ (𝐹 “ 𝐶)) ↔ (𝑦 ∈ (𝐹 “ 𝐵) ∨ 𝑦 ∈ (𝐹 “ 𝐶))) |
16 | 14, 15 | bitr4di 288 |
. 2
⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐶 ⊆ 𝐴) → (𝑦 ∈ (𝐹 “ (𝐵 ∪ 𝐶)) ↔ 𝑦 ∈ ((𝐹 “ 𝐵) ∪ (𝐹 “ 𝐶)))) |
17 | 16 | eqrdv 2736 |
1
⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐶 ⊆ 𝐴) → (𝐹 “ (𝐵 ∪ 𝐶)) = ((𝐹 “ 𝐵) ∪ (𝐹 “ 𝐶))) |