MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unima Structured version   Visualization version   GIF version

Theorem unima 6997
Description: Image of a union. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Assertion
Ref Expression
unima ((𝐹 Fn 𝐴𝐵𝐴𝐶𝐴) → (𝐹 “ (𝐵𝐶)) = ((𝐹𝐵) ∪ (𝐹𝐶)))

Proof of Theorem unima
Dummy variables 𝑦 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1136 . . . . . 6 ((𝐹 Fn 𝐴𝐵𝐴𝐶𝐴) → 𝐹 Fn 𝐴)
2 simpl 482 . . . . . . . 8 ((𝐵𝐴𝐶𝐴) → 𝐵𝐴)
3 simpr 484 . . . . . . . 8 ((𝐵𝐴𝐶𝐴) → 𝐶𝐴)
42, 3unssd 4215 . . . . . . 7 ((𝐵𝐴𝐶𝐴) → (𝐵𝐶) ⊆ 𝐴)
543adant1 1130 . . . . . 6 ((𝐹 Fn 𝐴𝐵𝐴𝐶𝐴) → (𝐵𝐶) ⊆ 𝐴)
61, 5fvelimabd 6995 . . . . 5 ((𝐹 Fn 𝐴𝐵𝐴𝐶𝐴) → (𝑦 ∈ (𝐹 “ (𝐵𝐶)) ↔ ∃𝑥 ∈ (𝐵𝐶)(𝐹𝑥) = 𝑦))
7 rexun 4219 . . . . 5 (∃𝑥 ∈ (𝐵𝐶)(𝐹𝑥) = 𝑦 ↔ (∃𝑥𝐵 (𝐹𝑥) = 𝑦 ∨ ∃𝑥𝐶 (𝐹𝑥) = 𝑦))
86, 7bitrdi 287 . . . 4 ((𝐹 Fn 𝐴𝐵𝐴𝐶𝐴) → (𝑦 ∈ (𝐹 “ (𝐵𝐶)) ↔ (∃𝑥𝐵 (𝐹𝑥) = 𝑦 ∨ ∃𝑥𝐶 (𝐹𝑥) = 𝑦)))
9 fvelimab 6994 . . . . . 6 ((𝐹 Fn 𝐴𝐵𝐴) → (𝑦 ∈ (𝐹𝐵) ↔ ∃𝑥𝐵 (𝐹𝑥) = 𝑦))
1093adant3 1132 . . . . 5 ((𝐹 Fn 𝐴𝐵𝐴𝐶𝐴) → (𝑦 ∈ (𝐹𝐵) ↔ ∃𝑥𝐵 (𝐹𝑥) = 𝑦))
11 fvelimab 6994 . . . . . 6 ((𝐹 Fn 𝐴𝐶𝐴) → (𝑦 ∈ (𝐹𝐶) ↔ ∃𝑥𝐶 (𝐹𝑥) = 𝑦))
12113adant2 1131 . . . . 5 ((𝐹 Fn 𝐴𝐵𝐴𝐶𝐴) → (𝑦 ∈ (𝐹𝐶) ↔ ∃𝑥𝐶 (𝐹𝑥) = 𝑦))
1310, 12orbi12d 917 . . . 4 ((𝐹 Fn 𝐴𝐵𝐴𝐶𝐴) → ((𝑦 ∈ (𝐹𝐵) ∨ 𝑦 ∈ (𝐹𝐶)) ↔ (∃𝑥𝐵 (𝐹𝑥) = 𝑦 ∨ ∃𝑥𝐶 (𝐹𝑥) = 𝑦)))
148, 13bitr4d 282 . . 3 ((𝐹 Fn 𝐴𝐵𝐴𝐶𝐴) → (𝑦 ∈ (𝐹 “ (𝐵𝐶)) ↔ (𝑦 ∈ (𝐹𝐵) ∨ 𝑦 ∈ (𝐹𝐶))))
15 elun 4176 . . 3 (𝑦 ∈ ((𝐹𝐵) ∪ (𝐹𝐶)) ↔ (𝑦 ∈ (𝐹𝐵) ∨ 𝑦 ∈ (𝐹𝐶)))
1614, 15bitr4di 289 . 2 ((𝐹 Fn 𝐴𝐵𝐴𝐶𝐴) → (𝑦 ∈ (𝐹 “ (𝐵𝐶)) ↔ 𝑦 ∈ ((𝐹𝐵) ∪ (𝐹𝐶))))
1716eqrdv 2738 1 ((𝐹 Fn 𝐴𝐵𝐴𝐶𝐴) → (𝐹 “ (𝐵𝐶)) = ((𝐹𝐵) ∪ (𝐹𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 846  w3a 1087   = wceq 1537  wcel 2108  wrex 3076  cun 3974  wss 3976  cima 5703   Fn wfn 6568  cfv 6573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-fv 6581
This theorem is referenced by:  cycpmco2rn  33118  icccncfext  45808
  Copyright terms: Public domain W3C validator